Add model file collector, fix some bugs and add some features (#123)
Browse filesadd model path searcher and remove hardwritten file paths from benchmark configs; pack ppresnet, mobilenet & crnn with labels; fix palm det data; add flags to enable models of different precision separately (#123)
- benchmark/README.md +12 -14
- benchmark/benchmark.py +27 -18
- benchmark/config/face_detection_yunet.yaml +1 -3
- benchmark/config/face_recognition_sface.yaml +1 -2
- benchmark/config/facial_expression_recognition.yaml +1 -2
- benchmark/config/handpose_estimation_mediapipe.yaml +1 -2
- benchmark/config/human_segmentation_pphumanseg.yaml +1 -2
- benchmark/config/{image_classification_mobilenetv1.yaml → image_classification_mobilenet.yaml} +2 -4
- benchmark/config/image_classification_mobilenetv2.yaml +0 -20
- benchmark/config/image_classification_ppresnet.yaml +1 -3
- benchmark/config/license_plate_detection_yunet.yaml +1 -2
- benchmark/config/object_detection_nanodet.yaml +1 -3
- benchmark/config/object_detection_yolox.yaml +1 -3
- benchmark/config/object_tracking_dasiamrpn.yaml +1 -4
- benchmark/config/palm_detection_mediapipe.yaml +1 -3
- benchmark/config/person_reid_youtureid.yaml +1 -2
- benchmark/config/qrcode_wechatqrcode.yaml +1 -5
- benchmark/config/text_detection_db.yaml +2 -3
- benchmark/config/{text_recognition_crnn_en.yaml → text_recognition_crnn.yaml} +1 -3
- benchmark/config/text_recognition_crnn_cn.yaml +0 -17
- benchmark/download_data.py +3 -3
- models/__init__.py +52 -7
- models/image_classification_mobilenet/demo.py +11 -14
- models/image_classification_mobilenet/{imagenet_labels.txt → mobilenet.py} +81 -2
- models/image_classification_mobilenet/mobilenet_v1.py +0 -81
- models/image_classification_mobilenet/mobilenet_v2.py +0 -81
- models/image_classification_ppresnet/demo.py +1 -3
- models/image_classification_ppresnet/imagenet_labels.txt +0 -1000
- models/image_classification_ppresnet/ppresnet.py +1002 -8
- models/object_tracking_dasiamrpn/dasiamrpn.py +1 -1
- models/object_tracking_dasiamrpn/demo.py +3 -3
- models/text_recognition_crnn/charset_36_EN.txt +0 -36
- models/text_recognition_crnn/charset_3944_CN.txt +0 -3944
- models/text_recognition_crnn/charset_94_CH.txt +0 -94
- models/text_recognition_crnn/crnn.py +4092 -10
- models/text_recognition_crnn/demo.py +1 -2
- tools/eval/eval.py +59 -59
benchmark/README.md
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
# OpenCV Zoo Benchmark
|
2 |
|
3 |
-
Benchmarking different models in the zoo.
|
4 |
|
5 |
Data for benchmarking will be downloaded and loaded in [data](./data) based on given config.
|
6 |
|
7 |
-
Time is measured from data preprocess (resize is excluded), to a forward pass of a network, and postprocess to get final results. The final time data presented is averaged from a 100-time run.
|
8 |
-
|
9 |
## Preparation
|
10 |
|
11 |
1. Install `python >= 3.6`.
|
@@ -13,29 +11,29 @@ Time is measured from data preprocess (resize is excluded), to a forward pass of
|
|
13 |
3. Download data for benchmarking.
|
14 |
1. Download all data: `python download_data.py`
|
15 |
2. Download one or more specified data: `python download_data.py face text`. Available names can be found in `download_data.py`.
|
16 |
-
3.
|
17 |
|
18 |
## Benchmarking
|
19 |
|
20 |
-
|
21 |
|
22 |
```shell
|
23 |
export PYTHONPATH=$PYTHONPATH:..
|
24 |
python benchmark.py --cfg ./config/face_detection_yunet.yaml
|
25 |
```
|
26 |
|
27 |
-
|
28 |
- CMD
|
29 |
-
```shell
|
30 |
-
set PYTHONPATH=%PYTHONPATH%;..
|
31 |
-
python benchmark.py --cfg ./config/face_detection_yunet.yaml
|
32 |
-
```
|
33 |
|
34 |
- PowerShell
|
35 |
-
```shell
|
36 |
-
$env:PYTHONPATH=$env:PYTHONPATH+";.."
|
37 |
-
python benchmark.py --cfg ./config/face_detection_yunet.yaml
|
38 |
-
```
|
39 |
<!--
|
40 |
Omit `--cfg` if you want to benchmark all included models:
|
41 |
```shell
|
|
|
1 |
# OpenCV Zoo Benchmark
|
2 |
|
3 |
+
Benchmarking the speed of OpenCV DNN inferring different models in the zoo. Result of each model includes the time of its preprocessing, inference and postprocessing stages.
|
4 |
|
5 |
Data for benchmarking will be downloaded and loaded in [data](./data) based on given config.
|
6 |
|
|
|
|
|
7 |
## Preparation
|
8 |
|
9 |
1. Install `python >= 3.6`.
|
|
|
11 |
3. Download data for benchmarking.
|
12 |
1. Download all data: `python download_data.py`
|
13 |
2. Download one or more specified data: `python download_data.py face text`. Available names can be found in `download_data.py`.
|
14 |
+
3. You can also download all data from https://pan.baidu.com/s/18sV8D4vXUb2xC9EG45k7bg (code: pvrw). Please place and extract data packages under [./data](./data).
|
15 |
|
16 |
## Benchmarking
|
17 |
|
18 |
+
**Linux**:
|
19 |
|
20 |
```shell
|
21 |
export PYTHONPATH=$PYTHONPATH:..
|
22 |
python benchmark.py --cfg ./config/face_detection_yunet.yaml
|
23 |
```
|
24 |
|
25 |
+
**Windows**:
|
26 |
- CMD
|
27 |
+
```shell
|
28 |
+
set PYTHONPATH=%PYTHONPATH%;..
|
29 |
+
python benchmark.py --cfg ./config/face_detection_yunet.yaml
|
30 |
+
```
|
31 |
|
32 |
- PowerShell
|
33 |
+
```shell
|
34 |
+
$env:PYTHONPATH=$env:PYTHONPATH+";.."
|
35 |
+
python benchmark.py --cfg ./config/face_detection_yunet.yaml
|
36 |
+
```
|
37 |
<!--
|
38 |
Omit `--cfg` if you want to benchmark all included models:
|
39 |
```shell
|
benchmark/benchmark.py
CHANGED
@@ -11,6 +11,9 @@ from utils import METRICS, DATALOADERS
|
|
11 |
parser = argparse.ArgumentParser("Benchmarks for OpenCV Zoo.")
|
12 |
parser.add_argument('--cfg', '-c', type=str,
|
13 |
help='Benchmarking on the given config.')
|
|
|
|
|
|
|
14 |
args = parser.parse_args()
|
15 |
|
16 |
def build_from_cfg(cfg, registery, key=None, name=None):
|
@@ -24,14 +27,6 @@ def build_from_cfg(cfg, registery, key=None, name=None):
|
|
24 |
else:
|
25 |
raise NotImplementedError()
|
26 |
|
27 |
-
def prepend_pythonpath(cfg):
|
28 |
-
for k, v in cfg.items():
|
29 |
-
if isinstance(v, dict):
|
30 |
-
prepend_pythonpath(v)
|
31 |
-
else:
|
32 |
-
if 'path' in k.lower():
|
33 |
-
cfg[k] = os.path.join(os.environ['PYTHONPATH'].split(os.pathsep)[-1], v)
|
34 |
-
|
35 |
class Benchmark:
|
36 |
def __init__(self, **kwargs):
|
37 |
self._type = kwargs.pop('type', None)
|
@@ -115,16 +110,30 @@ if __name__ == '__main__':
|
|
115 |
with open(args.cfg, 'r') as f:
|
116 |
cfg = yaml.safe_load(f)
|
117 |
|
118 |
-
#
|
119 |
-
prepend_pythonpath(cfg)
|
120 |
-
|
121 |
-
# Instantiate benchmarking
|
122 |
benchmark = Benchmark(**cfg['Benchmark'])
|
123 |
|
124 |
# Instantiate model
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
parser = argparse.ArgumentParser("Benchmarks for OpenCV Zoo.")
|
12 |
parser.add_argument('--cfg', '-c', type=str,
|
13 |
help='Benchmarking on the given config.')
|
14 |
+
parser.add_argument("--fp32", action="store_true", help="Runs models of float32 precision only.")
|
15 |
+
parser.add_argument("--fp16", action="store_true", help="Runs models of float16 precision only.")
|
16 |
+
parser.add_argument("--int8", action="store_true", help="Runs models of int8 precision only.")
|
17 |
args = parser.parse_args()
|
18 |
|
19 |
def build_from_cfg(cfg, registery, key=None, name=None):
|
|
|
27 |
else:
|
28 |
raise NotImplementedError()
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
class Benchmark:
|
31 |
def __init__(self, **kwargs):
|
32 |
self._type = kwargs.pop('type', None)
|
|
|
110 |
with open(args.cfg, 'r') as f:
|
111 |
cfg = yaml.safe_load(f)
|
112 |
|
113 |
+
# Instantiate benchmark
|
|
|
|
|
|
|
114 |
benchmark = Benchmark(**cfg['Benchmark'])
|
115 |
|
116 |
# Instantiate model
|
117 |
+
model_config = cfg['Model']
|
118 |
+
model_handler, model_paths = MODELS.get(model_config.pop('name'))
|
119 |
+
|
120 |
+
_model_paths = []
|
121 |
+
if args.fp32 or args.fp16 or args.int8:
|
122 |
+
if args.fp32:
|
123 |
+
_model_paths += model_paths['fp32']
|
124 |
+
if args.fp16:
|
125 |
+
_model_paths += model_paths['fp16']
|
126 |
+
if args.int8:
|
127 |
+
_model_paths += model_paths['int8']
|
128 |
+
else:
|
129 |
+
_model_paths = model_paths['fp32'] + model_paths['fp16'] + model_paths['int8']
|
130 |
+
|
131 |
+
for model_path in _model_paths:
|
132 |
+
model = model_handler(*model_path, **model_config)
|
133 |
+
# Format model_path
|
134 |
+
for i in range(len(model_path)):
|
135 |
+
model_path[i] = model_path[i].split('/')[-1]
|
136 |
+
print('Benchmarking {} with {}'.format(model.name, model_path))
|
137 |
+
# Run benchmark
|
138 |
+
benchmark.run(model)
|
139 |
+
benchmark.printResults()
|
benchmark/config/face_detection_yunet.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Face Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["group.jpg", "concerts.jpg", "dance.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [160, 120]
|
@@ -16,8 +16,6 @@ Benchmark:
|
|
16 |
|
17 |
Model:
|
18 |
name: "YuNet"
|
19 |
-
modelPath: "models/face_detection_yunet/face_detection_yunet_2022mar.onnx"
|
20 |
confThreshold: 0.6
|
21 |
nmsThreshold: 0.3
|
22 |
topK: 5000
|
23 |
-
|
|
|
2 |
name: "Face Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
+
path: "data/face_detection"
|
6 |
files: ["group.jpg", "concerts.jpg", "dance.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [160, 120]
|
|
|
16 |
|
17 |
Model:
|
18 |
name: "YuNet"
|
|
|
19 |
confThreshold: 0.6
|
20 |
nmsThreshold: 0.3
|
21 |
topK: 5000
|
|
benchmark/config/face_recognition_sface.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Face Recognition Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["Aaron_Tippin_0001.jpg", "Alvaro_Uribe_0028.jpg", "Alvaro_Uribe_0029.jpg", "Jose_Luis_Rodriguez_Zapatero_0001.jpg"]
|
7 |
metric: # 'sizes' is omitted since this model requires input of fixed size
|
8 |
warmup: 30
|
@@ -13,4 +13,3 @@ Benchmark:
|
|
13 |
|
14 |
Model:
|
15 |
name: "SFace"
|
16 |
-
modelPath: "models/face_recognition_sface/face_recognition_sface_2021dec.onnx"
|
|
|
2 |
name: "Face Recognition Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
+
path: "data/face_recognition"
|
6 |
files: ["Aaron_Tippin_0001.jpg", "Alvaro_Uribe_0028.jpg", "Alvaro_Uribe_0029.jpg", "Jose_Luis_Rodriguez_Zapatero_0001.jpg"]
|
7 |
metric: # 'sizes' is omitted since this model requires input of fixed size
|
8 |
warmup: 30
|
|
|
13 |
|
14 |
Model:
|
15 |
name: "SFace"
|
|
benchmark/config/facial_expression_recognition.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Facial Expression Recognition Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["RAF_test_0_61.jpg", "RAF_test_0_30.jpg", "RAF_test_6_25.jpg"]
|
7 |
metric: # 'sizes' is omitted since this model requires input of fixed size
|
8 |
warmup: 30
|
@@ -13,4 +13,3 @@ Benchmark:
|
|
13 |
|
14 |
Model:
|
15 |
name: "FacialExpressionRecog"
|
16 |
-
modelPath: "models/facial_expression_recognition/facial_expression_recognition_mobilefacenet_2022july.onnx"
|
|
|
2 |
name: "Facial Expression Recognition Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
+
path: "data/facial_expression_recognition/fer_evaluation"
|
6 |
files: ["RAF_test_0_61.jpg", "RAF_test_0_30.jpg", "RAF_test_6_25.jpg"]
|
7 |
metric: # 'sizes' is omitted since this model requires input of fixed size
|
8 |
warmup: 30
|
|
|
13 |
|
14 |
Model:
|
15 |
name: "FacialExpressionRecog"
|
|
benchmark/config/handpose_estimation_mediapipe.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Hand Pose Estimation Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["palm1.jpg", "palm2.jpg", "palm3.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [256, 256]
|
@@ -15,5 +15,4 @@ Benchmark:
|
|
15 |
|
16 |
Model:
|
17 |
name: "MPHandPose"
|
18 |
-
modelPath: "models/handpose_estimation_mediapipe/handpose_estimation_mediapipe_2022may.onnx"
|
19 |
confThreshold: 0.9
|
|
|
2 |
name: "Hand Pose Estimation Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
+
path: "data/palm_detection_20230125"
|
6 |
files: ["palm1.jpg", "palm2.jpg", "palm3.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [256, 256]
|
|
|
15 |
|
16 |
Model:
|
17 |
name: "MPHandPose"
|
|
|
18 |
confThreshold: 0.9
|
benchmark/config/human_segmentation_pphumanseg.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Human Segmentation Benchmark"
|
3 |
type: "Base"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["messi5.jpg", "100040721_1.jpg", "detect.jpg"]
|
7 |
sizes: [[192, 192]]
|
8 |
toRGB: True
|
@@ -15,4 +15,3 @@ Benchmark:
|
|
15 |
|
16 |
Model:
|
17 |
name: "PPHumanSeg"
|
18 |
-
modelPath: "models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2021oct.onnx"
|
|
|
2 |
name: "Human Segmentation Benchmark"
