Ryan Lee
commited on
Commit
·
30e431e
1
Parent(s):
be1656e
C++ Demo - Image Classification (PPResNet) (#241)
Browse files* Functional version of C++ demo.
* Improve printout.
* Remove printouts and add README examples
* Add goldfish example
* Add empty space at EOF
* Add empty line at EOF for Python
* Use the shared labels.txt file instead of having the entire list as a variable in the demo.py
* Address PR comments. Revert example and labels
* Use namespaces for brevity
* Follow OpenCV formatting
* Remove LoadLabel() and use a vector of strings instead of having redundant work.
models/image_classification_ppresnet/CMakeLists.txt
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required(VERSION 3.24)
|
2 |
+
set(project_name "opencv_zoo_image_classification_ppresnet")
|
3 |
+
|
4 |
+
PROJECT (${project_name})
|
5 |
+
|
6 |
+
set(OPENCV_VERSION "4.9.0")
|
7 |
+
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
8 |
+
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
9 |
+
# Find OpenCV, you may need to set OpenCV_DIR variable
|
10 |
+
# to the absolute path to the directory containing OpenCVConfig.cmake file
|
11 |
+
# via the command line or GUI
|
12 |
+
|
13 |
+
file(GLOB SourceFile
|
14 |
+
"demo.cpp")
|
15 |
+
# If the package has been found, several variables will
|
16 |
+
# be set, you can find the full list with descriptions
|
17 |
+
# in the OpenCVConfig.cmake file.
|
18 |
+
# Print some message showing some of them
|
19 |
+
message(STATUS "OpenCV library status:")
|
20 |
+
message(STATUS " config: ${OpenCV_DIR}")
|
21 |
+
message(STATUS " version: ${OpenCV_VERSION}")
|
22 |
+
message(STATUS " libraries: ${OpenCV_LIBS}")
|
23 |
+
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
|
24 |
+
|
25 |
+
# Declare the executable target built from your sources
|
26 |
+
add_executable(${project_name} ${SourceFile})
|
27 |
+
|
28 |
+
# Set C++ compilation standard to C++11
|
29 |
+
set(CMAKE_CXX_STANDARD 11)
|
30 |
+
|
31 |
+
# Link your application with OpenCV libraries
|
32 |
+
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
|
models/image_classification_ppresnet/README.md
CHANGED
@@ -15,7 +15,9 @@ Results of accuracy evaluation with [tools/eval](../../tools/eval).
|
|
15 |
|
16 |
## Demo
|
17 |
|
18 |
-
Run the following
|
|
|
|
|
19 |
|
20 |
```shell
|
21 |
python demo.py --input /path/to/image
|
@@ -23,6 +25,24 @@ python demo.py --input /path/to/image
|
|
23 |
# get help regarding various parameters
|
24 |
python demo.py --help
|
25 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## License
|
28 |
|
|
|
15 |
|
16 |
## Demo
|
17 |
|
18 |
+
Run the following commands to try the demo:
|
19 |
+
|
20 |
+
### Python
|
21 |
|
22 |
```shell
|
23 |
python demo.py --input /path/to/image
|
|
|
25 |
# get help regarding various parameters
|
26 |
python demo.py --help
|
27 |
```
|
28 |
+
### C++
|
29 |
+
|
30 |
+
Install latest OpenCV and CMake >= 3.24.0 to get started with:
|
31 |
+
|
32 |
+
```shell
|
33 |
+
# A typical and default installation path of OpenCV is /usr/local
|
34 |
+
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
35 |
+
cmake --build build
|
36 |
+
|
37 |
+
# detect on an image
|
38 |
+
./build/opencv_zoo_image_classification_ppresnet -i=/path/to/image
|
39 |
+
|
40 |
+
# detect on an image and display top N classes
|
41 |
+
./build/opencv_zoo_image_classification_ppresnet -i=/path/to/image -k=N
|
42 |
+
|
43 |
+
# get help messages
|
44 |
+
./build/opencv_zoo_image_classification_ppresnet -h
|
45 |
+
```
|
46 |
|
47 |
## License
|
48 |
|
models/image_classification_ppresnet/demo.cpp
ADDED
@@ -0,0 +1,1123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <opencv2/opencv.hpp>
|
2 |
+
#include <opencv2/dnn.hpp>
|
3 |
+
#include <iostream>
|
4 |
+
#include <algorithm>
|
5 |
+
|
6 |
+
using namespace std;
|
7 |
+
using namespace cv;
|
8 |
+
using namespace dnn;
|
9 |
+
|
10 |
+
extern vector<string> LABELS_IMAGENET_1K;
|
11 |
+
|
12 |
+
class PPResNet {
|
13 |
+
public:
|
14 |
+
PPResNet(const string& modelPath, int topK, int backendId, int targetId)
