opencv_zoo / tools /quantize /quantize-ort.py
ytfeng's picture
shorten int8-quantized naming (#149)
284d26a
raw
history blame
7.26 kB
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import os
import sys
import numpy as np
import cv2 as cv
import onnx
from onnx import version_converter
import onnxruntime
from onnxruntime.quantization import quantize_static, CalibrationDataReader, QuantType, QuantFormat
from transform import Compose, Resize, CenterCrop, Normalize, ColorConvert, HandAlign
class DataReader(CalibrationDataReader):
def __init__(self, model_path, image_dir, transforms, data_dim):
model = onnx.load(model_path)
self.input_name = model.graph.input[0].name
self.transforms = transforms
self.data_dim = data_dim
self.data = self.get_calibration_data(image_dir)
self.enum_data_dicts = iter([{self.input_name: x} for x in self.data])
def get_next(self):
return next(self.enum_data_dicts, None)
def get_calibration_data(self, image_dir):
blobs = []
supported = ["jpg", "png"] # supported file suffix
for image_name in os.listdir(image_dir):
image_name_suffix = image_name.split('.')[-1].lower()
if image_name_suffix not in supported:
continue
img = cv.imread(os.path.join(image_dir, image_name))
img = self.transforms(img)
if img is None:
continue
blob = cv.dnn.blobFromImage(img)
if self.data_dim == 'hwc':
blob = cv.transposeND(blob, [0, 2, 3, 1])
blobs.append(blob)
return blobs
class Quantize:
def __init__(self, model_path, calibration_image_dir, transforms=Compose(), per_channel=False, act_type='int8', wt_type='int8', data_dim='chw'):
self.type_dict = {"uint8" : QuantType.QUInt8, "int8" : QuantType.QInt8}
self.model_path = model_path
self.calibration_image_dir = calibration_image_dir
self.transforms = transforms
self.per_channel = per_channel
self.act_type = act_type
self.wt_type = wt_type
# data reader
self.dr = DataReader(self.model_path, self.calibration_image_dir, self.transforms, data_dim)
def check_opset(self):
model = onnx.load(self.model_path)
if model.opset_import[0].version != 13:
print('\tmodel opset version: {}. Converting to opset 13'.format(model.opset_import[0].version))
# convert opset version to 13
model_opset13 = version_converter.convert_version(model, 13)
# save converted model
output_name = '{}-opset13.onnx'.format(self.model_path[:-5])
onnx.save_model(model_opset13, output_name)
# update model_path for quantization
return output_name
return self.model_path
def run(self):
print('Quantizing {}: act_type {}, wt_type {}'.format(self.model_path, self.act_type, self.wt_type))
new_model_path = self.check_opset()
output_name = '{}_{}.onnx'.format(self.model_path[:-5], self.wt_type)
quantize_static(new_model_path, output_name, self.dr,
quant_format=QuantFormat.QOperator, # start from onnxruntime==1.11.0, quant_format is set to QuantFormat.QDQ by default, which performs fake quantization
per_channel=self.per_channel,
weight_type=self.type_dict[self.wt_type],
activation_type=self.type_dict[self.act_type])
if new_model_path != self.model_path:
os.remove(new_model_path)
print('\tQuantized model saved to {}'.format(output_name))
models=dict(
yunet=Quantize(model_path='../../models/face_detection_yunet/face_detection_yunet_2022mar.onnx',
calibration_image_dir='../../benchmark/data/face_detection',
transforms=Compose([Resize(size=(160, 120))])),
sface=Quantize(model_path='../../models/face_recognition_sface/face_recognition_sface_2021dec.onnx',
calibration_image_dir='../../benchmark/data/face_recognition',
transforms=Compose([Resize(size=(112, 112))])),
pphumanseg=Quantize(model_path='../../models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2023mar.onnx',
calibration_image_dir='../../benchmark/data/human_segmentation',
transforms=Compose([Resize(size=(192, 192))])),
ppresnet50=Quantize(model_path='../../models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx',
calibration_image_dir='../../benchmark/data/image_classification',
transforms=Compose([Resize(size=(224, 224))])),
# TBD: DaSiamRPN
youtureid=Quantize(model_path='../../models/person_reid_youtureid/person_reid_youtu_2021nov.onnx',
calibration_image_dir='../../benchmark/data/person_reid',
transforms=Compose([Resize(size=(128, 256))])),
# TBD: DB-EN & DB-CN
crnn_en=Quantize(model_path='../../models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx',
calibration_image_dir='../../benchmark/data/text',
transforms=Compose([Resize(size=(100, 32)), Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5]), ColorConvert(ctype=cv.COLOR_BGR2GRAY)])),
crnn_cn=Quantize(model_path='../../models/text_recognition_crnn/text_recognition_CRNN_CN_2021nov.onnx',
calibration_image_dir='../../benchmark/data/text',
transforms=Compose([Resize(size=(100, 32))])),
mp_palmdet=Quantize(model_path='../../models/palm_detection_mediapipe/palm_detection_mediapipe_2023feb.onnx',
calibration_image_dir='path/to/dataset',
transforms=Compose([Resize(size=(192, 192)), Normalize(std=[255, 255, 255]),
ColorConvert(ctype=cv.COLOR_BGR2RGB)]), data_dim='hwc'),
mp_handpose=Quantize(model_path='../../models/handpose_estimation_mediapipe/handpose_estimation_mediapipe_2023feb.onnx',
calibration_image_dir='path/to/dataset',
transforms=Compose([HandAlign("mp_handpose"), Resize(size=(224, 224)), Normalize(std=[255, 255, 255]),
ColorConvert(ctype=cv.COLOR_BGR2RGB)]), data_dim='hwc'),
lpd_yunet=Quantize(model_path='../../models/license_plate_detection_yunet/license_plate_detection_lpd_yunet_2023mar.onnx',
calibration_image_dir='../../benchmark/data/license_plate_detection',
transforms=Compose([Resize(size=(320, 240))])),
)
if __name__ == '__main__':
selected_models = []
for i in range(1, len(sys.argv)):
selected_models.append(sys.argv[i])
if not selected_models:
selected_models = list(models.keys())
print('Models to be quantized: {}'.format(str(selected_models)))
for selected_model_name in selected_models:
q = models[selected_model_name]
q.run()