|
3 |
type: "Base"
|
4 |
data:
|
5 |
+
path: "data/human_segmentation"
|
6 |
files: ["messi5.jpg", "100040721_1.jpg", "detect.jpg"]
|
7 |
sizes: [[192, 192]]
|
8 |
toRGB: True
|
|
|
15 |
|
16 |
Model:
|
17 |
name: "PPHumanSeg"
|
|
benchmark/config/{image_classification_mobilenetv1.yaml → image_classification_mobilenet.yaml}
RENAMED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Image Classification Benchmark"
|
3 |
type: "Classification"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["coffee_mug.jpg", "umbrella.jpg", "wall_clock.jpg"]
|
7 |
sizes: [[256, 256]]
|
8 |
toRGB: True
|
@@ -15,6 +15,4 @@ Benchmark:
|
|
15 |
target: "cpu"
|
16 |
|
17 |
Model:
|
18 |
-
name: "
|
19 |
-
modelPath: "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx"
|
20 |
-
|
|
|
2 |
name: "Image Classification Benchmark"
|
3 |
type: "Classification"
|
4 |
data:
|
5 |
+
path: "data/image_classification"
|
6 |
files: ["coffee_mug.jpg", "umbrella.jpg", "wall_clock.jpg"]
|
7 |
sizes: [[256, 256]]
|
8 |
toRGB: True
|
|
|
15 |
target: "cpu"
|
16 |
|
17 |
Model:
|
18 |
+
name: "MobileNet"
|
|
|
|
benchmark/config/image_classification_mobilenetv2.yaml
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
Benchmark:
|
2 |
-
name: "Image Classification Benchmark"
|
3 |
-
type: "Classification"
|
4 |
-
data:
|
5 |
-
path: "benchmark/data/image_classification"
|
6 |
-
files: ["coffee_mug.jpg", "umbrella.jpg", "wall_clock.jpg"]
|
7 |
-
sizes: [[256, 256]]
|
8 |
-
toRGB: True
|
9 |
-
centerCrop: 224
|
10 |
-
metric:
|
11 |
-
warmup: 30
|
12 |
-
repeat: 10
|
13 |
-
reduction: "median"
|
14 |
-
backend: "default"
|
15 |
-
target: "cpu"
|
16 |
-
|
17 |
-
Model:
|
18 |
-
name: "MobileNetV2"
|
19 |
-
modelPath: "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx"
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmark/config/image_classification_ppresnet.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Image Classification Benchmark"
|
3 |
type: "Classification"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["coffee_mug.jpg", "umbrella.jpg", "wall_clock.jpg"]
|
7 |
sizes: [[256, 256]]
|
8 |
toRGB: True
|
@@ -16,5 +16,3 @@ Benchmark:
|
|
16 |
|
17 |
Model:
|
18 |
name: "PPResNet"
|
19 |
-
modelPath: "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx"
|
20 |
-
|
|
|
2 |
name: "Image Classification Benchmark"
|
3 |
type: "Classification"
|
4 |
data:
|
5 |
+
path: "data/image_classification"
|
6 |
files: ["coffee_mug.jpg", "umbrella.jpg", "wall_clock.jpg"]
|
7 |
sizes: [[256, 256]]
|
8 |
toRGB: True
|
|
|
16 |
|
17 |
Model:
|
18 |
name: "PPResNet"
|
|
|
|
benchmark/config/license_plate_detection_yunet.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "License Plate Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["1.jpg", "2.jpg", "3.jpg", "4.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [320, 240]
|
@@ -15,7 +15,6 @@ Benchmark:
|
|
15 |
|
16 |
Model:
|
17 |
name: "LPD_YuNet"
|
18 |
-
modelPath: "models/license_plate_detection_yunet/license_plate_detection_lpd_yunet_2022may.onnx"
|
19 |
confThreshold: 0.8
|
20 |
nmsThreshold: 0.3
|
21 |
topK: 5000
|
|
|
2 |
name: "License Plate Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
+
path: "data/license_plate_detection"
|
6 |
files: ["1.jpg", "2.jpg", "3.jpg", "4.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [320, 240]
|
|
|
15 |
|
16 |
Model:
|
17 |
name: "LPD_YuNet"
|
|
|
18 |
confThreshold: 0.8
|
19 |
nmsThreshold: 0.3
|
20 |
topK: 5000
|
benchmark/config/object_detection_nanodet.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Object Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["1.png", "2.png", "3.png"]
|
7 |
sizes:
|
8 |
- [416, 416]
|
@@ -15,7 +15,5 @@ Benchmark:
|
|
15 |
|
16 |
Model:
|
17 |
name: "NanoDet"
|
18 |
-
modelPath: "models/object_detection_nanodet/object_detection_nanodet_2022nov.onnx"
|
19 |
prob_threshold: 0.35
|
20 |
iou_threshold: 0.6
|
21 |
-
|
|
|
2 |
name: "Object Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
+
path: "data/object_detection"
|
6 |
files: ["1.png", "2.png", "3.png"]
|
7 |
sizes:
|
8 |
- [416, 416]
|
|
|
15 |
|
16 |
Model:
|
17 |
name: "NanoDet"
|
|
|
18 |
prob_threshold: 0.35
|
19 |
iou_threshold: 0.6
|
|
benchmark/config/object_detection_yolox.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Object Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["1.png", "2.png", "3.png"]
|
7 |
sizes:
|
8 |
- [640, 640]
|
@@ -15,8 +15,6 @@ Benchmark:
|
|
15 |
|
16 |
Model:
|
17 |
name: "YoloX"
|
18 |
-
modelPath: "models/object_detection_yolox/object_detection_yolox_2022nov.onnx"
|
19 |
confThreshold: 0.35
|
20 |
nmsThreshold: 0.5
|
21 |
objThreshold: 0.5
|
22 |
-
|
|
|
2 |
name: "Object Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
+
path: "data/object_detection"
|
6 |
files: ["1.png", "2.png", "3.png"]
|
7 |
sizes:
|
8 |
- [640, 640]
|
|
|
15 |
|
16 |
Model:
|
17 |
name: "YoloX"
|
|
|
18 |
confThreshold: 0.35
|
19 |
nmsThreshold: 0.5
|
20 |
objThreshold: 0.5
|
|
benchmark/config/object_tracking_dasiamrpn.yaml
CHANGED
@@ -3,7 +3,7 @@ Benchmark:
|
|
3 |
type: "Tracking"
|
4 |
data:
|
5 |
type: "TrackingVideoLoader"
|
6 |
-
path: "
|
7 |
files: ["throw_cup.mp4"]
|
8 |
metric:
|
9 |
type: "Tracking"
|
@@ -13,6 +13,3 @@ Benchmark:
|
|
13 |
|
14 |
Model:
|
15 |
name: "DaSiamRPN"
|
16 |
-
model_path: "models/object_tracking_dasiamrpn/object_tracking_dasiamrpn_model_2021nov.onnx"
|
17 |
-
kernel_cls1_path: "models/object_tracking_dasiamrpn/object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx"
|
18 |
-
kernel_r1_path: "models/object_tracking_dasiamrpn/object_tracking_dasiamrpn_kernel_r1_2021nov.onnx"
|
|
|
3 |
type: "Tracking"
|
4 |
data:
|
5 |
type: "TrackingVideoLoader"
|
6 |
+
path: "data/object_tracking"
|
7 |
files: ["throw_cup.mp4"]
|
8 |
metric:
|
9 |
type: "Tracking"
|
|
|
13 |
|
14 |
Model:
|
15 |
name: "DaSiamRPN"
|
|
|
|
|
|
benchmark/config/palm_detection_mediapipe.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Palm Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["palm1.jpg", "palm2.jpg", "palm3.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [256, 256]
|
@@ -15,8 +15,6 @@ Benchmark:
|
|
15 |
|
16 |
Model:
|
17 |
name: "MPPalmDet"
|
18 |
-
modelPath: "models/palm_detection_mediapipe/palm_detection_mediapipe_2022may.onnx"
|
19 |
scoreThreshold: 0.5
|
20 |
nmsThreshold: 0.3
|
21 |
topK: 1
|
22 |
-
|
|
|
2 |
name: "Palm Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
+
path: "data/palm_detection_20230125"
|
6 |
files: ["palm1.jpg", "palm2.jpg", "palm3.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [256, 256]
|
|
|
15 |
|
16 |
Model:
|
17 |
name: "MPPalmDet"
|
|
|
18 |
scoreThreshold: 0.5
|
19 |
nmsThreshold: 0.3
|
20 |
topK: 1
|
|
benchmark/config/person_reid_youtureid.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Person ReID Benchmark"
|
3 |
type: "Base"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["0030_c1_f0056923.jpg", "0042_c5_f0068994.jpg", "0056_c8_f0017063.jpg"]
|
7 |
sizes: [[128, 256]]
|
8 |
metric:
|
@@ -14,4 +14,3 @@ Benchmark:
|
|
14 |
|
15 |
Model:
|
16 |
name: "YoutuReID"
|
17 |
-
modelPath: "models/person_reid_youtureid/person_reid_youtu_2021nov.onnx"
|
|
|
2 |
name: "Person ReID Benchmark"
|
3 |
type: "Base"
|
4 |
data:
|
5 |
+
path: "data/person_reid"
|
6 |
files: ["0030_c1_f0056923.jpg", "0042_c5_f0068994.jpg", "0056_c8_f0017063.jpg"]
|
7 |
sizes: [[128, 256]]
|
8 |
metric:
|
|
|
14 |
|
15 |
Model:
|
16 |
name: "YoutuReID"
|
|
benchmark/config/qrcode_wechatqrcode.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "QRCode Detection and Decoding Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["opencv.png", "opencv_zoo.png"]
|
7 |
sizes:
|
8 |
- [100, 100]
|
@@ -16,7 +16,3 @@ Benchmark:
|
|
16 |
|
17 |
Model:
|
18 |
name: "WeChatQRCode"
|
19 |
-
detect_prototxt_path: "models/qrcode_wechatqrcode/detect_2021nov.prototxt"
|
20 |
-
detect_model_path: "models/qrcode_wechatqrcode/detect_2021nov.caffemodel"
|
21 |
-
sr_prototxt_path: "models/qrcode_wechatqrcode/sr_2021nov.prototxt"
|
22 |
-
sr_model_path: "models/qrcode_wechatqrcode/sr_2021nov.caffemodel"
|
|
|
2 |
name: "QRCode Detection and Decoding Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
+
path: "data/qrcode"
|
6 |
files: ["opencv.png", "opencv_zoo.png"]
|
7 |
sizes:
|
8 |
- [100, 100]
|
|
|
16 |
|
17 |
Model:
|
18 |
name: "WeChatQRCode"
|
|
|
|
|
|
|
|
benchmark/config/text_detection_db.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Text Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["1.jpg", "2.jpg", "3.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [640, 480]
|
@@ -15,8 +15,7 @@ Benchmark:
|
|
15 |
|
16 |
Model:
|
17 |
name: "DB"
|
18 |
-
modelPath: "models/text_detection_db/text_detection_DB_TD500_resnet18_2021sep.onnx"
|
19 |
binaryThreshold: 0.3
|
20 |
polygonThreshold: 0.5
|
21 |
maxCandidates: 200
|
22 |
-
unclipRatio: 2.0
|
|
|
2 |
name: "Text Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
+
path: "data/text"
|
6 |
files: ["1.jpg", "2.jpg", "3.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [640, 480]
|
|
|
15 |
|
16 |
Model:
|
17 |
name: "DB"
|
|
|
18 |
binaryThreshold: 0.3
|
19 |
polygonThreshold: 0.5
|
20 |
maxCandidates: 200
|
21 |
+
unclipRatio: 2.0
|
benchmark/config/{text_recognition_crnn_en.yaml → text_recognition_crnn.yaml}
RENAMED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Text Recognition Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
-
path: "
|
6 |
files: ["1.jpg", "2.jpg", "3.jpg"]
|
7 |
metric: # 'sizes' is omitted since this model requires input of fixed size
|
8 |
warmup: 30
|
@@ -13,5 +13,3 @@ Benchmark:
|
|
13 |
|
14 |
Model:
|
15 |
name: "CRNN"
|
16 |
-
modelPath: "models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx"
|
17 |
-
charsetPath: "models/text_recognition_crnn/charset_36_EN.txt"
|
|
|
2 |
name: "Text Recognition Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
+
path: "data/text"
|
6 |
files: ["1.jpg", "2.jpg", "3.jpg"]
|
7 |
metric: # 'sizes' is omitted since this model requires input of fixed size
|
8 |
warmup: 30
|
|
|
13 |
|
14 |
Model:
|
15 |
name: "CRNN"
|
|
|
|
benchmark/config/text_recognition_crnn_cn.yaml
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
Benchmark:
|
2 |
-
name: "Text Recognition Benchmark"
|
3 |
-
type: "Recognition"
|
4 |
-
data:
|
5 |
-
path: "benchmark/data/text"
|
6 |
-
files: ["1.jpg", "2.jpg", "3.jpg"]
|
7 |
-
metric: # 'sizes' is omitted since this model requires input of fixed size
|
8 |
-
warmup: 30
|
9 |
-
repeat: 10
|
10 |
-
reduction: "median"
|
11 |
-
backend: "default"
|
12 |
-
target: "cpu"
|
13 |
-
|
14 |
-
Model:
|
15 |
-
name: "CRNN"
|
16 |
-
modelPath: "models/text_recognition_crnn/text_recognition_CRNN_CN_2021nov.onnx"
|
17 |
-
charsetPath: "models/text_recognition_crnn/charset_3944_CN.txt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmark/download_data.py
CHANGED
@@ -202,9 +202,9 @@ data_downloaders = dict(
|
|
202 |
sha='5b741fbf34c1fbcf59cad8f2a65327a5899e66f1',
|
203 |
filename='person_reid.zip'),
|
204 |
palm_detection=Downloader(name='palm_detection',
|
205 |
-
url='https://drive.google.com/u/0/uc?id=
|
206 |
-
sha='
|
207 |
-
filename='
|
208 |
license_plate_detection=Downloader(name='license_plate_detection',
|
209 |
url='https://drive.google.com/u/0/uc?id=1cf9MEyUqMMy8lLeDGd1any6tM_SsSmny&export=download',
|
210 |
sha='997acb143ddc4531e6e41365fb7ad4722064564c',
|
|
|
202 |
sha='5b741fbf34c1fbcf59cad8f2a65327a5899e66f1',
|
203 |
filename='person_reid.zip'),
|
204 |
palm_detection=Downloader(name='palm_detection',
|
205 |
+
url='https://drive.google.com/u/0/uc?id=1Z4KvccTZPeZ0qFLZ6saBt_TvcKYyo9JE&export=download',
|
206 |
+
sha='4b5bb24a51daab8913957e60245a4eb766c8cf2e',
|
207 |
+
filename='palm_detection_20230125.zip'),
|
208 |
license_plate_detection=Downloader(name='license_plate_detection',
|
209 |
url='https://drive.google.com/u/0/uc?id=1cf9MEyUqMMy8lLeDGd1any6tM_SsSmny&export=download',
|
210 |
sha='997acb143ddc4531e6e41365fb7ad4722064564c',
|
models/__init__.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
from .face_detection_yunet.yunet import YuNet
|
2 |
from .text_detection_db.db import DB
|
3 |
from .text_recognition_crnn.crnn import CRNN
|
@@ -7,8 +11,7 @@ from .human_segmentation_pphumanseg.pphumanseg import PPHumanSeg
|
|
7 |
from .qrcode_wechatqrcode.wechatqrcode import WeChatQRCode
|
8 |
from .object_tracking_dasiamrpn.dasiamrpn import DaSiamRPN
|
9 |
from .person_reid_youtureid.youtureid import YoutuReID
|
10 |
-
from .image_classification_mobilenet.