|
15 |
+
: _topK(topK) {
|
16 |
+
_model = readNet(modelPath);
|
17 |
+
_model.setPreferableBackend(backendId);
|
18 |
+
_model.setPreferableTarget(targetId);
|
19 |
+
}
|
20 |
+
|
21 |
+
Mat preprocess(const Mat& image)
|
22 |
+
{
|
23 |
+
Mat floatImage;
|
24 |
+
image.convertTo(floatImage, CV_32F, 1.0 / 255.0);
|
25 |
+
subtract(floatImage, _mean, floatImage);
|
26 |
+
divide(floatImage, _std, floatImage);
|
27 |
+
return blobFromImage(floatImage);
|
28 |
+
}
|
29 |
+
|
30 |
+
vector<string> infer(const Mat& image)
|
31 |
+
{
|
32 |
+
assert(image.rows == _inputSize.height && image.cols == _inputSize.width);
|
33 |
+
Mat inputBlob = preprocess(image);
|
34 |
+
_model.setInput(inputBlob, _inputName);
|
35 |
+
Mat outputBlob = _model.forward(_outputName);
|
36 |
+
vector<string> results = postprocess(outputBlob);
|
37 |
+
return results;
|
38 |
+
}
|
39 |
+
|
40 |
+
vector<string> postprocess(const Mat& outputBlob)
|
41 |
+
{
|
42 |
+
vector<int> class_id_list;
|
43 |
+
sortIdx(outputBlob, class_id_list, SORT_EVERY_ROW | SORT_DESCENDING);
|
44 |
+
class_id_list.resize(min(_topK, static_cast<int>(outputBlob.cols)));
|
45 |
+
vector<string> predicted_labels;
|
46 |
+
for (int class_id : class_id_list)
|
47 |
+
{
|
48 |
+
predicted_labels.push_back(LABELS_IMAGENET_1K[class_id]);
|
49 |
+
}
|
50 |
+
return predicted_labels;
|
51 |
+
}
|
52 |
+
|
53 |
+
private:
|
54 |
+
Net _model;
|
55 |
+
int _topK;
|
56 |
+
const Size _inputSize = Size(224, 224);
|
57 |
+
const Scalar _mean = Scalar(0.485, 0.456, 0.406);
|
58 |
+
const Scalar _std = Scalar(0.229, 0.224, 0.225);
|
59 |
+
string _inputName = "";
|
60 |
+
string _outputName = "save_infer_model/scale_0.tmp_0";
|
61 |
+
};
|
62 |
+
|
63 |
+
const vector<vector<int>> backend_target_pairs =
|
64 |
+
{
|
65 |
+
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
|
66 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
|
67 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
|
68 |
+
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
|
69 |
+
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
|
70 |
+
};
|
71 |
+
|
72 |
+
int main(int argc, char** argv)
|
73 |
+
{
|
74 |
+
CommandLineParser parser(argc, argv,
|
75 |
+
"{ input i | | Set input path to a certain image, omit if using camera.}"
|
76 |
+
"{ model m | image_classification_ppresnet50_2022jan.onnx | Set model path.}"
|
77 |
+
"{ top_k k | 1 | Get top k predictions.}"
|
78 |
+
"{ backend_target bt | 0 | Choose one of computation backends: "
|
79 |
+
"0: (default) OpenCV implementation + CPU, "
|
80 |
+
"1: CUDA + GPU (CUDA), "
|
81 |
+
"2: CUDA + GPU (CUDA FP16), "
|
82 |
+
"3: TIM-VX + NPU, "
|
83 |
+
"4: CANN + NPU}");
|
84 |
+
|
85 |
+
string inputPath = parser.get<string>("input");
|
86 |
+
string modelPath = parser.get<string>("model");
|
87 |
+
int backendTarget = parser.get<int>("backend_target");
|
88 |
+
int topK = parser.get<int>("top_k");
|
89 |
+
|
90 |
+
int backendId = backend_target_pairs[backendTarget][0];
|
91 |
+
int targetId = backend_target_pairs[backendTarget][1];
|
92 |
+
|
93 |
+
PPResNet model(modelPath, topK, backendId, targetId);
|
94 |
+
|
95 |
+
// Read image and get a 224x224 crop from a 256x256 resized
|
96 |
+
Mat image = imread(inputPath);
|
97 |
+
cvtColor(image, image, COLOR_BGR2RGB);
|
98 |
+
resize(image, image, Size(256, 256));
|
99 |
+
image = image(Rect(16, 16, 224, 224));
|
100 |
+
|
101 |
+
// Inference
|
102 |
+
auto predictions = model.infer(image);
|
103 |
+
|
104 |
+
// Print result
|
105 |
+
if (topK == 1)
|
106 |
+
{
|
107 |
+
cout << "Predicted Label: " << predictions[0] << endl;
|
108 |
+
}
|
109 |
+
else
|
110 |
+
{
|
111 |
+
cout << "Predicted Top-K Labels (in decreasing confidence): " << endl;
|
112 |
+
for (size_t i = 0; i < predictions.size(); ++i)
|
113 |
+
{
|
114 |
+
cout << "(" << i+1 << ") " << predictions[i] << endl;
|
115 |
+
}
|
116 |
+
}
|
117 |
+
|
118 |
+
return 0;
|
119 |
+
}
|
120 |
+
|
121 |
+
vector<string> LABELS_IMAGENET_1K =
|
122 |
+
{
|
123 |
+
"tench",
|
124 |
+
