|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from youtureid import YoutuReID |
|
|
|
def str2bool(v): |
|
if v.lower() in ['on', 'yes', 'true', 'y', 't']: |
|
return True |
|
elif v.lower() in ['off', 'no', 'false', 'n', 'f']: |
|
return False |
|
else: |
|
raise NotImplementedError |
|
|
|
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA] |
|
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16] |
|
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA" |
|
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16" |
|
try: |
|
backends += [cv.dnn.DNN_BACKEND_TIMVX] |
|
targets += [cv.dnn.DNN_TARGET_NPU] |
|
help_msg_backends += "; {:d}: TIMVX" |
|
help_msg_targets += "; {:d}: NPU" |
|
except: |
|
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.') |
|
|
|
parser = argparse.ArgumentParser( |
|
description="ReID baseline models from Tencent Youtu Lab") |
|
parser.add_argument('--query_dir', '-q', type=str, help='Query directory.') |
|
parser.add_argument('--gallery_dir', '-g', type=str, help='Gallery directory.') |
|
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends)) |
|
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets)) |
|
parser.add_argument('--topk', type=int, default=10, help='Top-K closest from gallery for each query.') |
|
parser.add_argument('--model', '-m', type=str, default='person_reid_youtu_2021nov.onnx', help='Path to the model.') |
|
parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.') |
|
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') |
|
args = parser.parse_args() |
|
|
|
def readImageFromDirectory(img_dir, w=128, h=256): |
|
img_list = [] |
|
file_list = os.listdir(img_dir) |
|
for f in file_list: |
|
img = cv.imread(os.path.join(img_dir, f)) |
|
img = cv.resize(img, (w, h)) |
|
img_list.append(img) |
|
return img_list, file_list |
|
|
|
def visualize(results, query_dir, gallery_dir, output_size=(128, 384)): |
|
def addBorder(img, color, borderSize=5): |
|
border = cv.copyMakeBorder(img, top=borderSize, bottom=borderSize, left=borderSize, right=borderSize, borderType=cv.BORDER_CONSTANT, value=color) |
|
return border |
|
|
|
results_vis = dict.fromkeys(results.keys(), None) |
|
for f, topk_f in results.items(): |
|
query_img = cv.imread(os.path.join(query_dir, f)) |
|
query_img = cv.resize(query_img, output_size) |
|
query_img = addBorder(query_img, [0, 0, 0]) |
|
cv.putText(query_img, 'Query', (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0, 255, 0), 2) |
|
|
|
gallery_img_list = [] |
|
for idx, gallery_f in enumerate(topk_f): |
|
gallery_img = cv.imread(os.path.join(gallery_dir, gallery_f)) |
|
gallery_img = cv.resize(gallery_img, output_size) |
|
gallery_img = addBorder(gallery_img, [255, 255, 255]) |
|
cv.putText(gallery_img, 'G{:02d}'.format(idx), (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0, 255, 0), 2) |
|
gallery_img_list.append(gallery_img) |
|
|
|
results_vis[f] = np.concatenate([query_img] + gallery_img_list, axis=1) |
|
|
|
return results_vis |
|
|
|
if __name__ == '__main__': |
|
|
|
net = YoutuReID(modelPath=args.model, backendId=args.backend, targetId=args.target) |
|
|
|
|
|
query_img_list, query_file_list = readImageFromDirectory(args.query_dir) |
|
gallery_img_list, gallery_file_list = readImageFromDirectory(args.gallery_dir) |
|
|
|
|
|
topk_indices = net.query(query_img_list, gallery_img_list, args.topk) |
|
|
|
|
|
results = dict.fromkeys(query_file_list, None) |
|
for f, indices in zip(query_file_list, topk_indices): |
|
topk_matches = [] |
|
for idx in indices: |
|
topk_matches.append(gallery_file_list[idx]) |
|
results[f] = topk_matches |
|
|
|
print('Query: {}'.format(f)) |
|
print('\tTop-{} from gallery: {}'.format(args.topk, str(topk_matches))) |
|
|
|
|
|
results_vis = visualize(results, args.query_dir, args.gallery_dir) |
|
|
|
if args.save: |
|
for f, img in results_vis.items(): |
|
cv.imwrite('result-{}'.format(f), img) |
|
|
|
if args.vis: |
|
for f, img in results_vis.items(): |
|
cv.namedWindow('result-{}'.format(f), cv.WINDOW_AUTOSIZE) |
|
cv.imshow('result-{}'.format(f), img) |
|
cv.waitKey(0) |
|
cv.destroyAllWindows() |
|
|
|
|