|
11 |
-
from .image_classification_mobilenet.mobilenet_v2 import MobileNetV2
|
12 |
from .palm_detection_mediapipe.mp_palmdet import MPPalmDet
|
13 |
from .handpose_estimation_mediapipe.mp_handpose import MPHandPose
|
14 |
from .license_plate_detection_yunet.lpd_yunet import LPD_YuNet
|
@@ -16,18 +19,61 @@ from .object_detection_nanodet.nanodet import NanoDet
|
|
16 |
from .object_detection_yolox.yolox import YoloX
|
17 |
from .facial_expression_recognition.facial_fer_model import FacialExpressionRecog
|
18 |
|
19 |
-
class
|
20 |
def __init__(self, name):
|
21 |
self._name = name
|
22 |
self._dict = dict()
|
23 |
|
|
|
|
|
24 |
def get(self, key):
|
|
|
|
|
|
|
|
|
|
|
25 |
return self._dict[key]
|
26 |
|
27 |
def register(self, item):
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
MODELS =
|
31 |
MODELS.register(YuNet)
|
32 |
MODELS.register(DB)
|
33 |
MODELS.register(CRNN)
|
@@ -37,8 +83,7 @@ MODELS.register(PPHumanSeg)
|
|
37 |
MODELS.register(WeChatQRCode)
|
38 |
MODELS.register(DaSiamRPN)
|
39 |
MODELS.register(YoutuReID)
|
40 |
-
MODELS.register(
|
41 |
-
MODELS.register(MobileNetV2)
|
42 |
MODELS.register(MPPalmDet)
|
43 |
MODELS.register(MPHandPose)
|
44 |
MODELS.register(LPD_YuNet)
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import glob
|
3 |
+
import os
|
4 |
+
|
5 |
from .face_detection_yunet.yunet import YuNet
|
6 |
from .text_detection_db.db import DB
|
7 |
from .text_recognition_crnn.crnn import CRNN
|
|
|
11 |
from .qrcode_wechatqrcode.wechatqrcode import WeChatQRCode
|
12 |
from .object_tracking_dasiamrpn.dasiamrpn import DaSiamRPN
|
13 |
from .person_reid_youtureid.youtureid import YoutuReID
|
14 |
+
from .image_classification_mobilenet.mobilenet import MobileNet
|
|
|
15 |
from .palm_detection_mediapipe.mp_palmdet import MPPalmDet
|
16 |
from .handpose_estimation_mediapipe.mp_handpose import MPHandPose
|
17 |
from .license_plate_detection_yunet.lpd_yunet import LPD_YuNet
|
|
|
19 |
from .object_detection_yolox.yolox import YoloX
|
20 |
from .facial_expression_recognition.facial_fer_model import FacialExpressionRecog
|
21 |
|
22 |
+
class ModuleRegistery:
|
23 |
def __init__(self, name):
|
24 |
self._name = name
|
25 |
self._dict = dict()
|
26 |
|
27 |
+
self._base_path = Path(__file__).parent
|
28 |
+
|
29 |
def get(self, key):
|
30 |
+
'''
|
31 |
+
Returns a tuple with:
|
32 |
+
- a module handler,
|
33 |
+
- a list of model file paths
|
34 |
+
'''
|
35 |
return self._dict[key]
|
36 |
|
37 |
def register(self, item):
|
38 |
+
'''
|
39 |
+
Registers given module handler along with paths of model files
|
40 |
+
'''
|
41 |
+
# search for model files
|
42 |
+
model_dir = str(self._base_path / item.__module__.split(".")[1])
|
43 |
+
fp32_model_paths = []
|
44 |
+
fp16_model_paths = []
|
45 |
+
int8_model_paths = []
|
46 |
+
# onnx
|
47 |
+
ret_onnx = sorted(glob.glob(os.path.join(model_dir, "*.onnx")))
|
48 |
+
if "object_tracking" in item.__module__:
|
49 |
+
# object tracking models usually have multiple parts
|
50 |
+
fp32_model_paths = [ret_onnx]
|
51 |
+
else:
|
52 |
+
for r in ret_onnx:
|
53 |
+
if "int8" in r:
|
54 |
+
int8_model_paths.append([r])
|
55 |
+
elif "fp16" in r: # exclude fp16 for now
|
56 |
+
fp16_model_paths.append([r])
|
57 |
+
else:
|
58 |
+
fp32_model_paths.append([r])
|
59 |
+
# caffe
|
60 |
+
ret_caffemodel = sorted(glob.glob(os.path.join(model_dir, "*.caffemodel")))
|
61 |
+
ret_prototxt = sorted(glob.glob(os.path.join(model_dir, "*.prototxt")))
|
62 |
+
caffe_models = []
|
63 |
+
for caffemodel, prototxt in zip(ret_caffemodel, ret_prototxt):
|
64 |
+
caffe_models += [prototxt, caffemodel]
|
65 |
+
if caffe_models:
|
66 |
+
fp32_model_paths.append(caffe_models)
|
67 |
+
|
68 |
+
all_model_paths = dict(
|
69 |
+
fp32=fp32_model_paths,
|
70 |
+
fp16=fp16_model_paths,
|
71 |
+
int8=int8_model_paths,
|
72 |
+
)
|
73 |
+
|
74 |
+
self._dict[item.__name__] = (item, all_model_paths)
|
75 |
|
76 |
+
MODELS = ModuleRegistery('Models')
|
77 |
MODELS.register(YuNet)
|
78 |
MODELS.register(DB)
|
79 |
MODELS.register(CRNN)
|
|
|
83 |
MODELS.register(WeChatQRCode)
|
84 |
MODELS.register(DaSiamRPN)
|
85 |
MODELS.register(YoutuReID)
|
86 |
+
MODELS.register(MobileNet)
|
|
|
87 |
MODELS.register(MPPalmDet)
|
88 |
MODELS.register(MPHandPose)
|
89 |
MODELS.register(LPD_YuNet)
|
models/image_classification_mobilenet/demo.py
CHANGED
@@ -3,8 +3,7 @@ import argparse
|
|
3 |
import numpy as np
|
4 |
import cv2 as cv
|
5 |
|
6 |
-
from
|
7 |
-
from mobilenet_v2 import MobileNetV2
|
8 |
|
9 |
def str2bool(v):
|
10 |
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
@@ -26,24 +25,23 @@ try:
|
|
26 |
except:
|
27 |
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
parser = argparse.ArgumentParser(description='Demo for MobileNet V1 & V2.')
|
30 |
parser.add_argument('--input', '-i', type=str, help='Usage: Set input path to a certain image, omit if using camera.')
|
31 |
-
parser.add_argument('--model', '-m', type=str, choices=
|
32 |
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
|
33 |
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
|
34 |
-
parser.add_argument('--label', '-l', type=str, default='./imagenet_labels.txt', help='Usage: Set path to the different labels that will be used during the detection. Default list found in imagenet_labels.txt')
|
35 |
args = parser.parse_args()
|
36 |
|
37 |
if __name__ == '__main__':
|
38 |
-
# Instantiate
|
39 |
-
|
40 |
-
'v1': MobileNetV1(modelPath='./image_classification_mobilenetv1_2022apr.onnx', labelPath=args.label, backendId=args.backend, targetId=args.target),
|
41 |
-
'v2': MobileNetV2(modelPath='./image_classification_mobilenetv2_2022apr.onnx', labelPath=args.label, backendId=args.backend, targetId=args.target),
|
42 |
-
'v1-q': MobileNetV1(modelPath='./image_classification_mobilenetv1_2022apr-int8-quantized.onnx', labelPath=args.label, backendId=args.backend, targetId=args.target),
|
43 |
-
'v2-q': MobileNetV2(modelPath='./image_classification_mobilenetv2_2022apr-int8-quantized.onnx', labelPath=args.label, backendId=args.backend, targetId=args.target)
|
44 |
-
|
45 |
-
}
|
46 |
-
model = models[args.model]
|
47 |
|
48 |
# Read image and get a 224x224 crop from a 256x256 resized
|
49 |
image = cv.imread(args.input)
|
@@ -56,4 +54,3 @@ if __name__ == '__main__':
|
|
56 |
|
57 |
# Print result
|
58 |
print('label: {}'.format(result))
|
59 |
-
|
|
|
3 |
import numpy as np
|
4 |
import cv2 as cv
|
5 |
|
6 |
+
from mobilenet import MobileNet
|
|
|
7 |
|
8 |
def str2bool(v):
|
9 |
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
|
|
25 |
except:
|
26 |
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
|
27 |
|
28 |
+
all_mobilenets = [
|
29 |
+
'image_classification_mobilenetv1_2022apr.onnx',
|
30 |
+
'image_classification_mobilenetv2_2022apr.onnx',
|
31 |
+
'image_classification_mobilenetv1_2022apr-int8-quantized.onnx',
|
32 |
+
'image_classification_mobilenetv2_2022apr-int8-quantized.onnx'
|
33 |
+
]
|
34 |
+
|
35 |
parser = argparse.ArgumentParser(description='Demo for MobileNet V1 & V2.')
|
36 |
parser.add_argument('--input', '-i', type=str, help='Usage: Set input path to a certain image, omit if using camera.')
|
37 |
+
parser.add_argument('--model', '-m', type=str, choices=all_mobilenets, default=all_mobilenets[0], help='Usage: Set model type, defaults to image_classification_mobilenetv1_2022apr.onnx (v1).')
|
38 |
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
|
39 |
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
|
|
|
40 |
args = parser.parse_args()
|
41 |
|
42 |
if __name__ == '__main__':
|
43 |
+
# Instantiate MobileNet
|
44 |
+
model = MobileNet(modelPath=args.model, backendId=args.backend, targetId=args.target)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Read image and get a 224x224 crop from a 256x256 resized
|
47 |
image = cv.imread(args.input)
|
|
|
54 |
|
55 |
# Print result
|
56 |
print('label: {}'.format(result))
|
|
models/image_classification_mobilenet/{imagenet_labels.txt → mobilenet.py}
RENAMED
@@ -1,4 +1,83 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
goldfish
|
3 |
great white shark
|
4 |
tiger shark
|
@@ -997,4 +1076,4 @@ earthstar
|
|
997 |
hen-of-the-woods
|
998 |
bolete
|
999 |
ear
|
1000 |
-
toilet tissue
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2 as cv
|
3 |
+
|
4 |
+
class MobileNet:
|
5 |
+
'''
|
6 |
+
Works with MobileNet V1 & V2.