"goldfish",
|
125 |
+
"great white shark",
|
126 |
+
"tiger shark",
|
127 |
+
"hammerhead",
|
128 |
+
"electric ray",
|
129 |
+
"stingray",
|
130 |
+
"cock",
|
131 |
+
"hen",
|
132 |
+
"ostrich",
|
133 |
+
"brambling",
|
134 |
+
"goldfinch",
|
135 |
+
"house finch",
|
136 |
+
"junco",
|
137 |
+
"indigo bunting",
|
138 |
+
"robin",
|
139 |
+
"bulbul",
|
140 |
+
"jay",
|
141 |
+
"magpie",
|
142 |
+
"chickadee",
|
143 |
+
"water ouzel",
|
144 |
+
"kite",
|
145 |
+
"bald eagle",
|
146 |
+
"vulture",
|
147 |
+
"great grey owl",
|
148 |
+
"European fire salamander",
|
149 |
+
"common newt",
|
150 |
+
"eft",
|
151 |
+
"spotted salamander",
|
152 |
+
"axolotl",
|
153 |
+
"bullfrog",
|
154 |
+
"tree frog",
|
155 |
+
"tailed frog",
|
156 |
+
"loggerhead",
|
157 |
+
"leatherback turtle",
|
158 |
+
"mud turtle",
|
159 |
+
"terrapin",
|
160 |
+
"box turtle",
|
161 |
+
"banded gecko",
|
162 |
+
"common iguana",
|
163 |
+
"American chameleon",
|
164 |
+
"whiptail",
|
165 |
+
"agama",
|
166 |
+
"frilled lizard",
|
167 |
+
"alligator lizard",
|
168 |
+
"Gila monster",
|
169 |
+
"green lizard",
|
170 |
+
"African chameleon",
|
171 |
+
"Komodo dragon",
|
172 |
+
"African crocodile",
|
173 |
+
"American alligator",
|
174 |
+
"triceratops",
|
175 |
+
"thunder snake",
|
176 |
+
"ringneck snake",
|
177 |
+
"hognose snake",
|
178 |
+
"green snake",
|
179 |
+
"king snake",
|
180 |
+
"garter snake",
|
181 |
+
"water snake",
|
182 |
+
"vine snake",
|
183 |
+
"night snake",
|
184 |
+
"boa constrictor",
|
185 |
+
"rock python",
|
186 |
+
"Indian cobra",
|
187 |
+
"green mamba",
|
188 |
+
"sea snake",
|
189 |
+
"horned viper",
|
190 |
+
"diamondback",
|
191 |
+
"sidewinder",
|
192 |
+
"trilobite",
|
193 |
+
"harvestman",
|
194 |
+
"scorpion",
|
195 |
+
"black and gold garden spider",
|
196 |
+
"barn spider",
|
197 |
+
"garden spider",
|
198 |
+
"black widow",
|
199 |
+
"tarantula",
|
200 |
+
"wolf spider",
|
201 |
+
"tick",
|
202 |
+
"centipede",
|
203 |
+
"black grouse",
|
204 |
+
"ptarmigan",
|
205 |
+
"ruffed grouse",
|
206 |
+
"prairie chicken",
|
207 |
+
"peacock",
|
208 |
+
"quail",
|
209 |
+
"partridge",
|
210 |
+
"African grey",
|
211 |
+
"macaw",
|
212 |
+
"sulphur-crested cockatoo",
|
213 |
+
"lorikeet",
|
214 |
+
"coucal",
|
215 |
+
"bee eater",
|
216 |
+
"hornbill",
|
217 |
+
"hummingbird",
|
218 |
+
"jacamar",
|
219 |
+
"toucan",
|
220 |
+
"drake",
|
221 |
+
"red-breasted merganser",
|
222 |
+
"goose",
|
223 |
+
"black swan",
|
224 |
+
"tusker",
|
225 |
+
"echidna",
|
226 |
+
"platypus",
|
227 |
+
"wallaby",
|
228 |
+
"koala",
|
229 |
+
"wombat",
|
230 |
+
"jellyfish",
|
231 |
+
"sea anemone",
|
232 |
+
"brain coral",
|
233 |
+
"flatworm",
|
234 |
+
"nematode",
|
235 |
+
"conch",
|
236 |
+
"snail",
|
237 |
+
"slug",
|
238 |
+
"sea slug",
|
239 |
+
"chiton",
|
240 |
+
"chambered nautilus",
|
241 |
+
"Dungeness crab",
|
242 |
+
"rock crab",
|
243 |
+
"fiddler crab",
|
244 |
+
"king crab",
|
245 |
+
"American lobster",
|
246 |
+
"spiny lobster",
|
247 |
+
"crayfish",
|
248 |
+
"hermit crab",
|
249 |
+
"isopod",
|
250 |
+
"white stork",
|
251 |
+
"black stork",
|
252 |
+
"spoonbill",
|
253 |
+
"flamingo",
|
254 |
+
"little blue heron",
|
255 |
+
"American egret",
|
256 |
+
"bittern",
|
257 |
+
"crane",
|
258 |
+
"limpkin",
|
259 |
+
"European gallinule",
|
260 |
+
"American coot",
|
261 |
+
"bustard",
|
262 |
+
"ruddy turnstone",
|
263 |
+
"red-backed sandpiper",
|
264 |
+
"redshank",
|
265 |
+
"dowitcher",
|
266 |
+
"oystercatcher",
|
267 |
+
"pelican",
|
268 |
+
"king penguin",
|
269 |
+
"albatross",
|
270 |
+
"grey whale",
|
271 |
+
"killer whale",
|
272 |
+
"dugong",
|
273 |
+
"sea lion",
|
274 |
+
"Chihuahua",
|
275 |
+
"Japanese spaniel",
|
276 |
+
"Maltese dog",
|
277 |
+
"Pekinese",
|
278 |
+
"Shih-Tzu",
|
279 |
+
"Blenheim spaniel",
|
280 |
+
"papillon",
|
281 |
+
"toy terrier",
|
282 |
+
"Rhodesian ridgeback",
|
283 |
+
"Afghan hound",
|
284 |
+
"basset",
|
285 |
+
"beagle",
|
286 |
+
"bloodhound",
|
287 |
+
"bluetick",
|
288 |
+
"black-and-tan coonhound",
|
289 |
+
"Walker hound",
