|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from mp_palmdet import MPPalmDet |
|
|
|
def str2bool(v): |
|
if v.lower() in ['on', 'yes', 'true', 'y', 't']: |
|
return True |
|
elif v.lower() in ['off', 'no', 'false', 'n', 'f']: |
|
return False |
|
else: |
|
raise NotImplementedError |
|
|
|
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA] |
|
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16] |
|
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA" |
|
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16" |
|
try: |
|
backends += [cv.dnn.DNN_BACKEND_TIMVX] |
|
targets += [cv.dnn.DNN_TARGET_NPU] |
|
help_msg_backends += "; {:d}: TIMVX" |
|
help_msg_targets += "; {:d}: NPU" |
|
except: |
|
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.') |
|
|
|
parser = argparse.ArgumentParser(description='Hand Detector from MediaPipe') |
|
parser.add_argument('--input', '-i', type=str, help='Usage: Set path to the input image. Omit for using default camera.') |
|
parser.add_argument('--model', '-m', type=str, default='./palm_detection_mediapipe_2023feb.onnx', help='Usage: Set model path, defaults to palm_detection_mediapipe_2023feb.onnx.') |
|
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends)) |
|
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets)) |
|
parser.add_argument('--score_threshold', type=float, default=0.8, help='Usage: Set the minimum needed confidence for the model to identify a palm, defaults to 0.8. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold. An empirical score threshold for the quantized model is 0.49.') |
|
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.') |
|
parser.add_argument('--save', '-s', type=str, default=False, help='Usage: Set “True” to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input. Default will be set to “False”.') |
|
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Usage: Default will be set to “True” and will open a new window to show results. Set to “False” to stop visualizations from being shown. Invalid in case of camera input.') |
|
args = parser.parse_args() |
|
|
|
def visualize(image, results, print_results=False, fps=None): |
|
output = image.copy() |
|
|
|
if fps is not None: |
|
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
|
|
|
for idx, palm in enumerate(results): |
|
score = palm[-1] |
|
palm_box = palm[0:4] |
|
palm_landmarks = palm[4:-1].reshape(7, 2) |
|
|
|
|
|
palm_box = palm_box.astype(np.int32) |
|
cv.putText(output, '{:.4f}'.format(score), (palm_box[0], palm_box[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 255, 0)) |
|
|
|
|
|
cv.rectangle(output, (palm_box[0], palm_box[1]), (palm_box[2], palm_box[3]), (0, 255, 0), 2) |
|
|
|
|
|
palm_landmarks = palm_landmarks.astype(np.int32) |
|
for p in palm_landmarks: |
|
cv.circle(output, p, 2, (0, 0, 255), 2) |
|
|
|
|
|
if print_results: |
|
print('-----------palm {}-----------'.format(idx + 1)) |
|
print('score: {:.2f}'.format(score)) |
|
print('palm box: {}'.format(palm_box)) |
|
print('palm landmarks: ') |
|
for plm in palm_landmarks: |
|
print('\t{}'.format(plm)) |
|
|
|
return output |
|
|
|
if __name__ == '__main__': |
|
|
|
model = MPPalmDet(modelPath=args.model, |
|
nmsThreshold=args.nms_threshold, |
|
scoreThreshold=args.score_threshold, |
|
backendId=args.backend, |
|
targetId=args.target) |
|
|
|
|
|
if args.input is not None: |
|
image = cv.imread(args.input) |
|
|
|
|
|
results = model.infer(image) |
|
if len(results) == 0: |
|
print('Hand not detected') |
|
|
|
|
|
image = visualize(image, results, print_results=True) |
|
|
|
|
|
if args.save: |
|
print('Resutls saved to result.jpg\n') |
|
cv.imwrite('result.jpg', image) |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(args.input, image) |
|
cv.waitKey(0) |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
|
|
tm = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
|
|
tm.start() |
|
results = model.infer(frame) |
|
tm.stop() |
|
|
|
|
|
frame = visualize(frame, results, fps=tm.getFPS()) |
|
|
|
|
|
cv.imshow('MPPalmDet Demo', frame) |
|
|
|
tm.reset() |
|
|
|
|