|
7 |
+
'''
|
8 |
+
|
9 |
+
def __init__(self, modelPath, topK=1, backendId=0, targetId=0):
|
10 |
+
self.model_path = modelPath
|
11 |
+
assert topK >= 1
|
12 |
+
self.top_k = topK
|
13 |
+
self.backend_id = backendId
|
14 |
+
self.target_id = targetId
|
15 |
+
|
16 |
+
self.model = cv.dnn.readNet(self.model_path)
|
17 |
+
self.model.setPreferableBackend(self.backend_id)
|
18 |
+
self.model.setPreferableTarget(self.target_id)
|
19 |
+
|
20 |
+
self.input_names = ''
|
21 |
+
self.output_names = ''
|
22 |
+
self.input_size = [224, 224]
|
23 |
+
self.mean=[0.485, 0.456, 0.406]
|
24 |
+
self.std=[0.229, 0.224, 0.225]
|
25 |
+
|
26 |
+
# load labels
|
27 |
+
self._labels = self._load_labels()
|
28 |
+
|
29 |
+
def _load_labels(self):
|
30 |
+
return self.LABELS_IMAGENET_1K.splitlines()
|
31 |
+
|
32 |
+
@property
|
33 |
+
def name(self):
|
34 |
+
return self.__class__.__name__
|
35 |
+
|
36 |
+
def setBackend(self, backendId):
|
37 |
+
self.backend_id = backendId
|
38 |
+
self.model.setPreferableBackend(self.backend_id)
|
39 |
+
|
40 |
+
def setTarget(self, targetId):
|
41 |
+
self.target_id = targetId
|
42 |
+
self.model.setPreferableTarget(self.target_id)
|
43 |
+
|
44 |
+
def _preprocess(self, image):
|
45 |
+
input_blob = (image / 255.0 - self.mean) / self.std
|
46 |
+
input_blob = input_blob.transpose(2, 0, 1)
|
47 |
+
input_blob = input_blob[np.newaxis, :, :, :]
|
48 |
+
input_blob = input_blob.astype(np.float32)
|
49 |
+
return input_blob
|
50 |
+
|
51 |
+
def infer(self, image):
|
52 |
+
# Preprocess
|
53 |
+
input_blob = self._preprocess(image)
|
54 |
+
|
55 |
+
# Forward
|
56 |
+
self.model.setInput(input_blob, self.input_names)
|
57 |
+
output_blob = self.model.forward(self.output_names)
|
58 |
+
|
59 |
+
# Postprocess
|
60 |
+
results = self._postprocess(output_blob)
|
61 |
+
|
62 |
+
return results
|
63 |
+
|
64 |
+
def _postprocess(self, output_blob):
|
65 |
+
batched_class_id_list = []
|
66 |
+
for o in output_blob:
|
67 |
+
class_id_list = o.argsort()[::-1][:self.top_k]
|
68 |
+
batched_class_id_list.append(class_id_list)
|
69 |
+
if len(self._labels) > 0:
|
70 |
+
batched_predicted_labels = []
|
71 |
+
for class_id_list in batched_class_id_list:
|
72 |
+
predicted_labels = []
|
73 |
+
for class_id in class_id_list:
|
74 |
+
predicted_labels.append(self._labels[class_id])
|
75 |
+
batched_predicted_labels.append(predicted_labels)
|
76 |
+
return batched_predicted_labels
|
77 |
+
else:
|
78 |
+
return batched_class_id_list
|
79 |
+
|
80 |
+
LABELS_IMAGENET_1K = '''tench
|
81 |
goldfish
|
82 |
great white shark
|
83 |
tiger shark
|
|
|
1076 |
hen-of-the-woods
|
1077 |
bolete
|
1078 |
ear
|
1079 |
+
toilet tissue'''
|
models/image_classification_mobilenet/mobilenet_v1.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2 as cv
|
3 |
-
|
4 |
-
class MobileNetV1:
|
5 |
-
def __init__(self, modelPath, labelPath=None, topK=1, backendId=0, targetId=0):
|
6 |
-
self.model_path = modelPath
|
7 |
-
self.label_path = labelPath
|
8 |
-
assert topK >= 1
|
9 |
-
self.top_k = topK
|
10 |
-
self.backend_id = backendId
|
11 |
-
self.target_id = targetId
|
12 |
-
|
13 |
-
self.model = cv.dnn.readNet(self.model_path)
|
14 |
-
self.model.setPreferableBackend(self.backend_id)
|
15 |
-
self.model.setPreferableTarget(self.target_id)
|
16 |
-
|
17 |
-
self.input_names = ''
|
18 |
-
self.output_names = ''
|
19 |
-
self.input_size = [224, 224]
|
20 |
-
self.mean=[0.485, 0.456, 0.406]
|
21 |
-
self.std=[0.229, 0.224, 0.225]
|
22 |
-
|
23 |
-
# load labels
|
24 |
-
self._labels = self._load_labels()
|
25 |
-
|
26 |
-
def _load_labels(self):
|
27 |
-
labels = []
|
28 |
-
if self.label_path is not None:
|
29 |
-
with open(self.label_path, 'r') as f:
|
30 |
-
for line in f:
|
31 |
-
labels.append(line.strip())
|
32 |
-
return labels
|
33 |
-
|
34 |
-
@property
|
35 |
-
def name(self):
|
36 |
-
return self.__class__.__name__
|
37 |
-
|
38 |
-
def setBackend(self, backendId):
|
39 |
-
self.backend_id = backendId
|
40 |
-
self.model.setPreferableBackend(self.backend_id)
|
41 |
-
|
42 |
-
def setTarget(self, targetId):
|
43 |
-
self.target_id = targetId
|
44 |
-
self.model.setPreferableTarget(self.target_id)
|
45 |
-
|
46 |
-
def _preprocess(self, image):
|
47 |
-
input_blob = (image / 255.0 - self.mean) / self.std
|
48 |
-
input_blob = input_blob.transpose(2, 0, 1)
|
49 |
-
input_blob = input_blob[np.newaxis, :, :, :]
|
50 |
-
input_blob = input_blob.astype(np.float32)
|
51 |
-
return input_blob
|
52 |
-
|
53 |
-
def infer(self, image):
|
54 |
-
# Preprocess
|
55 |
-
input_blob = self._preprocess(image)
|
56 |
-
|
57 |
-
# Forward
|
58 |
-
self.model.setInput(input_blob, self.input_names)
|
59 |
-
output_blob = self.model.forward(self.output_names)
|
60 |
-
|
61 |
-
# Postprocess
|
62 |
-
results = self._postprocess(output_blob)
|
63 |
-
|
64 |
-
return results
|
65 |
-
|
66 |
-
def _postprocess(self, output_blob):
|
67 |
-
batched_class_id_list = []
|
68 |
-
for o in output_blob:
|
69 |
-
class_id_list = o.argsort()[::-1][:self.top_k]
|
70 |
-
batched_class_id_list.append(class_id_list)
|
71 |
-
if len(self._labels) > 0:
|
72 |
-
batched_predicted_labels = []
|
73 |
-
for class_id_list in batched_class_id_list:
|
74 |
-
predicted_labels = []
|
75 |
-
for class_id in class_id_list:
|
76 |
-
predicted_labels.append(self._labels[class_id])
|
77 |
-
batched_predicted_labels.append(predicted_labels)
|
78 |
-
return batched_predicted_labels
|
79 |
-
else:
|
80 |
-
return batched_class_id_list
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/image_classification_mobilenet/mobilenet_v2.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2 as cv
|
3 |
-
|
4 |
-
class MobileNetV2:
|
5 |
-
def __init__(self, modelPath, labelPath=None, topK=1, backendId=0, targetId=0):
|
6 |
-
self.model_path = modelPath
|
7 |
-
self.label_path = labelPath
|
8 |
-
assert topK >= 1
|
9 |
-
self.top_k = topK
|
10 |
-
self.backend_id = backendId
|
11 |
-
self.target_id = targetId
|
12 |
-
|
13 |
-
self.model = cv.dnn.readNet(self.model_path)
|
14 |
-
self.model.setPreferableBackend(self.backend_id)
|
15 |
-
self.model.setPreferableTarget(self.target_id)
|
16 |
-
|
17 |
-
self.input_names = ''
|
18 |
-
self.output_names = ''
|
19 |
-
self.input_size = [224, 224]
|
20 |
-
self.mean=[0.485, 0.456, 0.406]
|
21 |
-
self.std=[0.229, 0.224, 0.225]
|
22 |
-
|
23 |
-
# load labels
|
24 |
-
self._labels = self._load_labels()
|
25 |
-
|
26 |
-
def _load_labels(self):
|
27 |
-
labels = []
|
28 |
-
if self.label_path is not None:
|
29 |
-
with open(self.label_path, 'r') as f:
|
30 |
-
for line in f:
|
31 |
-
labels.append(line.strip())
|
32 |
-
return labels
|
33 |
-
|
34 |
-
@property
|
35 |
-
def name(self):
|
36 |
-
return self.__class__.__name__
|
37 |
-
|
38 |
-
def setBackend(self, backendId):
|
39 |
-
self.backend_id = backendId
|
40 |
-
self.model.setPreferableBackend(self.backend_id)
|
41 |
-
|
42 |
-
def setTarget(self, targetId):
|
43 |
-
self.target_id = targetId
|
44 |
-
self.model.setPreferableTarget(self.target_id)
|
45 |
-
|
46 |
-
def _preprocess(self, image):
|
47 |
-
input_blob = (image / 255.0 - self.mean) / self.std
|
48 |
-
input_blob = input_blob.transpose(2, 0, 1)
|
49 |
-
input_blob = input_blob[np.newaxis, :, :, :]
|
50 |
-
input_blob = input_blob.astype(np.float32)
|
51 |
-
return input_blob
|
52 |
-
|
53 |
-
def infer(self, image):
|
54 |
-
# Preprocess
|
55 |
-
input_blob = self._preprocess(image)
|
56 |
-
|
57 |
-
# Forward
|
58 |
-
self.model.setInput(input_blob, self.input_names)
|
59 |
-
output_blob = self.model.forward(self.output_names)
|
60 |
-
|
61 |
-
# Postprocess
|
62 |
-
results = self._postprocess(output_blob)
|
63 |
-
|
64 |
-
return results
|
65 |
-
|
66 |
-
def _postprocess(self, output_blob):
|
67 |
-
batched_class_id_list = []
|
68 |
-
for o in output_blob:
|
69 |
-
class_id_list = o.argsort()[::-1][:self.top_k]
|
70 |
-
batched_class_id_list.append(class_id_list)
|
71 |
-
if len(self._labels) > 0:
|
72 |
-
batched_predicted_labels = []
|
73 |
-
for class_id_list in batched_class_id_list:
|
74 |
-
predicted_labels = []
|
75 |
-
for class_id in class_id_list:
|
76 |
-
predicted_labels.append(self._labels[class_id])
|
77 |
-
batched_predicted_labels.append(predicted_labels)
|
78 |
-
return batched_predicted_labels
|
79 |
-
else:
|
80 |
-
return batched_class_id_list
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/image_classification_ppresnet/demo.py
CHANGED
@@ -36,12 +36,11 @@ parser.add_argument('--input', '-i', type=str, help='Usage: Set input path to a
|
|
36 |
parser.add_argument('--model', '-m', type=str, default='image_classification_ppresnet50_2022jan.onnx', help='Usage: Set model path, defaults to image_classification_ppresnet50_2022jan.onnx.')
|
37 |
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
|
38 |
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
|
39 |
-
parser.add_argument('--label', '-l', type=str, default='./imagenet_labels.txt', help='Usage: Set path to the different labels that will be used during the detection. Default list found in imagenet_labels.txt')
|
40 |
args = parser.parse_args()
|
41 |
|
42 |
if __name__ == '__main__':
|
43 |
# Instantiate ResNet
|
44 |
-
model = PPResNet(modelPath=args.model,
|
45 |
|
46 |
# Read image and get a 224x224 crop from a 256x256 resized
|
47 |
image = cv.imread(args.input)
|
@@ -54,4 +53,3 @@ if __name__ == '__main__':
|
|
54 |
|
55 |
# Print result
|
56 |
print('label: {}'.format(result))
|
57 |
-
|
|
|
36 |
parser.add_argument('--model', '-m', type=str, default='image_classification_ppresnet50_2022jan.onnx', help='Usage: Set model path, defaults to image_classification_ppresnet50_2022jan.onnx.')
|
37 |
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
|
38 |
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
|
|
|
39 |
args = parser.parse_args()
|
40 |
|
41 |
if __name__ == '__main__':
|
42 |
# Instantiate ResNet
|
43 |
+
model = PPResNet(modelPath=args.model, backendId=args.backend, targetId=args.target)
|
44 |
|
45 |
# Read image and get a 224x224 crop from a 256x256 resized
|
46 |
image = cv.imread(args.input)
|
|
|
53 |
|
54 |
# Print result
|
55 |
print('label: {}'.format(result))
|
|
models/image_classification_ppresnet/imagenet_labels.txt
DELETED
@@ -1,1000 +0,0 @@
|
|
1 |
-
tench
|
2 |
-
goldfish
|
3 |
-
great white shark
|
4 |
-
tiger shark
|
5 |
-
hammerhead
|
6 |
-
electric ray
|
7 |
-
stingray
|
8 |
-
cock
|
9 |
-
hen
|
10 |
-
ostrich
|
11 |
-
brambling
|
12 |
-
goldfinch
|
13 |
-
house finch
|
14 |
-
junco
|
15 |
-
indigo bunting
|
16 |
-
robin
|
17 |
-
bulbul
|
18 |
-
jay
|
19 |
-
magpie
|
20 |
-
chickadee
|
21 |
-
water ouzel
|
22 |
-
kite
|
23 |
-
bald eagle
|
24 |