|
290 |
+
"English foxhound",
|
291 |
+
"redbone",
|
292 |
+
"borzoi",
|
293 |
+
"Irish wolfhound",
|
294 |
+
"Italian greyhound",
|
295 |
+
"whippet",
|
296 |
+
"Ibizan hound",
|
297 |
+
"Norwegian elkhound",
|
298 |
+
"otterhound",
|
299 |
+
"Saluki",
|
300 |
+
"Scottish deerhound",
|
301 |
+
"Weimaraner",
|
302 |
+
"Staffordshire bullterrier",
|
303 |
+
"American Staffordshire terrier",
|
304 |
+
"Bedlington terrier",
|
305 |
+
"Border terrier",
|
306 |
+
"Kerry blue terrier",
|
307 |
+
"Irish terrier",
|
308 |
+
"Norfolk terrier",
|
309 |
+
"Norwich terrier",
|
310 |
+
"Yorkshire terrier",
|
311 |
+
"wire-haired fox terrier",
|
312 |
+
"Lakeland terrier",
|
313 |
+
"Sealyham terrier",
|
314 |
+
"Airedale",
|
315 |
+
"cairn",
|
316 |
+
"Australian terrier",
|
317 |
+
"Dandie Dinmont",
|
318 |
+
"Boston bull",
|
319 |
+
"miniature schnauzer",
|
320 |
+
"giant schnauzer",
|
321 |
+
"standard schnauzer",
|
322 |
+
"Scotch terrier",
|
323 |
+
"Tibetan terrier",
|
324 |
+
"silky terrier",
|
325 |
+
"soft-coated wheaten terrier",
|
326 |
+
"West Highland white terrier",
|
327 |
+
"Lhasa",
|
328 |
+
"flat-coated retriever",
|
329 |
+
"curly-coated retriever",
|
330 |
+
"golden retriever",
|
331 |
+
"Labrador retriever",
|
332 |
+
"Chesapeake Bay retriever",
|
333 |
+
"German short-haired pointer",
|
334 |
+
"vizsla",
|
335 |
+
"English setter",
|
336 |
+
"Irish setter",
|
337 |
+
"Gordon setter",
|
338 |
+
"Brittany spaniel",
|
339 |
+
"clumber",
|
340 |
+
"English springer",
|
341 |
+
"Welsh springer spaniel",
|
342 |
+
"cocker spaniel",
|
343 |
+
"Sussex spaniel",
|
344 |
+
"Irish water spaniel",
|
345 |
+
"kuvasz",
|
346 |
+
"schipperke",
|
347 |
+
"groenendael",
|
348 |
+
"malinois",
|
349 |
+
"briard",
|
350 |
+
"kelpie",
|
351 |
+
"komondor",
|
352 |
+
"Old English sheepdog",
|
353 |
+
"Shetland sheepdog",
|
354 |
+
"collie",
|
355 |
+
"Border collie",
|
356 |
+
"Bouvier des Flandres",
|
357 |
+
"Rottweiler",
|
358 |
+
"German shepherd",
|
359 |
+
"Doberman",
|
360 |
+
"miniature pinscher",
|
361 |
+
"Greater Swiss Mountain dog",
|
362 |
+
"Bernese mountain dog",
|
363 |
+
"Appenzeller",
|
364 |
+
"EntleBucher",
|
365 |
+
"boxer",
|
366 |
+
"bull mastiff",
|
367 |
+
"Tibetan mastiff",
|
368 |
+
"French bulldog",
|
369 |
+
"Great Dane",
|
370 |
+
"Saint Bernard",
|
371 |
+
"Eskimo dog",
|
372 |
+
"malamute",
|
373 |
+
"Siberian husky",
|
374 |
+
"dalmatian",
|
375 |
+
"affenpinscher",
|
376 |
+
"basenji",
|
377 |
+
"pug",
|
378 |
+
"Leonberg",
|
379 |
+
"Newfoundland",
|
380 |
+
"Great Pyrenees",
|
381 |
+
"Samoyed",
|
382 |
+
"Pomeranian",
|
383 |
+
"chow",
|
384 |
+
"keeshond",
|
385 |
+
"Brabancon griffon",
|
386 |
+
"Pembroke",
|
387 |
+
"Cardigan",
|
388 |
+
"toy poodle",
|
389 |
+
"miniature poodle",
|
390 |
+
"standard poodle",
|
391 |
+
"Mexican hairless",
|
392 |
+
"timber wolf",
|
393 |
+
"white wolf",
|
394 |
+
"red wolf",
|
395 |
+
"coyote",
|
396 |
+
"dingo",
|
397 |
+
"dhole",
|
398 |
+
"African hunting dog",
|
399 |
+
"hyena",
|
400 |
+
"red fox",
|
401 |
+
"kit fox",
|
402 |
+
"Arctic fox",
|
403 |
+
"grey fox",
|
404 |
+
"tabby",
|
405 |
+
"tiger cat",
|
406 |
+
"Persian cat",
|
407 |
+
"Siamese cat",
|
408 |
+
"Egyptian cat",
|
409 |
+
"cougar",
|
410 |
+
"lynx",
|
411 |
+
"leopard",
|
412 |
+
"snow leopard",
|
413 |
+
"jaguar",
|
414 |
+
"lion",
|
415 |
+
"tiger",
|
416 |
+
"cheetah",
|
417 |
+
"brown bear",
|
418 |
+
"American black bear",
|
419 |
+
"ice bear",
|
420 |
+
"sloth bear",
|
421 |
+
"mongoose",
|
422 |
+
"meerkat",
|
423 |
+
"tiger beetle",
|
424 |
+
"ladybug",
|
425 |
+
"ground beetle",
|
426 |
+
"long-horned beetle",
|
427 |
+
"leaf beetle",
|
428 |
+
"dung beetle",
|
429 |
+
"rhinoceros beetle",
|
430 |
+
"weevil",
|
431 |
+
"fly",
|
432 |
+
"bee",
|
433 |
+
"ant",
|
434 |
+
"grasshopper",
|
435 |
+
"cricket",
|
436 |
+
"walking stick",
|
437 |
+
"cockroach",
|
438 |
+
"mantis",
|
439 |
+
"cicada",
|
440 |
+
"leafhopper",
|
441 |
+
"lacewing",
|
442 |
+
"dragonfly",
|
443 |
+
"damselfly",
|
444 |
+
"admiral",
|
445 |
+
"ringlet",
|
