Wanli
Update FER quantized model and fix document (#129)
ebeb80f
raw
history blame
5.16 kB
import sys
import argparse
import copy
import datetime
import numpy as np
import cv2 as cv
from facial_fer_model import FacialExpressionRecog
sys.path.append('../face_detection_yunet')
from yunet import YuNet
def str2bool(v):
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
return True
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
return False
else:
raise NotImplementedError
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
backends += [cv.dnn.DNN_BACKEND_TIMVX]
targets += [cv.dnn.DNN_TARGET_NPU]
help_msg_backends += "; {:d}: TIMVX"
help_msg_targets += "; {:d}: NPU"
except:
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
parser = argparse.ArgumentParser(description='Facial Expression Recognition')
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='./facial_expression_recognition_mobilefacenet_2022july.onnx', help='Path to the facial expression recognition model.')
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
def visualize(image, det_res, fer_res, box_color=(0, 255, 0), text_color=(0, 0, 255)):
print('%s %3d faces detected.' % (datetime.datetime.now(), len(det_res)))
output = image.copy()
landmark_color = [
(255, 0, 0), # right eye
(0, 0, 255), # left eye
(0, 255, 0), # nose tip
(255, 0, 255), # right mouth corner
(0, 255, 255) # left mouth corner
]
for ind, (det, fer_type) in enumerate(zip(det_res, fer_res)):
bbox = det[0:4].astype(np.int32)
fer_type = FacialExpressionRecog.getDesc(fer_type)
print("Face %2d: %d %d %d %d %s." % (ind, bbox[0], bbox[1], bbox[0]+bbox[2], bbox[1]+bbox[3], fer_type))
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2)
cv.putText(output, fer_type, (bbox[0], bbox[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, text_color)
landmarks = det[4:14].astype(np.int32).reshape((5, 2))
for idx, landmark in enumerate(landmarks):
cv.circle(output, landmark, 2, landmark_color[idx], 2)
return output
def process(detect_model, fer_model, frame):
h, w, _ = frame.shape
detect_model.setInputSize([w, h])
dets = detect_model.infer(frame)
if dets is None:
return False, None, None
fer_res = np.zeros(0, dtype=np.int8)
for face_points in dets:
fer_res = np.concatenate((fer_res, fer_model.infer(frame, face_points[:-1])), axis=0)
return True, dets, fer_res
if __name__ == '__main__':
detect_model = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2022mar.onnx')
fer_model = FacialExpressionRecog(modelPath=args.model,
backendId=args.backend,
targetId=args.target)
# If input is an image
if args.input is not None:
image = cv.imread(args.input)
# Get detection and fer results
status, dets, fer_res = process(detect_model, fer_model, image)
if status:
# Draw results on the input image
image = visualize(image, dets, fer_res)
# Save results
if args.save:
cv.imwrite('result.jpg', image)
print('Results saved to result.jpg\n')
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
# Get detection and fer results
status, dets, fer_res = process(detect_model, fer_model, frame)
if status:
# Draw results on the input image
frame = visualize(frame, dets, fer_res)
# Visualize results in a new window
cv.imshow('FER Demo', frame)