-
vulture
|
25 |
-
great grey owl
|
26 |
-
European fire salamander
|
27 |
-
common newt
|
28 |
-
eft
|
29 |
-
spotted salamander
|
30 |
-
axolotl
|
31 |
-
bullfrog
|
32 |
-
tree frog
|
33 |
-
tailed frog
|
34 |
-
loggerhead
|
35 |
-
leatherback turtle
|
36 |
-
mud turtle
|
37 |
-
terrapin
|
38 |
-
box turtle
|
39 |
-
banded gecko
|
40 |
-
common iguana
|
41 |
-
American chameleon
|
42 |
-
whiptail
|
43 |
-
agama
|
44 |
-
frilled lizard
|
45 |
-
alligator lizard
|
46 |
-
Gila monster
|
47 |
-
green lizard
|
48 |
-
African chameleon
|
49 |
-
Komodo dragon
|
50 |
-
African crocodile
|
51 |
-
American alligator
|
52 |
-
triceratops
|
53 |
-
thunder snake
|
54 |
-
ringneck snake
|
55 |
-
hognose snake
|
56 |
-
green snake
|
57 |
-
king snake
|
58 |
-
garter snake
|
59 |
-
water snake
|
60 |
-
vine snake
|
61 |
-
night snake
|
62 |
-
boa constrictor
|
63 |
-
rock python
|
64 |
-
Indian cobra
|
65 |
-
green mamba
|
66 |
-
sea snake
|
67 |
-
horned viper
|
68 |
-
diamondback
|
69 |
-
sidewinder
|
70 |
-
trilobite
|
71 |
-
harvestman
|
72 |
-
scorpion
|
73 |
-
black and gold garden spider
|
74 |
-
barn spider
|
75 |
-
garden spider
|
76 |
-
black widow
|
77 |
-
tarantula
|
78 |
-
wolf spider
|
79 |
-
tick
|
80 |
-
centipede
|
81 |
-
black grouse
|
82 |
-
ptarmigan
|
83 |
-
ruffed grouse
|
84 |
-
prairie chicken
|
85 |
-
peacock
|
86 |
-
quail
|
87 |
-
partridge
|
88 |
-
African grey
|
89 |
-
macaw
|
90 |
-
sulphur-crested cockatoo
|
91 |
-
lorikeet
|
92 |
-
coucal
|
93 |
-
bee eater
|
94 |
-
hornbill
|
95 |
-
hummingbird
|
96 |
-
jacamar
|
97 |
-
toucan
|
98 |
-
drake
|
99 |
-
red-breasted merganser
|
100 |
-
goose
|
101 |
-
black swan
|
102 |
-
tusker
|
103 |
-
echidna
|
104 |
-
platypus
|
105 |
-
wallaby
|
106 |
-
koala
|
107 |
-
wombat
|
108 |
-
jellyfish
|
109 |
-
sea anemone
|
110 |
-
brain coral
|
111 |
-
flatworm
|
112 |
-
nematode
|
113 |
-
conch
|
114 |
-
snail
|
115 |
-
slug
|
116 |
-
sea slug
|
117 |
-
chiton
|
118 |
-
chambered nautilus
|
119 |
-
Dungeness crab
|
120 |
-
rock crab
|
121 |
-
fiddler crab
|
122 |
-
king crab
|
123 |
-
American lobster
|
124 |
-
spiny lobster
|
125 |
-
crayfish
|
126 |
-
hermit crab
|
127 |
-
isopod
|
128 |
-
white stork
|
129 |
-
black stork
|
130 |
-
spoonbill
|
131 |
-
flamingo
|
132 |
-
little blue heron
|
133 |
-
American egret
|
134 |
-
bittern
|
135 |
-
crane
|
136 |
-
limpkin
|
137 |
-
European gallinule
|
138 |
-
American coot
|
139 |
-
bustard
|
140 |
-
ruddy turnstone
|
141 |
-
red-backed sandpiper
|
142 |
-
redshank
|
143 |
-
dowitcher
|
144 |
-
oystercatcher
|
145 |
-
pelican
|
146 |
-
king penguin
|
147 |
-
albatross
|
148 |
-
grey whale
|
149 |
-
killer whale
|
150 |
-
dugong
|
151 |
-
sea lion
|
152 |
-
Chihuahua
|
153 |
-
Japanese spaniel
|
154 |
-
Maltese dog
|
155 |
-
Pekinese
|
156 |
-
Shih-Tzu
|
157 |
-
Blenheim spaniel
|
158 |
-
papillon
|
159 |
-
toy terrier
|
160 |
-
Rhodesian ridgeback
|
161 |
-
Afghan hound
|
162 |
-
basset
|
163 |
-
beagle
|
164 |
-
bloodhound
|
165 |
-
bluetick
|
166 |
-
black-and-tan coonhound
|
167 |
-
Walker hound
|
168 |
-
English foxhound
|
169 |
-
redbone
|
170 |
-
borzoi
|
171 |
-
Irish wolfhound
|
172 |
-
Italian greyhound
|
173 |
-
whippet
|
174 |
-
Ibizan hound
|
175 |
-
Norwegian elkhound
|
176 |
-
otterhound
|
177 |
-
Saluki
|
178 |
-
Scottish deerhound
|
179 |
-
Weimaraner
|
180 |
-
Staffordshire bullterrier
|
181 |
-
American Staffordshire terrier
|
182 |
-
Bedlington terrier
|
183 |
-
Border terrier
|
184 |
-
Kerry blue terrier
|
185 |
-
Irish terrier
|
186 |
-
Norfolk terrier
|
187 |
-
Norwich terrier
|
188 |
-
Yorkshire terrier
|
189 |
-
wire-haired fox terrier
|
190 |
-
Lakeland terrier
|
191 |
-
Sealyham terrier
|
192 |
-
Airedale
|
193 |
-
cairn
|
194 |
-
Australian terrier
|
195 |
-
Dandie Dinmont
|
196 |
-
Boston bull
|
197 |
-
miniature schnauzer
|
198 |
-
giant schnauzer
|
199 |
-
standard schnauzer
|
200 |
-
Scotch terrier
|
201 |
-
Tibetan terrier
|
202 |
-
silky terrier
|
203 |
-
soft-coated wheaten terrier
|
204 |
-
West Highland white terrier
|
205 |
-
Lhasa
|
206 |
-
flat-coated retriever
|
207 |
-
curly-coated retriever
|
208 |
-
golden retriever
|
209 |
-
Labrador retriever
|
210 |
-
Chesapeake Bay retriever
|
211 |
-
German short-haired pointer
|
212 |
-
vizsla
|
213 |
-
English setter
|
214 |
-
Irish setter
|
215 |
-
Gordon setter
|
216 |
-
Brittany spaniel
|
217 |
-
clumber
|
218 |
-
English springer
|
219 |
-
Welsh springer spaniel
|
220 |
-
cocker spaniel
|
221 |
-
Sussex spaniel
|
222 |
-
Irish water spaniel
|
223 |
-
kuvasz
|
224 |
-
schipperke
|
225 |
-
groenendael
|
226 |
-
malinois
|
227 |
-
briard
|
228 |
-
kelpie
|
229 |
-
komondor
|
230 |
-
Old English sheepdog
|
231 |
-
Shetland sheepdog
|
232 |
-
collie
|
233 |
-
Border collie
|
234 |
-
Bouvier des Flandres
|
235 |
-
Rottweiler
|
236 |
-
German shepherd
|
237 |
-
Doberman
|
238 |
-
miniature pinscher
|
239 |
-
Greater Swiss Mountain dog
|
240 |
-
Bernese mountain dog
|
241 |
-
Appenzeller
|
242 |
-
EntleBucher
|
243 |
-
boxer
|
244 |
-
bull mastiff
|
245 |
-
Tibetan mastiff
|
246 |
-
French bulldog
|
247 |
-
Great Dane
|
248 |
-
Saint Bernard
|
249 |
-
Eskimo dog
|
250 |
-
malamute
|
251 |
-
Siberian husky
|
252 |
-
dalmatian
|
253 |
-
affenpinscher
|
254 |
-
basenji
|
255 |
-
pug
|
256 |
-
Leonberg
|
257 |
-
Newfoundland
|
258 |
-
Great Pyrenees
|
259 |
-
Samoyed
|
260 |
-
Pomeranian
|
261 |
-
chow
|
262 |
-
keeshond
|
263 |
-
Brabancon griffon
|
264 |
-
Pembroke
|
265 |
-
Cardigan
|
266 |
-
toy poodle
|
267 |
-
miniature poodle
|
268 |
-
standard poodle
|
269 |
-
Mexican hairless
|
270 |
-
timber wolf
|
271 |
-
white wolf
|
272 |
-
red wolf
|
273 |
-
coyote
|
274 |
-
dingo
|
275 |
-
dhole
|
276 |
-
African hunting dog
|
277 |
-
hyena
|
278 |
-
red fox
|
279 |
-
kit fox
|
280 |
-
Arctic fox
|
281 |
-
grey fox
|
282 |
-
tabby
|
283 |
-
tiger cat
|
284 |
-
Persian cat
|
285 |
-
Siamese cat
|
286 |
-
Egyptian cat
|
287 |
-
cougar
|
288 |
-
lynx
|
289 |
-
leopard
|
290 |
-
snow leopard
|
291 |
-
jaguar
|
292 |
-
lion
|
293 |
-
tiger
|
294 |
-
cheetah
|
295 |
-
brown bear
|
296 |
-
American black bear
|
297 |
-
ice bear
|
298 |
-
sloth bear
|
299 |
-
mongoose
|
300 |
-
meerkat
|
301 |
-
tiger beetle
|
302 |
-
ladybug
|
303 |
-
ground beetle
|
304 |
-
long-horned beetle
|
305 |
-
leaf beetle
|
306 |
-
dung beetle
|
307 |
-
rhinoceros beetle
|
308 |
-
weevil
|
309 |
-
fly
|
310 |
-
bee
|
311 |
-
ant
|
312 |
-
grasshopper
|
313 |
-
cricket
|
314 |
-
walking stick
|
315 |
-
cockroach
|
316 |
-
mantis
|
317 |
-
cicada
|
318 |
-
leafhopper
|
319 |
-
lacewing
|
320 |
-
dragonfly
|
321 |
-
damselfly
|
322 |
-
admiral
|
323 |
-
ringlet
|
324 |
-
monarch
|
325 |
-
cabbage butterfly
|
326 |
-
sulphur butterfly
|
327 |
-
lycaenid
|
328 |
-
starfish
|
329 |
-
sea urchin
|
330 |
-
sea cucumber
|
331 |
-
wood rabbit
|
332 |
-
hare
|
333 |
-
Angora
|
334 |
-
hamster
|
335 |
-
porcupine
|
336 |
-
fox squirrel
|
337 |
-
marmot
|
338 |
-
beaver
|
339 |
-
guinea pig
|
340 |
-
sorrel
|
341 |
-
zebra
|
342 |
-
hog
|
343 |
-
wild boar
|
344 |
-
warthog
|
345 |
-
hippopotamus
|
346 |
-
ox
|
347 |
-
water buffalo
|
348 |
-
bison
|
349 |
-
ram
|
350 |
-
bighorn
|
351 |
-
ibex
|
352 |
-
hartebeest
|
353 |
-
impala
|
354 |
-
gazelle
|
355 |
-
Arabian camel
|
356 |
-
llama
|
357 |
-
weasel
|
358 |
-
mink
|
359 |
-
polecat
|
360 |
-
black-footed ferret
|
361 |
-
otter
|
362 |
-
skunk
|
363 |
-
badger
|
364 |
-
armadillo
|
365 |
-
three-toed sloth
|
366 |
-
orangutan
|
367 |
-
gorilla
|
368 |
-
chimpanzee
|
369 |
-
gibbon
|
370 |
-
siamang
|
371 |
-
guenon
|
372 |
-
patas
|
373 |
-
baboon
|
374 |
-
macaque
|
375 |
-
langur
|
376 |
-
colobus
|
377 |
-
proboscis monkey
|
378 |
-
marmoset
|
379 |
-
capuchin
|
380 |
-
howler monkey
|
381 |
-
titi
|
382 |
-
spider monkey
|
383 |
-
squirrel monkey
|
384 |
-
Madagascar cat
|
385 |
-
indri
|
386 |
-
Indian elephant
|
387 |
-
African elephant
|
388 |
-
lesser panda
|
389 |
-
giant panda
|
390 |
-
barracouta
|
391 |
-
eel
|
392 |
-
coho
|
393 |
-
rock beauty
|
394 |
-
anemone fish
|
395 |
-
sturgeon
|
396 |
-
gar
|
397 |
-
lionfish
|
398 |
-
puffer
|
399 |
-
abacus
|
400 |
-
abaya
|
401 |
-
academic gown
|
402 |
-
accordion
|
403 |
-
acoustic guitar
|
404 |
-
aircraft carrier
|
405 |
-
airliner
|
406 |
-
airship
|
407 |
-
altar
|
408 |
-
ambulance
|
409 |
-
amphibian
|
410 |
-
analog clock
|
411 |
-
apiary
|
412 |
-
apron
|
413 |
-
ashcan
|
414 |
-
assault rifle
|
415 |
-
backpack
|
416 |
-
bakery
|
417 |
-
balance beam
|
418 |
-
balloon
|
419 |
-
ballpoint
|
420 |
-
Band Aid
|
421 |
-
banjo
|
422 |
-
bannister
|
423 |
-
barbell
|
424 |
-
barber chair
|
425 |
-
barbershop
|
426 |
-
barn
|
427 |
-
barometer
|
428 |
-
barrel
|
429 |
-
barrow
|
430 |
-
baseball
|
431 |
-
basketball
|
432 |
-
bassinet
|
433 |
-
bassoon
|
434 |
-
bathing cap
|
435 |
-
bath towel
|
436 |
-
bathtub
|
437 |
-
beach wagon
|
438 |
-
beacon
|
439 |
-
beaker
|
440 |
-
bearskin
|
441 |
-
beer bottle
|
442 |
-
beer glass
|
443 |
-
bell cote
|
444 |
-
bib
|
445 |
-
bicycle-built-for-two
|
446 |
-
bikini
|
447 |
-
binder
|
448 |
-
binoculars
|
449 |
-
birdhouse
|
450 |
-
boathouse
|
451 |
-
bobsled
|
452 |
-
bolo tie
|
453 |
-
bonnet
|
454 |
-
bookcase
|
455 |
-
bookshop
|
456 |
-
bottlecap
|
457 |
-
bow
|
458 |
-
bow tie
|
459 |
-
brass
|
460 |
-
brassiere
|
461 |
-
breakwater
|
462 |
-
breastplate
|
463 |
-
broom
|
464 |
-
bucket
|
465 |
-
buckle
|
466 |
-
bulletproof vest
|
467 |
-
bullet train
|
468 |
-
butcher shop
|
469 |
-
cab
|
470 |
-
caldron
|
471 |
-
candle
|
472 |
-
cannon
|
473 |
-
canoe
|
474 |
-
can opener
|
475 |
-
cardigan
|
476 |
-
car mirror
|
477 |
-
carousel
|
478 |
-
carpenters kit
|
479 |
-
carton
|
480 |
-
car wheel
|
481 |
-
cash machine
|
482 |
-
cassette
|
483 |
-
cassette player
|
484 |
-
castle
|
485 |
-
catamaran
|
486 |
-
CD player
|
487 |
-
cello
|
488 |
-
cellular telephone
|
489 |
-
chain
|
490 |
-
chainlink fence
|
491 |
-
chain mail
|
492 |
-
chain saw
|
493 |
-
chest
|
494 |
-
chiffonier
|
495 |
-
chime
|
496 |
-
china cabinet
|
497 |
-
Christmas stocking
|
498 |
-
church
|
499 |
-
cinema
|
500 |
-
cleaver
|
501 |
-
cliff dwelling
|
502 |
-
cloak
|
503 |
-
clog
|
504 |
-
cocktail shaker
|
505 |
-
coffee mug
|
506 |
-
coffeepot
|
507 |
-
coil
|
508 |
-
combination lock
|
509 |
-
computer keyboard
|
510 |
-
confectionery
|
511 |
-
container ship
|
512 |
-
convertible
|
513 |
-
corkscrew
|
514 |
-
cornet
|
515 |
-
cowboy boot
|
516 |
-
cowboy hat
|
517 |
-
cradle
|
518 |
-
crane
|
519 |
-
crash helmet
|
520 |
-
crate
|
521 |
-
crib
|
522 |
-
Crock Pot
|
523 |
-
croquet ball
|
524 |
-
crutch
|
525 |
-
cuirass
|
526 |
-
dam
|
527 |
-
desk
|
528 |
-
desktop computer
|
529 |