446 |
+
"monarch",
|
447 |
+
"cabbage butterfly",
|
448 |
+
"sulphur butterfly",
|
449 |
+
"lycaenid",
|
450 |
+
"starfish",
|
451 |
+
"sea urchin",
|
452 |
+
"sea cucumber",
|
453 |
+
"wood rabbit",
|
454 |
+
"hare",
|
455 |
+
"Angora",
|
456 |
+
"hamster",
|
457 |
+
"porcupine",
|
458 |
+
"fox squirrel",
|
459 |
+
"marmot",
|
460 |
+
"beaver",
|
461 |
+
"guinea pig",
|
462 |
+
"sorrel",
|
463 |
+
"zebra",
|
464 |
+
"hog",
|
465 |
+
"wild boar",
|
466 |
+
"warthog",
|
467 |
+
"hippopotamus",
|
468 |
+
"ox",
|
469 |
+
"water buffalo",
|
470 |
+
"bison",
|
471 |
+
"ram",
|
472 |
+
"bighorn",
|
473 |
+
"ibex",
|
474 |
+
"hartebeest",
|
475 |
+
"impala",
|
476 |
+
"gazelle",
|
477 |
+
"Arabian camel",
|
478 |
+
"llama",
|
479 |
+
"weasel",
|
480 |
+
"mink",
|
481 |
+
"polecat",
|
482 |
+
"black-footed ferret",
|
483 |
+
"otter",
|
484 |
+
"skunk",
|
485 |
+
"badger",
|
486 |
+
"armadillo",
|
487 |
+
"three-toed sloth",
|
488 |
+
"orangutan",
|
489 |
+
"gorilla",
|
490 |
+
"chimpanzee",
|
491 |
+
"gibbon",
|
492 |
+
"siamang",
|
493 |
+
"guenon",
|
494 |
+
"patas",
|
495 |
+
"baboon",
|
496 |
+
"macaque",
|
497 |
+
"langur",
|
498 |
+
"colobus",
|
499 |
+
"proboscis monkey",
|
500 |
+
"marmoset",
|
501 |
+
"capuchin",
|
502 |
+
"howler monkey",
|
503 |
+
"titi",
|
504 |
+
"spider monkey",
|
505 |
+
"squirrel monkey",
|
506 |
+
"Madagascar cat",
|
507 |
+
"indri",
|
508 |
+
"Indian elephant",
|
509 |
+
"African elephant",
|
510 |
+
"lesser panda",
|
511 |
+
"giant panda",
|
512 |
+
"barracouta",
|
513 |
+
"eel",
|
514 |
+
"coho",
|
515 |
+
"rock beauty",
|
516 |
+
"anemone fish",
|
517 |
+
"sturgeon",
|
518 |
+
"gar",
|
519 |
+
"lionfish",
|
520 |
+
"puffer",
|
521 |
+
"abacus",
|
522 |
+
"abaya",
|
523 |
+
"academic gown",
|
524 |
+
"accordion",
|
525 |
+
"acoustic guitar",
|
526 |
+
"aircraft carrier",
|
527 |
+
"airliner",
|
528 |
+
"airship",
|
529 |
+
"altar",
|
530 |
+
"ambulance",
|
531 |
+
"amphibian",
|
532 |
+
"analog clock",
|
533 |
+
"apiary",
|
534 |
+
"apron",
|
535 |
+
"ashcan",
|
536 |
+
"assault rifle",
|
537 |
+
"backpack",
|
538 |
+
"bakery",
|
539 |
+
"balance beam",
|
540 |
+
"balloon",
|
541 |
+
"ballpoint",
|
542 |
+
"Band Aid",
|
543 |
+
"banjo",
|
544 |
+
"bannister",
|
545 |
+
"barbell",
|
546 |
+
"barber chair",
|
547 |
+
"barbershop",
|
548 |
+
"barn",
|
549 |
+
"barometer",
|
550 |
+
"barrel",
|
551 |
+
"barrow",
|
552 |
+
"baseball",
|
553 |
+
"basketball",
|
554 |
+
"bassinet",
|
555 |
+
"bassoon",
|
556 |
+
"bathing cap",
|
557 |
+
"bath towel",
|
558 |
+
"bathtub",
|
559 |
+
"beach wagon",
|
560 |
+
"beacon",
|
561 |
+
"beaker",
|
562 |
+
"bearskin",
|
563 |
+
"beer bottle",
|
564 |
+
"beer glass",
|
565 |
+
"bell cote",
|
566 |
+
"bib",
|
567 |
+
"bicycle-built-for-two",
|
568 |
+
"bikini",
|
569 |
+
"binder",
|
570 |
+
"binoculars",
|
571 |
+
"birdhouse",
|
572 |
+
"boathouse",
|
573 |
+
"bobsled",
|
574 |
+
"bolo tie",
|
575 |
+
"bonnet",
|
576 |
+
"bookcase",
|
577 |
+
"bookshop",
|
578 |
+
"bottlecap",
|
579 |
+
"bow",
|
580 |
+
"bow tie",
|
581 |
+
"brass",
|
582 |
+
"brassiere",
|
583 |
+
"breakwater",
|
584 |
+
"breastplate",
|
585 |
+
"broom",
|
586 |
+
"bucket",
|
587 |
+
"buckle",
|
588 |
+
"bulletproof vest",
|
589 |
+
"bullet train",
|
590 |
+
"butcher shop",
|
591 |
+
"cab",
|
592 |
+
"caldron",
|
593 |
+
"candle",
|
594 |
+
"cannon",
|
595 |
+
"canoe",
|
596 |
+
"can opener",
|
597 |
+
"cardigan",
|
598 |
+
"car mirror",
|
599 |
+
"carousel",
|
600 |
+
"carpenter's kit",
|
601 |
+
"carton",
|
602 |
+
"car wheel",
|
603 |
+
"cash machine",
|
604 |
+
"cassette",
|
605 |
+
"cassette player",
|
606 |
+
"castle",
|
607 |
+
"catamaran",
|
608 |
+
"CD player",
|
609 |
+
"cello",
|
610 |
+
"cellular telephone",
|
611 |
+
"chain",
|
612 |
+
"chainlink fence",
|
613 |
+
"chain mail",
|
614 |
+
"chain saw",
|
615 |
+
"chest",
|
616 |
+
"chiffonier",
|
617 |
+
"chime",
|
618 |
+
"china cabinet",
|
619 |
+
"Christmas stocking",
|
620 |
+
"church",
|
621 |
+
"cinema",
|
622 |
+
"cleaver",
|
623 |
+
"cliff dwelling",
|
624 |
+
"cloak",
|
