Yuantao Feng
Renaming model files to have more information on architecture, training data and more (#7)
83bb178
# This file is part of OpenCV Zoo project. | |
# It is subject to the license terms in the LICENSE file found in the same directory. | |
# | |
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. | |
# Third party copyrights are property of their respective owners. | |
import argparse | |
import numpy as np | |
import cv2 as cv | |
from db import DB | |
def str2bool(v): | |
if v.lower() in ['on', 'yes', 'true', 'y', 't']: | |
return True | |
elif v.lower() in ['off', 'no', 'false', 'n', 'f']: | |
return False | |
else: | |
raise NotImplementedError | |
parser = argparse.ArgumentParser(description='Real-time Scene Text Detection with Differentiable Binarization (https://arxiv.org/abs/1911.08947).') | |
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.') | |
parser.add_argument('--model', '-m', type=str, default='text_detection_DB_TD500_resnet18.onnx', help='Path to the model.') | |
parser.add_argument('--width', type=int, default=736, | |
help='Preprocess input image by resizing to a specific width. It should be multiple by 32.') | |
parser.add_argument('--height', type=int, default=736, | |
help='Preprocess input image by resizing to a specific height. It should be multiple by 32.') | |
parser.add_argument('--binary_threshold', type=float, default=0.3, help='Threshold of the binary map.') | |
parser.add_argument('--polygon_threshold', type=float, default=0.5, help='Threshold of polygons.') | |
parser.add_argument('--max_candidates', type=int, default=200, help='Max candidates of polygons.') | |
parser.add_argument('--unclip_ratio', type=np.float64, default=2.0, help=' The unclip ratio of the detected text region, which determines the output size.') | |
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.') | |
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') | |
args = parser.parse_args() | |
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), isClosed=True, thickness=2, fps=None): | |
output = image.copy() | |
if fps is not None: | |
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) | |
pts = np.array(results[0]) | |
output = cv.polylines(output, pts, isClosed, box_color, thickness) | |
return output | |
if __name__ == '__main__': | |
# Instantiate DB | |
model = DB(modelPath=args.model, | |
inputSize=[args.width, args.height], | |
binaryThreshold=args.binary_threshold, | |
polygonThreshold=args.polygon_threshold, | |
maxCandidates=args.max_candidates, | |
unclipRatio=args.unclip_ratio | |
) | |
# If input is an image | |
if args.input is not None: | |
image = cv.imread(args.input) | |
image = cv.resize(image, [args.width, args.height]) | |
# Inference | |
results = model.infer(image) | |
# Print results | |
print('{} texts detected.'.format(len(results[0]))) | |
for idx, (bbox, score) in enumerate(zip(results[0], results[1])): | |
print('{}: {} {} {} {}, {:.2f}'.format(idx, bbox[0], bbox[1], bbox[2], bbox[3], score[0])) | |
# Draw results on the input image | |
image = visualize(image, results) | |
# Save results if save is true | |
if args.save: | |
print('Resutls saved to result.jpg\n') | |
cv.imwrite('result.jpg', image) | |
# Visualize results in a new window | |
if args.vis: | |
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) | |
cv.imshow(args.input, image) | |
cv.waitKey(0) | |
else: # Omit input to call default camera | |
deviceId = 0 | |
cap = cv.VideoCapture(deviceId) | |
tm = cv.TickMeter() | |
while cv.waitKey(1) < 0: | |
hasFrame, frame = cap.read() | |
if not hasFrame: | |
print('No frames grabbed!') | |
break | |
frame = cv.resize(frame, [args.width, args.height]) | |
# Inference | |
tm.start() | |
results = model.infer(frame) # results is a tuple | |
tm.stop() | |
# Draw results on the input image | |
frame = visualize(frame, results, fps=tm.getFPS()) | |
# Visualize results in a new Window | |
cv.imshow('{} Demo'.format(model.name), frame) | |
tm.reset() |