-
dial telephone
|
530 |
-
diaper
|
531 |
-
digital clock
|
532 |
-
digital watch
|
533 |
-
dining table
|
534 |
-
dishrag
|
535 |
-
dishwasher
|
536 |
-
disk brake
|
537 |
-
dock
|
538 |
-
dogsled
|
539 |
-
dome
|
540 |
-
doormat
|
541 |
-
drilling platform
|
542 |
-
drum
|
543 |
-
drumstick
|
544 |
-
dumbbell
|
545 |
-
Dutch oven
|
546 |
-
electric fan
|
547 |
-
electric guitar
|
548 |
-
electric locomotive
|
549 |
-
entertainment center
|
550 |
-
envelope
|
551 |
-
espresso maker
|
552 |
-
face powder
|
553 |
-
feather boa
|
554 |
-
file
|
555 |
-
fireboat
|
556 |
-
fire engine
|
557 |
-
fire screen
|
558 |
-
flagpole
|
559 |
-
flute
|
560 |
-
folding chair
|
561 |
-
football helmet
|
562 |
-
forklift
|
563 |
-
fountain
|
564 |
-
fountain pen
|
565 |
-
four-poster
|
566 |
-
freight car
|
567 |
-
French horn
|
568 |
-
frying pan
|
569 |
-
fur coat
|
570 |
-
garbage truck
|
571 |
-
gasmask
|
572 |
-
gas pump
|
573 |
-
goblet
|
574 |
-
go-kart
|
575 |
-
golf ball
|
576 |
-
golfcart
|
577 |
-
gondola
|
578 |
-
gong
|
579 |
-
gown
|
580 |
-
grand piano
|
581 |
-
greenhouse
|
582 |
-
grille
|
583 |
-
grocery store
|
584 |
-
guillotine
|
585 |
-
hair slide
|
586 |
-
hair spray
|
587 |
-
half track
|
588 |
-
hammer
|
589 |
-
hamper
|
590 |
-
hand blower
|
591 |
-
hand-held computer
|
592 |
-
handkerchief
|
593 |
-
hard disc
|
594 |
-
harmonica
|
595 |
-
harp
|
596 |
-
harvester
|
597 |
-
hatchet
|
598 |
-
holster
|
599 |
-
home theater
|
600 |
-
honeycomb
|
601 |
-
hook
|
602 |
-
hoopskirt
|
603 |
-
horizontal bar
|
604 |
-
horse cart
|
605 |
-
hourglass
|
606 |
-
iPod
|
607 |
-
iron
|
608 |
-
jack-o-lantern
|
609 |
-
jean
|
610 |
-
jeep
|
611 |
-
jersey
|
612 |
-
jigsaw puzzle
|
613 |
-
jinrikisha
|
614 |
-
joystick
|
615 |
-
kimono
|
616 |
-
knee pad
|
617 |
-
knot
|
618 |
-
lab coat
|
619 |
-
ladle
|
620 |
-
lampshade
|
621 |
-
laptop
|
622 |
-
lawn mower
|
623 |
-
lens cap
|
624 |
-
letter opener
|
625 |
-
library
|
626 |
-
lifeboat
|
627 |
-
lighter
|
628 |
-
limousine
|
629 |
-
liner
|
630 |
-
lipstick
|
631 |
-
Loafer
|
632 |
-
lotion
|
633 |
-
loudspeaker
|
634 |
-
loupe
|
635 |
-
lumbermill
|
636 |
-
magnetic compass
|
637 |
-
mailbag
|
638 |
-
mailbox
|
639 |
-
maillot
|
640 |
-
maillot
|
641 |
-
manhole cover
|
642 |
-
maraca
|
643 |
-
marimba
|
644 |
-
mask
|
645 |
-
matchstick
|
646 |
-
maypole
|
647 |
-
maze
|
648 |
-
measuring cup
|
649 |
-
medicine chest
|
650 |
-
megalith
|
651 |
-
microphone
|
652 |
-
microwave
|
653 |
-
military uniform
|
654 |
-
milk can
|
655 |
-
minibus
|
656 |
-
miniskirt
|
657 |
-
minivan
|
658 |
-
missile
|
659 |
-
mitten
|
660 |
-
mixing bowl
|
661 |
-
mobile home
|
662 |
-
Model T
|
663 |
-
modem
|
664 |
-
monastery
|
665 |
-
monitor
|
666 |
-
moped
|
667 |
-
mortar
|
668 |
-
mortarboard
|
669 |
-
mosque
|
670 |
-
mosquito net
|
671 |
-
motor scooter
|
672 |
-
mountain bike
|
673 |
-
mountain tent
|
674 |
-
mouse
|
675 |
-
mousetrap
|
676 |
-
moving van
|
677 |
-
muzzle
|
678 |
-
nail
|
679 |
-
neck brace
|
680 |
-
necklace
|
681 |
-
nipple
|
682 |
-
notebook
|
683 |
-
obelisk
|
684 |
-
oboe
|
685 |
-
ocarina
|
686 |
-
odometer
|
687 |
-
oil filter
|
688 |
-
organ
|
689 |
-
oscilloscope
|
690 |
-
overskirt
|
691 |
-
oxcart
|
692 |
-
oxygen mask
|
693 |
-
packet
|
694 |
-
paddle
|
695 |
-
paddlewheel
|
696 |
-
padlock
|
697 |
-
paintbrush
|
698 |
-
pajama
|
699 |
-
palace
|
700 |
-
panpipe
|
701 |
-
paper towel
|
702 |
-
parachute
|
703 |
-
parallel bars
|
704 |
-
park bench
|
705 |
-
parking meter
|
706 |
-
passenger car
|
707 |
-
patio
|
708 |
-
pay-phone
|
709 |
-
pedestal
|
710 |
-
pencil box
|
711 |
-
pencil sharpener
|
712 |
-
perfume
|
713 |
-
Petri dish
|
714 |
-
photocopier
|
715 |
-
pick
|
716 |
-
pickelhaube
|
717 |
-
picket fence
|
718 |
-
pickup
|
719 |
-
pier
|
720 |
-
piggy bank
|
721 |
-
pill bottle
|
722 |
-
pillow
|
723 |
-
ping-pong ball
|
724 |
-
pinwheel
|
725 |
-
pirate
|
726 |
-
pitcher
|
727 |
-
plane
|
728 |
-
planetarium
|
729 |
-
plastic bag
|
730 |
-
plate rack
|
731 |
-
plow
|
732 |
-
plunger
|
733 |
-
Polaroid camera
|
734 |
-
pole
|
735 |
-
police van
|
736 |
-
poncho
|
737 |
-
pool table
|
738 |
-
pop bottle
|
739 |
-
pot
|
740 |
-
potters wheel
|
741 |
-
power drill
|
742 |
-
prayer rug
|
743 |
-
printer
|
744 |
-
prison
|
745 |
-
projectile
|
746 |
-
projector
|
747 |
-
puck
|
748 |
-
punching bag
|
749 |
-
purse
|
750 |
-
quill
|
751 |
-
quilt
|
752 |
-
racer
|
753 |
-
racket
|
754 |
-
radiator
|
755 |
-
radio
|
756 |
-
radio telescope
|
757 |
-
rain barrel
|
758 |
-
recreational vehicle
|
759 |
-
reel
|
760 |
-
reflex camera
|
761 |
-
refrigerator
|
762 |
-
remote control
|
763 |
-
restaurant
|
764 |
-
revolver
|
765 |
-
rifle
|
766 |
-
rocking chair
|
767 |
-
rotisserie
|
768 |
-
rubber eraser
|
769 |
-
rugby ball
|
770 |
-
rule
|
771 |
-
running shoe
|
772 |
-
safe
|
773 |
-
safety pin
|
774 |
-
saltshaker
|
775 |
-
sandal
|
776 |
-
sarong
|
777 |
-
sax
|
778 |
-
scabbard
|
779 |
-
scale
|
780 |
-
school bus
|
781 |
-
schooner
|
782 |
-
scoreboard
|
783 |
-
screen
|
784 |
-
screw
|
785 |
-
screwdriver
|
786 |
-
seat belt
|
787 |
-
sewing machine
|
788 |
-
shield
|
789 |
-
shoe shop
|
790 |
-
shoji
|
791 |
-
shopping basket
|
792 |
-
shopping cart
|
793 |
-
shovel
|
794 |
-
shower cap
|
795 |
-
shower curtain
|
796 |
-
ski
|
797 |
-
ski mask
|
798 |
-
sleeping bag
|
799 |
-
slide rule
|
800 |
-
sliding door
|
801 |
-
slot
|
802 |
-
snorkel
|
803 |
-
snowmobile
|
804 |
-
snowplow
|
805 |
-
soap dispenser
|
806 |
-
soccer ball
|
807 |
-
sock
|
808 |
-
solar dish
|
809 |
-
sombrero
|
810 |
-
soup bowl
|
811 |
-
space bar
|
812 |
-
space heater
|
813 |
-
space shuttle
|
814 |
-
spatula
|
815 |
-
speedboat
|
816 |
-
spider web
|
817 |
-
spindle
|
818 |
-
sports car
|
819 |
-
spotlight
|
820 |
-
stage
|
821 |
-
steam locomotive
|
822 |
-
steel arch bridge
|
823 |
-
steel drum
|
824 |
-
stethoscope
|
825 |
-
stole
|
826 |
-
stone wall
|
827 |
-
stopwatch
|
828 |
-
stove
|
829 |
-
strainer
|
830 |
-
streetcar
|
831 |
-
stretcher
|
832 |
-
studio couch
|
833 |
-
stupa
|
834 |
-
submarine
|
835 |
-
suit
|
836 |
-
sundial
|
837 |
-
sunglass
|
838 |
-
sunglasses
|
839 |
-
sunscreen
|
840 |
-
suspension bridge
|
841 |
-
swab
|
842 |
-
sweatshirt
|
843 |
-
swimming trunks
|
844 |
-
swing
|
845 |
-
switch
|
846 |
-
syringe
|
847 |
-
table lamp
|
848 |
-
tank
|
849 |
-
tape player
|
850 |
-
teapot
|
851 |
-
teddy
|
852 |
-
television
|
853 |
-
tennis ball
|
854 |
-
thatch
|
855 |
-
theater curtain
|
856 |
-
thimble
|
857 |
-
thresher
|
858 |
-
throne
|
859 |
-
tile roof
|
860 |
-
toaster
|
861 |
-
tobacco shop
|
862 |
-
toilet seat
|
863 |
-
torch
|
864 |
-
totem pole
|
865 |
-
tow truck
|
866 |
-
toyshop
|
867 |
-
tractor
|
868 |
-
trailer truck
|
869 |
-
tray
|
870 |
-
trench coat
|
871 |
-
tricycle
|
872 |
-
trimaran
|
873 |
-
tripod
|
874 |
-
triumphal arch
|
875 |
-
trolleybus
|
876 |
-
trombone
|
877 |
-
tub
|
878 |
-
turnstile
|
879 |
-
typewriter keyboard
|
880 |
-
umbrella
|
881 |
-
unicycle
|
882 |
-
upright
|
883 |
-
vacuum
|
884 |
-
vase
|
885 |
-
vault
|
886 |
-
velvet
|
887 |
-
vending machine
|
888 |
-
vestment
|
889 |
-
viaduct
|
890 |
-
violin
|
891 |
-
volleyball
|
892 |
-
waffle iron
|
893 |
-
wall clock
|
894 |
-
wallet
|
895 |
-
wardrobe
|
896 |
-
warplane
|
897 |
-
washbasin
|
898 |
-
washer
|
899 |
-
water bottle
|
900 |
-
water jug
|
901 |
-
water tower
|
902 |
-
whiskey jug
|
903 |
-
whistle
|
904 |
-
wig
|
905 |
-
window screen
|
906 |
-
window shade
|
907 |
-
Windsor tie
|
908 |
-
wine bottle
|
909 |
-
wing
|
910 |
-
wok
|
911 |
-
wooden spoon
|
912 |
-
wool
|
913 |
-
worm fence
|
914 |
-
wreck
|
915 |
-
yawl
|
916 |
-
yurt
|
917 |
-
web site
|
918 |
-
comic book
|
919 |
-
crossword puzzle
|
920 |
-
street sign
|
921 |
-
traffic light
|
922 |
-
book jacket
|
923 |
-
menu
|
924 |
-
plate
|
925 |
-
guacamole
|
926 |
-
consomme
|
927 |
-
hot pot
|
928 |
-
trifle
|
929 |
-
ice cream
|
930 |
-
ice lolly
|
931 |
-
French loaf
|
932 |
-
bagel
|
933 |
-
pretzel
|
934 |
-
cheeseburger
|
935 |
-
hotdog
|
936 |
-
mashed potato
|
937 |
-
head cabbage
|
938 |
-
broccoli
|
939 |
-
cauliflower
|
940 |
-
zucchini
|
941 |
-
spaghetti squash
|
942 |
-
acorn squash
|
943 |
-
butternut squash
|
944 |
-
cucumber
|
945 |
-
artichoke
|
946 |
-
bell pepper
|
947 |
-
cardoon
|
948 |
-
mushroom
|
949 |
-
Granny Smith
|
950 |
-
strawberry
|
951 |
-
orange
|
952 |
-
lemon
|
953 |
-
fig
|
954 |
-
pineapple
|
955 |
-
banana
|
956 |
-
jackfruit
|
957 |
-
custard apple
|
958 |
-
pomegranate
|
959 |
-
hay
|
960 |
-
carbonara
|
961 |
-
chocolate sauce
|
962 |
-
dough
|
963 |
-
meat loaf
|
964 |
-
pizza
|
965 |
-
potpie
|
966 |
-
burrito
|
967 |
-
red wine
|
968 |
-
espresso
|
969 |
-
cup
|
970 |
-
eggnog
|
971 |
-
alp
|
972 |
-
bubble
|
973 |
-
cliff
|
974 |
-
coral reef
|
975 |
-
geyser
|
976 |
-
lakeside
|
977 |
-
promontory
|
978 |
-
sandbar
|
979 |
-
seashore
|
980 |
-
valley
|
981 |
-
volcano
|
982 |
-
ballplayer
|
983 |
-
groom
|
984 |
-
scuba diver
|
985 |
-
rapeseed
|
986 |
-
daisy
|
987 |
-
yellow ladys slipper
|
988 |
-
corn
|
989 |
-
acorn
|
990 |
-
hip
|
991 |
-
buckeye
|
992 |
-
coral fungus
|
993 |
-
agaric
|
994 |
-
gyromitra
|
995 |
-
stinkhorn
|
996 |
-
earthstar
|
997 |
-
hen-of-the-woods
|
998 |
-
bolete
|
999 |
-
ear
|
1000 |
-
toilet tissue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/image_classification_ppresnet/ppresnet.py
CHANGED
@@ -9,9 +9,8 @@ import numpy as np
|
|
9 |
import cv2 as cv
|
10 |
|
11 |
class PPResNet:
|
12 |
-
def __init__(self, modelPath,
|
13 |
self._modelPath = modelPath
|
14 |
-
self._labelPath = labelPath
|
15 |
assert topK >= 1
|
16 |
self._topK = topK
|
17 |
self._backendId = backendId
|
@@ -31,12 +30,7 @@ class PPResNet:
|
|
31 |
self._labels = self._load_labels()
|
32 |
|
33 |
def _load_labels(self):
|
34 |
-
|
35 |
-
if self._labelPath is not None:
|
36 |
-
with open(self._labelPath, 'r') as f:
|
37 |
-
for line in f:
|
38 |
-
labels.append(line.strip())
|
39 |
-
return labels
|
40 |
|
41 |
@property
|
42 |
def name(self):
|
@@ -88,3 +82,1003 @@ class PPResNet:
|
|
88 |
else:
|
89 |
return batched_class_id_list
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import cv2 as cv
|
10 |
|
11 |
class PPResNet:
|
12 |
+
def __init__(self, modelPath, topK=1, backendId=0, targetId=0):
|
13 |
self._modelPath = modelPath
|
|
|
14 |
assert topK >= 1
|
15 |
self._topK = topK
|
16 |
self._backendId = backendId
|
|
|
30 |
self._labels = self._load_labels()
|
31 |
|
32 |
def _load_labels(self):
|
33 |
+
return self.LABELS_IMAGENET_1K.splitlines()
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
@property
|
36 |
def name(self):
|
|
|
82 |
else:
|