625 |
+
"clog",
|
626 |
+
"cocktail shaker",
|
627 |
+
"coffee mug",
|
628 |
+
"coffeepot",
|
629 |
+
"coil",
|
630 |
+
"combination lock",
|
631 |
+
"computer keyboard",
|
632 |
+
"confectionery",
|
633 |
+
"container ship",
|
634 |
+
"convertible",
|
635 |
+
"corkscrew",
|
636 |
+
"cornet",
|
637 |
+
"cowboy boot",
|
638 |
+
"cowboy hat",
|
639 |
+
"cradle",
|
640 |
+
"crane",
|
641 |
+
"crash helmet",
|
642 |
+
"crate",
|
643 |
+
"crib",
|
644 |
+
"Crock Pot",
|
645 |
+
"croquet ball",
|
646 |
+
"crutch",
|
647 |
+
"cuirass",
|
648 |
+
"dam",
|
649 |
+
"desk",
|
650 |
+
"desktop computer",
|
651 |
+
"dial telephone",
|
652 |
+
"diaper",
|
653 |
+
"digital clock",
|
654 |
+
"digital watch",
|
655 |
+
"dining table",
|
656 |
+
"dishrag",
|
657 |
+
"dishwasher",
|
658 |
+
"disk brake",
|
659 |
+
"dock",
|
660 |
+
"dogsled",
|
661 |
+
"dome",
|
662 |
+
"doormat",
|
663 |
+
"drilling platform",
|
664 |
+
"drum",
|
665 |
+
"drumstick",
|
666 |
+
"dumbbell",
|
667 |
+
"Dutch oven",
|
668 |
+
"electric fan",
|
669 |
+
"electric guitar",
|
670 |
+
"electric locomotive",
|
671 |
+
"entertainment center",
|
672 |
+
"envelope",
|
673 |
+
"espresso maker",
|
674 |
+
"face powder",
|
675 |
+
"feather boa",
|
676 |
+
"filing cabinet",
|
677 |
+
"fireboat",
|
678 |
+
"fire engine",
|
679 |
+
"fire screen",
|
680 |
+
"flagpole",
|
681 |
+
"flute",
|
682 |
+
"folding chair",
|
683 |
+
"football helmet",
|
684 |
+
"forklift",
|
685 |
+
"fountain",
|
686 |
+
"fountain pen",
|
687 |
+
"four-poster",
|
688 |
+
"freight car",
|
689 |
+
"French horn",
|
690 |
+
"frying pan",
|
691 |
+
"fur coat",
|
692 |
+
"garbage truck",
|
693 |
+
"gasmask",
|
694 |
+
"gas pump",
|
695 |
+
"goblet",
|
696 |
+
"go-kart",
|
697 |
+
"golf ball",
|
698 |
+
"golfcart",
|
699 |
+
"gondola",
|
700 |
+
"gong",
|
701 |
+
"gown",
|
702 |
+
"grand piano",
|
703 |
+
"greenhouse",
|
704 |
+
"grille",
|
705 |
+
"grocery store",
|
706 |
+
"guillotine",
|
707 |
+
"hair slide",
|
708 |
+
"hair spray",
|
709 |
+
"half track",
|
710 |
+
"hammer",
|
711 |
+
"hamper",
|
712 |
+
"hand blower",
|
713 |
+
"hand-held computer",
|
714 |
+
"handkerchief",
|
715 |
+
"hard disc",
|
716 |
+
"harmonica",
|
717 |
+
"harp",
|
718 |
+
"harvester",
|
719 |
+
"hatchet",
|
720 |
+
"holster",
|
721 |
+
"home theater",
|
722 |
+
"honeycomb",
|
723 |
+
"hook",
|
724 |
+
"hoopskirt",
|
725 |
+
"horizontal bar",
|
726 |
+
"horse cart",
|
727 |
+
"hourglass",
|
728 |
+
"iPod",
|
729 |
+
"iron",
|
730 |
+
"jack-o'-lantern",
|
731 |
+
"jean",
|
732 |
+
"jeep",
|
733 |
+
"jersey",
|
734 |
+
"jigsaw puzzle",
|
735 |
+
"jinrikisha",
|
736 |
+
"joystick",
|
737 |
+
"kimono",
|
738 |
+
"knee pad",
|
739 |
+
"knot",
|
740 |
+
"lab coat",
|
741 |
+
"ladle",
|
742 |
+
"lampshade",
|
743 |
+
"laptop",
|
744 |
+
"lawn mower",
|
745 |
+
"lens cap",
|
746 |
+
"letter opener",
|
747 |
+
"library",
|
748 |
+
"lifeboat",
|
749 |
+
"lighter",
|
750 |
+
"limousine",
|
751 |
+
"liner",
|
752 |
+
"lipstick",
|
753 |
+
"Loafer",
|
754 |
+
"lotion",
|
755 |
+
"loudspeaker",
|
756 |
+
"loupe",
|
757 |
+
"lumbermill",
|
758 |
+
"magnetic compass",
|
759 |
+
"mailbag",
|
760 |
+
"mailbox",
|
761 |
+
"maillot",
|
762 |
+
"maillot",
|
763 |
+
"manhole cover",
|
764 |
+
"maraca",
|
765 |
+
"marimba",
|
766 |
+
"mask",
|
767 |
+
"matchstick",
|
768 |
+
"maypole",
|
769 |
+
"maze",
|
770 |
+
"measuring cup",
|
771 |
+
"medicine chest",
|
772 |
+
"megalith",
|
773 |
+
"microphone",
|
774 |
+
"microwave",
|
775 |
+
"military uniform",
|
776 |
+
"milk can",
|
777 |
+
"minibus",
|
778 |
+
"miniskirt",
|
779 |
+
"minivan",
|
780 |
+
"missile",
|
781 |
+
"mitten",
|
782 |
+
"mixing bowl",
|
783 |
+
"mobile home",
|
784 |
+
"Model T",
|
785 |
+
"modem",
|
786 |
+
"monastery",
|
787 |
+
"monitor",
|
788 |
+
"moped",
|
789 |
+
"mortar",
|
790 |
+
"mortarboard",
|
791 |
+
"mosque",
|
792 |
+
"mosquito net",
|
793 |
+
"motor scooter",
|
794 |
+
"mountain bike",
|
795 |
+
"mountain tent",
|
796 |
+
"mouse",
|
797 |
+
"mousetrap",
|
798 |
+
"moving van",
|
799 |
+
"muzzle",
|
800 |
+
"nail",
