Wanli
commited on
Commit
·
323da84
1
Parent(s):
90edc6d
Re-quantify some models from per_channel mode to per_tensor mode (#90)
Browse files* re-quantize some models from per_channel mode to per_tensor mode
* remove the description about per_channel
README.md
CHANGED
@@ -19,7 +19,7 @@ Guidelines:
|
|
19 |
| ---------------------------------------------------- | ----------------------------- | ---------- | -------------- | ------------ | --------------- | ------------ | ----------- |
|
20 |
| [YuNet](./models/face_detection_yunet) | Face Detection | 160x120 | 1.45 | 6.22 | 12.18 | 4.04 | 86.69 |
|
21 |
| [SFace](./models/face_recognition_sface) | Face Recognition | 112x112 | 8.65 | 99.20 | 24.88 | 46.25 | --- |
|
22 |
-
| [LPD-YuNet](./models/license_plate_detection_yunet/) | License Plate Detection | 320x240 | --- | 168.03 | 56.12 |
|
23 |
| [DB-IC15](./models/text_detection_db) | Text Detection | 640x480 | 142.91 | 2835.91 | 208.41 | --- | --- |
|
24 |
| [DB-TD500](./models/text_detection_db) | Text Detection | 640x480 | 142.91 | 2841.71 | 210.51 | --- | --- |
|
25 |
| [CRNN-EN](./models/text_recognition_crnn) | Text Recognition | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
|
@@ -31,8 +31,8 @@ Guidelines:
|
|
31 |
| [WeChatQRCode](./models/qrcode_wechatqrcode) | QR Code Detection and Parsing | 100x100 | 7.04 | 37.68 | --- | --- | --- |
|
32 |
| [DaSiamRPN](./models/object_tracking_dasiamrpn) | Object Tracking | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
|
33 |
| [YoutuReID](./models/person_reid_youtureid) | Person Re-Identification | 128x256 | 35.81 | 521.98 | 90.07 | 44.61 | --- |
|
34 |
-
| [MP-PalmDet](./models/palm_detection_mediapipe) | Palm Detection | 256x256 | 15.57 | 168.37 | 50.64 |
|
35 |
-
| [MP-HandPose](./models/handpose_estimation_mediapipe) | Hand Pose Estimation | 256x256 | 20.16 | 148.24 | 156.30 |
|
36 |
|
37 |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
|
38 |
|
|
|
19 |
| ---------------------------------------------------- | ----------------------------- | ---------- | -------------- | ------------ | --------------- | ------------ | ----------- |
|
20 |
| [YuNet](./models/face_detection_yunet) | Face Detection | 160x120 | 1.45 | 6.22 | 12.18 | 4.04 | 86.69 |
|
21 |
| [SFace](./models/face_recognition_sface) | Face Recognition | 112x112 | 8.65 | 99.20 | 24.88 | 46.25 | --- |
|
22 |
+
| [LPD-YuNet](./models/license_plate_detection_yunet/) | License Plate Detection | 320x240 | --- | 168.03 | 56.12 | 29.53 | |
|
23 |
| [DB-IC15](./models/text_detection_db) | Text Detection | 640x480 | 142.91 | 2835.91 | 208.41 | --- | --- |
|
24 |
| [DB-TD500](./models/text_detection_db) | Text Detection | 640x480 | 142.91 | 2841.71 | 210.51 | --- | --- |
|
25 |
| [CRNN-EN](./models/text_recognition_crnn) | Text Recognition | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
|
|
|
31 |
| [WeChatQRCode](./models/qrcode_wechatqrcode) | QR Code Detection and Parsing | 100x100 | 7.04 | 37.68 | --- | --- | --- |
|
32 |
| [DaSiamRPN](./models/object_tracking_dasiamrpn) | Object Tracking | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
|
33 |
| [YoutuReID](./models/person_reid_youtureid) | Person Re-Identification | 128x256 | 35.81 | 521.98 | 90.07 | 44.61 | --- |
|
34 |
+
| [MP-PalmDet](./models/palm_detection_mediapipe) | Palm Detection | 256x256 | 15.57 | 168.37 | 50.64 | 62.45 | --- |
|
35 |
+
| [MP-HandPose](./models/handpose_estimation_mediapipe) | Hand Pose Estimation | 256x256 | 20.16 | 148.24 | 156.30 | 42.70 | --- |
|
36 |
|
37 |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
|
38 |
|
models/handpose_estimation_mediapipe/README.md
CHANGED
@@ -9,8 +9,6 @@ This model is converted from Tensorflow-JS to ONNX using following tools:
|
|
9 |
- tf_saved_model to ONNX: https://github.com/onnx/tensorflow-onnx
|
10 |
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
|
11 |
|
12 |
-
Also note that the model is quantized in per-channel mode with [Intel's neural compressor](https://github.com/intel/neural-compressor), which gives better accuracy but may lose some speed.