83 |
return batched_class_id_list
|
84 |
|
85 |
+
LABELS_IMAGENET_1K = '''tench
|
86 |
+
goldfish
|
87 |
+
great white shark
|
88 |
+
tiger shark
|
89 |
+
hammerhead
|
90 |
+
electric ray
|
91 |
+
stingray
|
92 |
+
cock
|
93 |
+
hen
|
94 |
+
ostrich
|
95 |
+
brambling
|
96 |
+
goldfinch
|
97 |
+
house finch
|
98 |
+
junco
|
99 |
+
indigo bunting
|
100 |
+
robin
|
101 |
+
bulbul
|
102 |
+
jay
|
103 |
+
magpie
|
104 |
+
chickadee
|
105 |
+
water ouzel
|
106 |
+
kite
|
107 |
+
bald eagle
|
108 |
+
vulture
|
109 |
+
great grey owl
|
110 |
+
European fire salamander
|
111 |
+
common newt
|
112 |
+
eft
|
113 |
+
spotted salamander
|
114 |
+
axolotl
|
115 |
+
bullfrog
|
116 |
+
tree frog
|
117 |
+
tailed frog
|
118 |
+
loggerhead
|
119 |
+
leatherback turtle
|
120 |
+
mud turtle
|
121 |
+
terrapin
|
122 |
+
box turtle
|
123 |
+
banded gecko
|
124 |
+
common iguana
|
125 |
+
American chameleon
|
126 |
+
whiptail
|
127 |
+
agama
|
128 |
+
frilled lizard
|
129 |
+
alligator lizard
|
130 |
+
Gila monster
|
131 |
+
green lizard
|
132 |
+
African chameleon
|
133 |
+
Komodo dragon
|
134 |
+
African crocodile
|
135 |
+
American alligator
|
136 |
+
triceratops
|
137 |
+
thunder snake
|
138 |
+
ringneck snake
|
139 |
+
hognose snake
|
140 |
+
green snake
|
141 |
+
king snake
|
142 |
+
garter snake
|
143 |
+
water snake
|
144 |
+
vine snake
|
145 |
+
night snake
|
146 |
+
boa constrictor
|
147 |
+
rock python
|
148 |
+
Indian cobra
|
149 |
+
green mamba
|
150 |
+
sea snake
|
151 |
+
horned viper
|
152 |
+
diamondback
|
153 |
+
sidewinder
|
154 |
+
trilobite
|
155 |
+
harvestman
|
156 |
+
scorpion
|
157 |
+
black and gold garden spider
|
158 |
+
barn spider
|
159 |
+
garden spider
|
160 |
+
black widow
|
161 |
+
tarantula
|
162 |
+
wolf spider
|
163 |
+
tick
|
164 |
+
centipede
|
165 |
+
black grouse
|
166 |
+
ptarmigan
|
167 |
+
ruffed grouse
|
168 |
+
prairie chicken
|
169 |
+
peacock
|
170 |
+
quail
|
171 |
+
partridge
|
172 |
+
African grey
|
173 |
+
macaw
|
174 |
+
sulphur-crested cockatoo
|
175 |
+
lorikeet
|
176 |
+
coucal
|
177 |
+
bee eater
|
178 |
+
hornbill
|
179 |
+
hummingbird
|
180 |
+
jacamar
|
181 |
+
toucan
|
182 |
+
drake
|
183 |
+
red-breasted merganser
|
184 |
+
goose
|
185 |
+
black swan
|
186 |
+
tusker
|
187 |
+
echidna
|
188 |
+
platypus
|
189 |
+
wallaby
|
190 |
+
koala
|
191 |
+
wombat
|
192 |
+
jellyfish
|
193 |
+
sea anemone
|
194 |
+
brain coral
|
195 |
+
flatworm
|
196 |
+
nematode
|
197 |
+
conch
|
198 |
+
snail
|
199 |
+
slug
|
200 |
+
sea slug
|
201 |
+
chiton
|
202 |
+
chambered nautilus
|
203 |
+
Dungeness crab
|
204 |
+
rock crab
|
205 |
+
fiddler crab
|
206 |
+
king crab
|
207 |
+
American lobster
|
208 |
+
spiny lobster
|
209 |
+
crayfish
|
210 |
+
hermit crab
|
211 |
+
isopod
|
212 |
+
white stork
|
213 |
+
black stork
|
214 |
+
spoonbill
|
215 |
+
flamingo
|
216 |
+
little blue heron
|
217 |
+
American egret
|
218 |
+
bittern
|
219 |
+
crane
|
220 |
+
limpkin
|
221 |
+
European gallinule
|
222 |
+
American coot
|
223 |
+
bustard
|
224 |
+
ruddy turnstone
|
225 |
+
red-backed sandpiper
|
226 |
+
redshank
|
227 |
+
dowitcher
|
228 |
+
oystercatcher
|
229 |
+
pelican
|
230 |
+
king penguin
|
231 |
+
albatross
|
232 |
+
grey whale
|
233 |
+
killer whale
|
234 |
+
dugong
|
235 |
+
sea lion
|
236 |
+
Chihuahua
|
237 |
+
Japanese spaniel
|
238 |
+
Maltese dog
|
239 |
+
Pekinese
|
240 |
+
Shih-Tzu
|
241 |
+
Blenheim spaniel
|
242 |
+
papillon
|
243 |
+
toy terrier
|
244 |
+
Rhodesian ridgeback
|
245 |
+
Afghan hound
|
246 |
+
basset
|
247 |
+
beagle
|
248 |
+
bloodhound
|
249 |
+
bluetick
|
250 |
+
black-and-tan coonhound
|
251 |
+
Walker hound
|
252 |
+
English foxhound
|
253 |
+
redbone
|
254 |
+
borzoi
|
255 |
+
Irish wolfhound
|
256 |
+
Italian greyhound
|
257 |
+
whippet
|
258 |
+
Ibizan hound
|
259 |
+
Norwegian elkhound
|
260 |
+
otterhound
|
261 |
+
Saluki
|
262 |
+
Scottish deerhound
|
263 |
+
Weimaraner
|
264 |
+
Staffordshire bullterrier
|
265 |
+
American Staffordshire terrier
|
266 |
+
Bedlington terrier
|
267 |
+
Border terrier
|
268 |
+
Kerry blue terrier
|
269 |
+
Irish terrier
|
270 |
+
Norfolk terrier
|
271 |
+
Norwich terrier
|
272 |
+
Yorkshire terrier
|
273 |
+
wire-haired fox terrier
|
274 |
+
Lakeland terrier
|
275 |
+
Sealyham terrier
|
276 |
+
Airedale
|
277 |
+
cairn
|
278 |
+
Australian terrier
|
279 |
+
Dandie Dinmont
|
280 |
+
Boston bull
|
281 |
+
miniature schnauzer
|
282 |
+
giant schnauzer
|
283 |
+
standard schnauzer
|
284 |
+
Scotch terrier
|
285 |
+
Tibetan terrier
|
286 |
+
silky terrier
|
287 |
+
soft-coated wheaten terrier
|
288 |
+
West Highland white terrier
|
289 |
+
Lhasa
|
290 |
+
flat-coated retriever
|
291 |
+
curly-coated retriever
|
292 |
+
golden retriever
|
293 |
+
Labrador retriever
|
294 |
+
Chesapeake Bay retriever
|
295 |
+
German short-haired pointer
|
296 |
+
vizsla
|
297 |
+
English setter
|
298 |
+
Irish setter
|
299 |
+
Gordon setter
|
300 |
+
Brittany spaniel
|
301 |
+
clumber
|
302 |
+
English springer
|
303 |
+
Welsh springer spaniel
|
304 |
+
cocker spaniel
|
305 |
+
Sussex spaniel
|
306 |
+
Irish water spaniel
|
307 |
+
kuvasz
|
308 |
+
schipperke
|
309 |
+
groenendael
|
310 |
+
malinois
|
311 |
+
briard
|
312 |
+
kelpie
|
313 |
+
komondor
|
314 |
+
Old English sheepdog
|
315 |
+
Shetland sheepdog
|
316 |
+
collie
|
317 |
+
Border collie
|
318 |
+
Bouvier des Flandres
|
319 |
+
Rottweiler
|
320 |
+
German shepherd
|
321 |
+
Doberman
|
322 |
+
miniature pinscher
|
323 |
+
Greater Swiss Mountain dog
|
324 |
+
Bernese mountain dog
|
325 |
+
Appenzeller
|
326 |
+
EntleBucher
|
327 |
+
boxer
|
328 |
+
bull mastiff
|
329 |
+
Tibetan mastiff
|
330 |
+
French bulldog
|
331 |
+
Great Dane
|
332 |
+
Saint Bernard
|
333 |
+
Eskimo dog
|
334 |
+
malamute
|
335 |
+
Siberian husky
|
336 |
+
dalmatian
|
337 |
+
affenpinscher
|
338 |
+
basenji
|
339 |
+
pug
|
340 |
+
Leonberg
|
341 |
+
Newfoundland
|
342 |
+
Great Pyrenees
|
343 |
+
Samoyed
|
344 |
+
Pomeranian
|
345 |
+
chow
|
346 |
+
keeshond
|
347 |
+
Brabancon griffon
|
348 |
+
Pembroke
|
349 |
+
Cardigan
|
350 |
+
toy poodle
|
351 |
+
miniature poodle
|
352 |
+
standard poodle
|
353 |
+
Mexican hairless
|
354 |
+
timber wolf
|
355 |
+
white wolf
|
356 |
+
red wolf
|
357 |
+
coyote
|
358 |
+
dingo
|
359 |
+
dhole
|
360 |
+
African hunting dog
|
361 |
+
hyena
|
362 |
+
red fox
|
363 |
+
kit fox
|
364 |
+
Arctic fox
|
365 |
+
grey fox
|
366 |
+
tabby
|
367 |
+
tiger cat
|
368 |
+
Persian cat
|
369 |
+
Siamese cat
|
370 |
+
Egyptian cat
|
371 |
+
cougar
|
372 |
+
lynx
|
373 |
+
leopard
|
374 |
+
snow leopard
|
375 |
+
jaguar
|
376 |
+
lion
|
377 |
+
tiger
|
378 |
+
cheetah
|
379 |
+
brown bear
|
380 |
+
American black bear
|
381 |
+
ice bear
|
382 |
+
sloth bear
|
383 |
+
mongoose
|
384 |
+
meerkat
|
385 |
+
tiger beetle
|
386 |
+
ladybug
|
387 |
+
ground beetle
|
388 |
+
long-horned beetle
|
389 |
+
leaf beetle
|
390 |
+
dung beetle
|
391 |
+
rhinoceros beetle
|
392 |
+
weevil
|
393 |
+
fly
|
394 |
+
bee
|
395 |
+
ant
|
396 |
+
grasshopper
|
397 |
+
cricket
|
398 |
+
walking stick
|
399 |
+
cockroach
|
400 |
+
mantis
|
401 |
+
cicada
|
402 |
+
leafhopper
|
403 |
+
lacewing
|
404 |
+
dragonfly
|
405 |
+
damselfly
|
406 |
+
admiral
|
407 |
+
ringlet
|
408 |
+
monarch
|
409 |
+
cabbage butterfly
|
410 |
+
sulphur butterfly
|
411 |
+
lycaenid
|
412 |
+
starfish
|
413 |
+
sea urchin
|
414 |
+
sea cucumber
|
415 |
+
wood rabbit
|
416 |
+
hare
|
417 |
+
Angora
|
418 |
+
hamster
|
419 |
+
porcupine
|
420 |
+
fox squirrel
|
421 |
+
marmot
|
422 |
+
beaver
|
423 |
+
guinea pig
|
424 |
+
sorrel
|
425 |
+
zebra
|
426 |
+
hog
|
427 |
+
wild boar
|
428 |
+
warthog
|
429 |
+
hippopotamus
|
430 |
+
ox
|
431 |
+
water buffalo
|
432 |
+
bison
|
433 |
+
ram
|
434 |
+
bighorn
|
435 |
+
ibex
|
436 |
+
hartebeest
|
437 |
+
impala
|
438 |
+
gazelle
|
439 |
+
Arabian camel
|
440 |
+
llama
|
441 |
+
weasel
|
442 |
+
mink
|
443 |
+
polecat
|
444 |
+
black-footed ferret
|
445 |
+
otter
|
446 |
+
skunk
|
447 |
+
badger
|
448 |
+
armadillo
|
449 |
+
three-toed sloth
|
450 |
+
orangutan
|
451 |
+
gorilla
|
452 |
+
chimpanzee
|
453 |
+
gibbon
|
454 |
+
siamang
|
455 |
+
guenon
|
456 |
+
patas
|
457 |
+
baboon
|
458 |
+
macaque
|
459 |
+
langur
|
460 |
+
colobus
|
461 |
+
proboscis monkey
|
462 |
+
marmoset
|
463 |
+
capuchin
|
464 |
+
howler monkey
|
465 |
+
titi
|
466 |
+
spider monkey
|
467 |
+
squirrel monkey
|
468 |
+
Madagascar cat
|
469 |
+
indri
|
470 |
+
Indian elephant
|
471 |
+
African elephant
|
472 |
+
lesser panda
|
473 |
+
giant panda
|
474 |
+
barracouta
|
475 |
+
eel
|
476 |
+
coho
|
477 |
+
rock beauty
|
478 |
+
anemone fish
|
479 |
+
sturgeon
|
480 |
+
gar
|
481 |
+
lionfish
|
482 |
+
puffer
|
483 |
+
abacus
|
484 |
+
abaya
|
485 |
+
academic gown
|
486 |
+
accordion
|
487 |
+
acoustic guitar
|
488 |
+
aircraft carrier
|
489 |
+
airliner
|
490 |
+
airship
|
491 |
+
altar
|
492 |
+
ambulance
|
493 |
+
amphibian
|
494 |
+
analog clock
|
495 |
+
apiary
|
496 |
+
apron
|
497 |
+
ashcan
|
498 |
+
assault rifle
|
499 |
+
backpack
|
500 |
+
bakery
|
501 |
+
balance beam
|
502 |
+
balloon
|
503 |
+
ballpoint
|
504 |
+
Band Aid
|
505 |
+
banjo
|
506 |
+
bannister
|
507 |
+
barbell
|
508 |
+
barber chair
|
509 |
+
barbershop
|
510 |
+
barn
|
511 |
+
barometer
|
512 |
+
barrel
|
513 |
+
barrow
|
514 |
+
baseball
|
515 |
+
basketball
|
516 |
+
bassinet
|
517 |
+
bassoon
|
518 |
+
bathing cap
|
519 |
+
bath towel
|
520 |
+
bathtub
|
521 |
+
beach wagon
|
522 |
+
beacon
|
523 |
+
beaker
|
524 |
+
bearskin
|
525 |
+
beer bottle
|
526 |
+
beer glass
|
527 |
+
bell cote
|
528 |
+
bib
|
529 |
+
bicycle-built-for-two
|
530 |
+
bikini
|
531 |
+
binder
|
532 |
+
binoculars
|
533 |
+
birdhouse
|
534 |
+
boathouse
|
535 |
+
bobsled
|
536 |
+
bolo tie
|
537 |
+
bonnet
|
538 |
+
bookcase
|
539 |
+
bookshop
|
540 |
+
bottlecap
|
541 |
+
bow
|
542 |
+
bow tie
|
543 |
+
brass
|
544 |
+
brassiere
|
545 |
+
breakwater
|
546 |
+
breastplate
|
547 |
+
broom
|
548 |
+
bucket
|
549 |
+
buckle
|
550 |
+
bulletproof vest
|
551 |
+
bullet train
|
552 |
+
butcher shop
|
553 |
+
cab
|
554 |
+
caldron
|
555 |
+
candle
|
556 |
+
cannon
|
557 |
+
canoe
|
558 |
+
can opener
|
559 |
+
cardigan
|
560 |
+
car mirror
|
561 |
+
carousel
|
562 |
+
carpenters kit
|
563 |
+
carton
|
564 |
+
car wheel
|
565 |
+
cash machine
|
566 |
+
cassette
|
567 |
+
cassette player
|
568 |
+
castle
|
569 |
+
catamaran
|
570 |
+
CD player
|
571 |
+
cello
|
572 |
+
cellular telephone
|
573 |
+
chain
|
574 |
+
chainlink fence
|
575 |
+
chain mail
|
576 |
+
chain saw
|
577 |
+
chest
|
578 |
+
chiffonier
|
579 |
+
chime
|
580 |
+
china cabinet
|
581 |
+
Christmas stocking
|
582 |
+
church
|
583 |
+
cinema
|
584 |
+
cleaver
|