|
801 |
+
"neck brace",
|
802 |
+
"necklace",
|
803 |
+
"nipple",
|
804 |
+
"notebook",
|
805 |
+
"obelisk",
|
806 |
+
"oboe",
|
807 |
+
"ocarina",
|
808 |
+
"odometer",
|
809 |
+
"oil filter",
|
810 |
+
"organ",
|
811 |
+
"oscilloscope",
|
812 |
+
"overskirt",
|
813 |
+
"oxcart",
|
814 |
+
"oxygen mask",
|
815 |
+
"packet",
|
816 |
+
"paddle",
|
817 |
+
"paddlewheel",
|
818 |
+
"padlock",
|
819 |
+
"paintbrush",
|
820 |
+
"pajama",
|
821 |
+
"palace",
|
822 |
+
"panpipe",
|
823 |
+
"paper towel",
|
824 |
+
"parachute",
|
825 |
+
"parallel bars",
|
826 |
+
"park bench",
|
827 |
+
"parking meter",
|
828 |
+
"passenger car",
|
829 |
+
"patio",
|
830 |
+
"pay-phone",
|
831 |
+
"pedestal",
|
832 |
+
"pencil box",
|
833 |
+
"pencil sharpener",
|
834 |
+
"perfume",
|
835 |
+
"Petri dish",
|
836 |
+
"photocopier",
|
837 |
+
"pick",
|
838 |
+
"pickelhaube",
|
839 |
+
"picket fence",
|
840 |
+
"pickup",
|
841 |
+
"pier",
|
842 |
+
"piggy bank",
|
843 |
+
"pill bottle",
|
844 |
+
"pillow",
|
845 |
+
"ping-pong ball",
|
846 |
+
"pinwheel",
|
847 |
+
"pirate",
|
848 |
+
"pitcher",
|
849 |
+
"plane",
|
850 |
+
"planetarium",
|
851 |
+
"plastic bag",
|
852 |
+
"plate rack",
|
853 |
+
"plow",
|
854 |
+
"plunger",
|
855 |
+
"Polaroid camera",
|
856 |
+
"pole",
|
857 |
+
"police van",
|
858 |
+
"poncho",
|
859 |
+
"pool table",
|
860 |
+
"pop bottle",
|
861 |
+
"pot",
|
862 |
+
"potter's wheel",
|
863 |
+
"power drill",
|
864 |
+
"prayer rug",
|
865 |
+
"printer",
|
866 |
+
"prison",
|
867 |
+
"projectile",
|
868 |
+
"projector",
|
869 |
+
"puck",
|
870 |
+
"punching bag",
|
871 |
+
"purse",
|
872 |
+
"quill",
|
873 |
+
"quilt",
|
874 |
+
"racer",
|
875 |
+
"racket",
|
876 |
+
"radiator",
|
877 |
+
"radio",
|
878 |
+
"radio telescope",
|
879 |
+
"rain barrel",
|
880 |
+
"recreational vehicle",
|
881 |
+
"reel",
|
882 |
+
"reflex camera",
|
883 |
+
"refrigerator",
|
884 |
+
"remote control",
|
885 |
+
"restaurant",
|
886 |
+
"revolver",
|
887 |
+
"rifle",
|
888 |
+
"rocking chair",
|
889 |
+
"rotisserie",
|
890 |
+
"rubber eraser",
|
891 |
+
"rugby ball",
|
892 |
+
"rule",
|
893 |
+
"running shoe",
|
894 |
+
"safe",
|
895 |
+
"safety pin",
|
896 |
+
"saltshaker",
|
897 |
+
"sandal",
|
898 |
+
"sarong",
|
899 |
+
"sax",
|
900 |
+
"scabbard",
|
901 |
+
"scale",
|
902 |
+
"school bus",
|
903 |
+
"schooner",
|
904 |
+
"scoreboard",
|
905 |
+
"screen",
|
906 |
+
"screw",
|
907 |
+
"screwdriver",
|
908 |
+
"seat belt",
|
909 |
+
"sewing machine",
|
910 |
+
"shield",
|
911 |
+
"shoe shop",
|
912 |
+
"shoji",
|
913 |
+
"shopping basket",
|
914 |
+
"shopping cart",
|
915 |
+
"shovel",
|
916 |
+
"shower cap",
|
917 |
+
"shower curtain",
|
918 |
+
"ski",
|
919 |
+
"ski mask",
|
920 |
+
"sleeping bag",
|
921 |
+
"slide rule",
|
922 |
+
"sliding door",
|
923 |
+
"slot",
|
924 |
+
"snorkel",
|
925 |
+
"snowmobile",
|
926 |
+
"snowplow",
|
927 |
+
"soap dispenser",
|
928 |
+
"soccer ball",
|
929 |
+
"sock",
|
930 |
+
"solar dish",
|
931 |
+
"sombrero",
|
932 |
+
"soup bowl",
|
933 |
+
"space bar",
|
934 |
+
"space heater",
|
935 |
+
"space shuttle",
|
936 |
+
"spatula",
|
937 |
+
"speedboat",
|
938 |
+
"spider web",
|
939 |
+
"spindle",
|
940 |
+
"sports car",
|
941 |
+
"spotlight",
|
942 |
+
"stage",
|
943 |
+
"steam locomotive",
|
944 |
+
"steel arch bridge",
|
945 |
+
"steel drum",
|
946 |
+
"stethoscope",
|
947 |
+
"stole",
|
948 |
+
"stone wall",
|
949 |
+
"stopwatch",
|
950 |
+
"stove",
|
951 |
+
"strainer",
|
952 |
+
"streetcar",
|
953 |
+
"stretcher",
|
954 |
+
"studio couch",
|
955 |
+
"stupa",
|
956 |
+
"submarine",
|
957 |
+
"suit",
|
958 |
+
"sundial",
|
959 |
+
"sunglass",
|
960 |
+
"sunglasses",
|
961 |
+
"sunscreen",
|
962 |
+
"suspension bridge",
|
963 |
+
"swab",
|
964 |
+
"sweatshirt",
|
965 |
+
"swimming trunks",
|
966 |
+
"swing",
|
967 |
+
"switch",
|
968 |
+
"syringe",
|
969 |
+
"table lamp",
|
970 |
+
"tank",
|
971 |
+
"tape player",
|
972 |
+
"teapot",
|
973 |
+
"teddy",
|
974 |
+
"television",
|
975 |
+
"tennis ball",
|
976 |
+
"thatch",
|
977 |
+
"theater curtain",
|
978 |
