|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from sface import SFace |
|
|
|
sys.path.append('../face_detection_yunet') |
|
from yunet import YuNet |
|
|
|
def str2bool(v): |
|
if v.lower() in ['on', 'yes', 'true', 'y', 't']: |
|
return True |
|
elif v.lower() in ['off', 'no', 'false', 'n', 'f']: |
|
return False |
|
else: |
|
raise NotImplementedError |
|
|
|
parser = argparse.ArgumentParser( |
|
description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)") |
|
parser.add_argument('--input1', '-i1', type=str, help='Path to the input image 1.') |
|
parser.add_argument('--input2', '-i2', type=str, help='Path to the input image 2.') |
|
parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021sep.onnx', help='Path to the model.') |
|
parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0, help='Distance type. \'0\': cosine, \'1\': norm_l1.') |
|
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.') |
|
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') |
|
args = parser.parse_args() |
|
|
|
if __name__ == '__main__': |
|
|
|
recognizer = SFace(modelPath=args.model, disType=args.dis_type) |
|
|
|
detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2021sep.onnx', |
|
inputSize=[320, 320], |
|
confThreshold=0.9, |
|
nmsThreshold=0.3, |
|
topK=5000) |
|
|
|
img1 = cv.imread(args.input1) |
|
img2 = cv.imread(args.input2) |
|
|
|
|
|
detector.setInputSize([img1.shape[1], img1.shape[0]]) |
|
face1 = detector.infer(img1) |
|
assert face1.shape[0] > 0, 'Cannot find a face in {}'.format(args.input1) |
|
detector.setInputSize([img2.shape[1], img2.shape[0]]) |
|
face2 = detector.infer(img2) |
|
assert face2.shape[0] > 0, 'Cannot find a face in {}'.format(args.input2) |
|
|
|
|
|
result = recognizer.match(img1, face1[0][:-1], img2, face2[0][:-1]) |
|
print('Result: {}.'.format('same identity' if result else 'different identities')) |