|
13 |
-
|
14 |
## Demo
|
15 |
|
16 |
Run the following commands to try the demo:
|
|
|
9 |
- tf_saved_model to ONNX: https://github.com/onnx/tensorflow-onnx
|
10 |
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
|
11 |
|
|
|
|
|
12 |
## Demo
|
13 |
|
14 |
Run the following commands to try the demo:
|
models/palm_detection_mediapipe/README.md
CHANGED
@@ -6,8 +6,6 @@ This model detects palm bounding boxes and palm landmarks, and is converted from
|
|
6 |
- tf_saved_model to ONNX: https://github.com/onnx/tensorflow-onnx
|
7 |
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
|
8 |
|
9 |
-
Also note that the model is quantized in per-channel mode with [Intel's neural compressor](https://github.com/intel/neural-compressor), which gives better accuracy but may lose some speed.
|
10 |
-
|
11 |
## Demo
|
12 |
|
13 |
Run the following commands to try the demo:
|
|
|
6 |
- tf_saved_model to ONNX: https://github.com/onnx/tensorflow-onnx
|
7 |
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
|
8 |
|
|
|
|
|
9 |
## Demo
|
10 |
|
11 |
Run the following commands to try the demo:
|
tools/quantize/inc_configs/lpd_yunet.yaml
CHANGED
@@ -32,6 +32,18 @@ quantization: # optional. tuning constrai
|
|
32 |
dtype: float32
|
33 |
label: True
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
tuning:
|
36 |
accuracy_criterion:
|
37 |
relative: 0.02 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
|
|
|
32 |
dtype: float32
|
33 |
label: True
|
34 |
|
35 |
+
model_wise: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
|
36 |
+
weight:
|
37 |
+
granularity: per_tensor
|
38 |
+
scheme: asym
|
39 |
+
dtype: int8
|
40 |
+
algorithm: minmax
|
41 |
+
activation:
|
42 |
+
granularity: per_tensor
|
43 |
+
scheme: asym
|
44 |
+
dtype: int8
|
45 |
+
algorithm: minmax
|
46 |
+
|
47 |
tuning:
|
48 |
accuracy_criterion:
|
49 |
relative: 0.02 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
|
tools/quantize/inc_configs/mp_handpose.yaml
CHANGED
@@ -32,6 +32,18 @@ quantization: # optional. tuning constrai
|
|
32 |
dtype: float32
|
33 |
label: True
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
tuning:
|
36 |
accuracy_criterion:
|
37 |
relative: 0.02 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
|
|
|
32 |
dtype: float32
|
33 |
label: True
|
34 |
|
35 |
+
model_wise: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
|
36 |
+
weight:
|
37 |
+
granularity: per_tensor
|
38 |
+
scheme: asym
|
39 |
+
dtype: int8
|
40 |
+
algorithm: minmax
|
41 |
+
activation:
|
42 |
+
granularity: per_tensor
|
43 |
+
scheme: asym
|
44 |
+
dtype: int8
|
45 |
+
algorithm: minmax
|
46 |
+
|
47 |
tuning:
|
48 |
accuracy_criterion:
|
49 |
relative: 0.02 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
|
tools/quantize/inc_configs/mp_palmdet.yaml
CHANGED
@@ -32,6 +32,18 @@ quantization: # optional. tuning constrai
|
|
32 |
dtype: float32
|
33 |
label: True
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
tuning:
|
36 |
accuracy_criterion:
|
37 |
relative: 0.02 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
|
|
|
32 |
dtype: float32
|
33 |
label: True
|
34 |
|
35 |
+
model_wise: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
|
36 |
+
weight:
|
37 |
+
granularity: per_tensor
|
38 |
+
scheme: asym
|
39 |
+
dtype: int8
|
40 |
+
algorithm: minmax
|
41 |
+
activation:
|
42 |
+
granularity: per_tensor
|
43 |
+
scheme: asym
|
44 |
+
dtype: int8
|
45 |
+
algorithm: minmax
|
46 |
+
|
47 |
tuning:
|
48 |
accuracy_criterion:
|
49 |
relative: 0.02 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
|