+
"thimble",
|
979 |
+
"thresher",
|
980 |
+
"throne",
|
981 |
+
"tile roof",
|
982 |
+
"toaster",
|
983 |
+
"tobacco shop",
|
984 |
+
"toilet seat",
|
985 |
+
"torch",
|
986 |
+
"totem pole",
|
987 |
+
"tow truck",
|
988 |
+
"toyshop",
|
989 |
+
"tractor",
|
990 |
+
"trailer truck",
|
991 |
+
"tray",
|
992 |
+
"trench coat",
|
993 |
+
"tricycle",
|
994 |
+
"trimaran",
|
995 |
+
"tripod",
|
996 |
+
"triumphal arch",
|
997 |
+
"trolleybus",
|
998 |
+
"trombone",
|
999 |
+
"tub",
|
1000 |
+
"turnstile",
|
1001 |
+
"typewriter keyboard",
|
1002 |
+
"umbrella",
|
1003 |
+
"unicycle",
|
1004 |
+
"upright",
|
1005 |
+
"vacuum",
|
1006 |
+
"vase",
|
1007 |
+
"vault",
|
1008 |
+
"velvet",
|
1009 |
+
"vending machine",
|
1010 |
+
"vestment",
|
1011 |
+
"viaduct",
|
1012 |
+
"violin",
|
1013 |
+
"volleyball",
|
1014 |
+
"waffle iron",
|
1015 |
+
"wall clock",
|
1016 |
+
"wallet",
|
1017 |
+
"wardrobe",
|
1018 |
+
"warplane",
|
1019 |
+
"washbasin",
|
1020 |
+
"washer",
|
1021 |
+
"water bottle",
|
1022 |
+
"water jug",
|
1023 |
+
"water tower",
|
1024 |
+
"whiskey jug",
|
1025 |
+
"whistle",
|
1026 |
+
"wig",
|
1027 |
+
"window screen",
|
1028 |
+
"window shade",
|
1029 |
+
"Windsor tie",
|
1030 |
+
"wine bottle",
|
1031 |
+
"wing",
|
1032 |
+
"wok",
|
1033 |
+
"wooden spoon",
|
1034 |
+
"wool",
|
1035 |
+
"worm fence",
|
1036 |
+
"wreck",
|
1037 |
+
"yawl",
|
1038 |
+
"yurt",
|
1039 |
+
"web site",
|
1040 |
+
"comic book",
|
1041 |
+
"crossword puzzle",
|
1042 |
+
"street sign",
|
1043 |
+
"traffic light",
|
1044 |
+
"book jacket",
|
1045 |
+
"menu",
|
1046 |
+
"plate",
|
1047 |
+
"guacamole",
|
1048 |
+
"consomme",
|
1049 |
+
"hot pot",
|
1050 |
+
"trifle",
|
1051 |
+
"ice cream",
|
1052 |
+
"ice lolly",
|
1053 |
+
"French loaf",
|
1054 |
+
"bagel",
|
1055 |
+
"pretzel",
|
1056 |
+
"cheeseburger",
|
1057 |
+
"hotdog",
|
1058 |
+
"mashed potato",
|
1059 |
+
"head cabbage",
|
1060 |
+
"broccoli",
|
1061 |
+
"cauliflower",
|
1062 |
+
"zucchini",
|
1063 |
+
"spaghetti squash",
|
1064 |
+
"acorn squash",
|
1065 |
+
"butternut squash",
|
1066 |
+
"cucumber",
|
1067 |
+
"artichoke",
|
1068 |
+
"bell pepper",
|
1069 |
+
"cardoon",
|
1070 |
+
"mushroom",
|
1071 |
+
"Granny Smith",
|
1072 |
+
"strawberry",
|
1073 |
+
"orange",
|
1074 |
+
"lemon",
|
1075 |
+
"fig",
|
1076 |
+
"pineapple",
|
1077 |
+
"banana",
|
1078 |
+
"jackfruit",
|
1079 |
+
"custard apple",
|
1080 |
+
"pomegranate",
|
1081 |
+
"hay",
|
1082 |
+
"carbonara",
|
1083 |
+
"chocolate sauce",
|
1084 |
+
"dough",
|
1085 |
+
"meatloaf",
|
1086 |
+
"pizza",
|
1087 |
+
"potpie",
|
1088 |
+
"burrito",
|
1089 |
+
"red wine",
|
1090 |
+
"espresso",
|
1091 |
+
"cup",
|
1092 |
+
"eggnog",
|
1093 |
+
"alp",
|
1094 |
+
"bubble",
|
1095 |
+
"cliff",
|
1096 |
+
"coral reef",
|
1097 |
+
"geyser",
|
1098 |
+
"lakeside",
|
1099 |
+
"promontory",
|
1100 |
+
"sandbar",
|
1101 |
+
"seashore",
|
1102 |
+
"valley",
|
1103 |
+
"volcano",
|
1104 |
+
"ballplayer",
|
1105 |
+
"groom",
|
1106 |
+
"scuba diver",
|
1107 |
+
"rapeseed",
|
1108 |
+
"daisy",
|
1109 |
+
"yellow lady's slipper",
|
1110 |
+
"corn",
|
1111 |
+
"acorn",
|
1112 |
+
"hip",
|
1113 |
+
"buckeye",
|
1114 |
+
"coral fungus",
|
1115 |
+
"agaric",
|
1116 |
+
"gyromitra",
|
1117 |
+
"stinkhorn",
|
1118 |
+
"earthstar",
|
1119 |
+
"hen-of-the-woods",
|
1120 |
+
"bolete",
|
1121 |
+
"ear",
|
1122 |
+
"toilet tissue"
|
1123 |
+
};
|
models/image_classification_ppresnet/demo.py
CHANGED
@@ -55,7 +55,12 @@ if __name__ == '__main__':
|
|
55 |
image = image[16:240, 16:240, :]
|
56 |
|
57 |
# Inference
|
58 |
-
result = model.infer(image)
|
59 |
|
60 |
# Print result
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
55 |
image = image[16:240, 16:240, :]
|
56 |
|
57 |
# Inference
|
58 |
+
result = model.infer(image)[0]
|
59 |
|
60 |
# Print result
|
61 |
+
if top_k == 1:
|
62 |
+
print(f"Predicted Label: {result[0]}")
|
63 |
+
else:
|
64 |
+
print("Predicted Top-K Labels (in decreasing confidence):")
|
65 |
+
for i, prediction in enumerate(result):
|
66 |
+
print(f"({i+1}) {prediction}")
|