585 |
+
cliff dwelling
|
586 |
+
cloak
|
587 |
+
clog
|
588 |
+
cocktail shaker
|
589 |
+
coffee mug
|
590 |
+
coffeepot
|
591 |
+
coil
|
592 |
+
combination lock
|
593 |
+
computer keyboard
|
594 |
+
confectionery
|
595 |
+
container ship
|
596 |
+
convertible
|
597 |
+
corkscrew
|
598 |
+
cornet
|
599 |
+
cowboy boot
|
600 |
+
cowboy hat
|
601 |
+
cradle
|
602 |
+
crane
|
603 |
+
crash helmet
|
604 |
+
crate
|
605 |
+
crib
|
606 |
+
Crock Pot
|
607 |
+
croquet ball
|
608 |
+
crutch
|
609 |
+
cuirass
|
610 |
+
dam
|
611 |
+
desk
|
612 |
+
desktop computer
|
613 |
+
dial telephone
|
614 |
+
diaper
|
615 |
+
digital clock
|
616 |
+
digital watch
|
617 |
+
dining table
|
618 |
+
dishrag
|
619 |
+
dishwasher
|
620 |
+
disk brake
|
621 |
+
dock
|
622 |
+
dogsled
|
623 |
+
dome
|
624 |
+
doormat
|
625 |
+
drilling platform
|
626 |
+
drum
|
627 |
+
drumstick
|
628 |
+
dumbbell
|
629 |
+
Dutch oven
|
630 |
+
electric fan
|
631 |
+
electric guitar
|
632 |
+
electric locomotive
|
633 |
+
entertainment center
|
634 |
+
envelope
|
635 |
+
espresso maker
|
636 |
+
face powder
|
637 |
+
feather boa
|
638 |
+
file
|
639 |
+
fireboat
|
640 |
+
fire engine
|
641 |
+
fire screen
|
642 |
+
flagpole
|
643 |
+
flute
|
644 |
+
folding chair
|
645 |
+
football helmet
|
646 |
+
forklift
|
647 |
+
fountain
|
648 |
+
fountain pen
|
649 |
+
four-poster
|
650 |
+
freight car
|
651 |
+
French horn
|
652 |
+
frying pan
|
653 |
+
fur coat
|
654 |
+
garbage truck
|
655 |
+
gasmask
|
656 |
+
gas pump
|
657 |
+
goblet
|
658 |
+
go-kart
|
659 |
+
golf ball
|
660 |
+
golfcart
|
661 |
+
gondola
|
662 |
+
gong
|
663 |
+
gown
|
664 |
+
grand piano
|
665 |
+
greenhouse
|
666 |
+
grille
|
667 |
+
grocery store
|
668 |
+
guillotine
|
669 |
+
hair slide
|
670 |
+
hair spray
|
671 |
+
half track
|
672 |
+
hammer
|
673 |
+
hamper
|
674 |
+
hand blower
|
675 |
+
hand-held computer
|
676 |
+
handkerchief
|
677 |
+
hard disc
|
678 |
+
harmonica
|
679 |
+
harp
|
680 |
+
harvester
|
681 |
+
hatchet
|
682 |
+
holster
|
683 |
+
home theater
|
684 |
+
honeycomb
|
685 |
+
hook
|
686 |
+
hoopskirt
|
687 |
+
horizontal bar
|
688 |
+
horse cart
|
689 |
+
hourglass
|
690 |
+
iPod
|
691 |
+
iron
|
692 |
+
jack-o-lantern
|
693 |
+
jean
|
694 |
+
jeep
|
695 |
+
jersey
|
696 |
+
jigsaw puzzle
|
697 |
+
jinrikisha
|
698 |
+
joystick
|
699 |
+
kimono
|
700 |
+
knee pad
|
701 |
+
knot
|
702 |
+
lab coat
|
703 |
+
ladle
|
704 |
+
lampshade
|
705 |
+
laptop
|
706 |
+
lawn mower
|
707 |
+
lens cap
|
708 |
+
letter opener
|
709 |
+
library
|
710 |
+
lifeboat
|
711 |
+
lighter
|
712 |
+
limousine
|
713 |
+
liner
|
714 |
+
lipstick
|
715 |
+
Loafer
|
716 |
+
lotion
|
717 |
+
loudspeaker
|
718 |
+
loupe
|
719 |
+
lumbermill
|
720 |
+
magnetic compass
|
721 |
+
mailbag
|
722 |
+
mailbox
|
723 |
+
maillot
|
724 |
+
maillot
|
725 |
+
manhole cover
|
726 |
+
maraca
|
727 |
+
marimba
|
728 |
+
mask
|
729 |
+
matchstick
|
730 |
+
maypole
|
731 |
+
maze
|
732 |
+
measuring cup
|
733 |
+
medicine chest
|
734 |
+
megalith
|
735 |
+
microphone
|
736 |
+
microwave
|
737 |
+
military uniform
|
738 |
+
milk can
|
739 |
+
minibus
|
740 |
+
miniskirt
|
741 |
+
minivan
|
742 |
+
missile
|
743 |
+
mitten
|
744 |
+
mixing bowl
|
745 |
+
mobile home
|
746 |
+
Model T
|
747 |
+
modem
|
748 |
+
monastery
|
749 |
+
monitor
|
750 |
+
moped
|
751 |
+
mortar
|
752 |
+
mortarboard
|
753 |
+
mosque
|
754 |
+
mosquito net
|
755 |
+
motor scooter
|
756 |
+
mountain bike
|
757 |
+
mountain tent
|
758 |
+
mouse
|
759 |
+
mousetrap
|
760 |
+
moving van
|
761 |
+
muzzle
|
762 |
+
nail
|
763 |
+
neck brace
|
764 |
+
necklace
|
765 |
+
nipple
|
766 |
+
notebook
|
767 |
+
obelisk
|
768 |
+
oboe
|
769 |
+
ocarina
|
770 |
+
odometer
|
771 |
+
oil filter
|
772 |
+
organ
|
773 |
+
oscilloscope
|
774 |
+
overskirt
|
775 |
+
oxcart
|
776 |
+
oxygen mask
|
777 |
+
packet
|
778 |
+
paddle
|
779 |
+
paddlewheel
|
780 |
+
padlock
|
781 |
+
paintbrush
|
782 |
+
pajama
|
783 |
+
palace
|
784 |
+
panpipe
|
785 |
+
paper towel
|
786 |
+
parachute
|
787 |
+
parallel bars
|
788 |
+
park bench
|
789 |
+
parking meter
|
790 |
+
passenger car
|
791 |
+
patio
|
792 |
+
pay-phone
|
793 |
+
pedestal
|
794 |
+
pencil box
|
795 |
+
pencil sharpener
|
796 |
+
perfume
|
797 |
+
Petri dish
|
798 |
+
photocopier
|
799 |
+
pick
|
800 |
+
pickelhaube
|
801 |
+
picket fence
|
802 |
+
pickup
|
803 |
+
pier
|
804 |
+
piggy bank
|
805 |
+
pill bottle
|
806 |
+
pillow
|
807 |
+
ping-pong ball
|
808 |
+
pinwheel
|
809 |
+
pirate
|
810 |
+
pitcher
|
811 |
+
plane
|
812 |
+
planetarium
|
813 |
+
plastic bag
|
814 |
+
plate rack
|
815 |
+
plow
|
816 |
+
plunger
|
817 |
+
Polaroid camera
|
818 |
+
pole
|
819 |
+
police van
|
820 |
+
poncho
|
821 |
+
pool table
|
822 |
+
pop bottle
|
823 |
+
pot
|
824 |
+
potters wheel
|
825 |
+
power drill
|
826 |
+
prayer rug
|
827 |
+
printer
|
828 |
+
prison
|
829 |
+
projectile
|
830 |
+
projector
|
831 |
+
puck
|
832 |
+
punching bag
|
833 |
+
purse
|
834 |
+
quill
|
835 |
+
quilt
|
836 |
+
racer
|
837 |
+
racket
|
838 |
+
radiator
|
839 |
+
radio
|
840 |
+
radio telescope
|
841 |
+
rain barrel
|
842 |
+
recreational vehicle
|
843 |
+
reel
|
844 |
+
reflex camera
|
845 |
+
refrigerator
|
846 |
+
remote control
|
847 |
+
restaurant
|
848 |
+
revolver
|
849 |
+
rifle
|
850 |
+
rocking chair
|
851 |
+
rotisserie
|
852 |
+
rubber eraser
|
853 |
+
rugby ball
|
854 |
+
rule
|
855 |
+
running shoe
|
856 |
+
safe
|
857 |
+
safety pin
|
858 |
+
saltshaker
|
859 |
+
sandal
|
860 |
+
sarong
|
861 |
+
sax
|
862 |
+
scabbard
|
863 |
+
scale
|
864 |
+
school bus
|
865 |
+
schooner
|
866 |
+
scoreboard
|
867 |
+
screen
|
868 |
+
screw
|
869 |
+
screwdriver
|
870 |
+
seat belt
|
871 |
+
sewing machine
|
872 |
+
shield
|
873 |
+
shoe shop
|
874 |
+
shoji
|
875 |
+
shopping basket
|
876 |
+
shopping cart
|
877 |
+
shovel
|
878 |
+
shower cap
|
879 |
+
shower curtain
|
880 |
+
ski
|
881 |
+
ski mask
|
882 |
+
sleeping bag
|
883 |
+
slide rule
|
884 |
+
sliding door
|
885 |
+
slot
|
886 |
+
snorkel
|
887 |
+
snowmobile
|
888 |
+
snowplow
|
889 |
+
soap dispenser
|
890 |
+
soccer ball
|
891 |
+
sock
|
892 |
+
solar dish
|
893 |
+
sombrero
|
894 |
+
soup bowl
|
895 |
+
space bar
|
896 |
+
space heater
|
897 |
+
space shuttle
|
898 |
+
spatula
|
899 |
+
speedboat
|
900 |
+
spider web
|
901 |
+
spindle
|
902 |
+
sports car
|
903 |
+
spotlight
|
904 |
+
stage
|
905 |
+
steam locomotive
|
906 |
+
steel arch bridge
|
907 |
+
steel drum
|
908 |
+
stethoscope
|
909 |
+
stole
|
910 |
+
stone wall
|
911 |
+
stopwatch
|
912 |
+
stove
|
913 |
+
strainer
|
914 |
+
streetcar
|
915 |
+
stretcher
|
916 |
+
studio couch
|
917 |
+
stupa
|
918 |
+
submarine
|
919 |
+
suit
|
920 |
+
sundial
|
921 |
+
sunglass
|
922 |
+
sunglasses
|
923 |
+
sunscreen
|
924 |
+
suspension bridge
|
925 |
+
swab
|
926 |
+
sweatshirt
|
927 |
+
swimming trunks
|
928 |
+
swing
|
929 |
+
switch
|
930 |
+
syringe
|
931 |
+
table lamp
|
932 |
+
tank
|
933 |
+
tape player
|
934 |
+
teapot
|
935 |
+
teddy
|
936 |
+
television
|
937 |
+
tennis ball
|
938 |
+
thatch
|
939 |
+
theater curtain
|
940 |
+
thimble
|
941 |
+
thresher
|
942 |
+
throne
|
943 |
+
tile roof
|
944 |
+
toaster
|
945 |
+
tobacco shop
|
946 |
+
toilet seat
|
947 |
+
torch
|
948 |
+
totem pole
|
949 |
+
tow truck
|
950 |
+
toyshop
|
951 |
+
tractor
|
952 |
+
trailer truck
|
953 |
+
tray
|
954 |
+
trench coat
|
955 |
+
tricycle
|
956 |
+
trimaran
|
957 |
+
tripod
|
958 |
+
triumphal arch
|
959 |
+
trolleybus
|
960 |
+
trombone
|
961 |
+
tub
|
962 |
+
turnstile
|
963 |
+
typewriter keyboard
|
964 |
+
umbrella
|
965 |
+
unicycle
|
966 |
+
upright
|
967 |
+
vacuum
|
968 |
+
vase
|
969 |
+
vault
|
970 |
+
velvet
|
971 |
+
vending machine
|
972 |
+
vestment
|
973 |
+
viaduct
|
974 |
+
violin
|
975 |
+
volleyball
|
976 |
+
waffle iron
|
977 |
+
wall clock
|
978 |
+
wallet
|
979 |
+
wardrobe
|
980 |
+
warplane
|
981 |
+
washbasin
|
982 |
+
washer
|
983 |
+
water bottle
|
984 |
+
water jug
|
985 |
+
water tower
|
986 |
+
whiskey jug
|
987 |
+
whistle
|
988 |
+
wig
|
989 |
+
window screen
|
990 |
+
window shade
|
991 |
+
Windsor tie
|
992 |
+
wine bottle
|
993 |
+
wing
|
994 |
+
wok
|
995 |
+
wooden spoon
|
996 |
+
wool
|
997 |
+
worm fence
|
998 |
+
wreck
|
999 |
+
yawl
|
1000 |
+
yurt
|
1001 |
+
web site
|
1002 |
+
comic book
|
1003 |
+
crossword puzzle
|
1004 |
+
street sign
|
1005 |
+
traffic light
|
1006 |
+
book jacket
|
1007 |
+
menu
|
1008 |
+
plate
|
1009 |
+
guacamole
|
1010 |
+
consomme
|
1011 |
+
hot pot
|
1012 |
+
trifle
|
1013 |
+
ice cream
|
1014 |
+
ice lolly
|
1015 |
+
French loaf
|
1016 |
+
bagel
|
1017 |
+
pretzel
|
1018 |
+
cheeseburger
|
1019 |
+
hotdog
|
1020 |
+
mashed potato
|
1021 |
+
head cabbage
|
1022 |
+
broccoli
|
1023 |
+
cauliflower
|
1024 |
+
zucchini
|
1025 |
+
spaghetti squash
|
1026 |
+
acorn squash
|
1027 |
+
butternut squash
|
1028 |
+
cucumber
|
1029 |
+
artichoke
|
1030 |
+
bell pepper
|
1031 |
+
cardoon
|
1032 |
+
mushroom
|
1033 |
+
Granny Smith
|
1034 |
+
strawberry
|
1035 |
+
orange
|
1036 |
+
lemon
|
1037 |
+
fig
|
1038 |
+
pineapple
|
1039 |
+
banana
|
1040 |
+
jackfruit
|
1041 |
+
custard apple
|
1042 |
+
pomegranate
|
1043 |
+
hay
|
1044 |
+
carbonara
|
1045 |
+
chocolate sauce
|
1046 |
+
dough
|
1047 |
+
meat loaf
|
1048 |
+
pizza
|
1049 |
+
potpie
|
1050 |
+
burrito
|
1051 |
+
red wine
|
1052 |
+
espresso
|
1053 |
+
cup
|
1054 |
+
eggnog
|
1055 |
+
alp
|
1056 |
+
bubble
|
1057 |
+
cliff
|
1058 |
+
coral reef
|
1059 |
+
geyser
|
1060 |
+
lakeside
|
1061 |
+
promontory
|
1062 |
+
sandbar
|
1063 |
+
seashore
|
1064 |
+
valley
|
1065 |
+
volcano
|
1066 |
+
ballplayer
|
1067 |
+
groom
|
1068 |
+
scuba diver
|
1069 |
+
rapeseed
|
1070 |
+
daisy
|
1071 |
+
yellow ladys slipper
|
1072 |
+
corn
|
1073 |
+
acorn
|
1074 |
+
hip
|
1075 |
+
buckeye
|
1076 |
+
coral fungus
|
1077 |
+
agaric
|
1078 |
+
gyromitra
|
1079 |
+
stinkhorn
|
1080 |
+
earthstar
|
1081 |
+
hen-of-the-woods
|
1082 |
+
bolete
|
1083 |
+
ear
|
1084 |
+
toilet tissue'''
|
models/object_tracking_dasiamrpn/dasiamrpn.py
CHANGED
@@ -8,7 +8,7 @@ import numpy as np
|
|
8 |
import cv2 as cv
|
9 |
|
10 |
class DaSiamRPN:
|
11 |
-
def __init__(self,
|
12 |
self._model_path = model_path
|
13 |
self._kernel_cls1_path = kernel_cls1_path
|
14 |
self._kernel_r1_path = kernel_r1_path
|
|
|
8 |
import cv2 as cv
|
9 |
|
10 |
class DaSiamRPN:
|
11 |
+
def __init__(self, kernel_cls1_path, kernel_r1_path, model_path, backend_id=0, target_id=0):
|
12 |
self._model_path = model_path
|
13 |
self._kernel_cls1_path = kernel_cls1_path
|
14 |
self._kernel_r1_path = kernel_r1_path
|
models/object_tracking_dasiamrpn/demo.py
CHANGED
@@ -52,9 +52,9 @@ def visualize(image, bbox, score, isLocated, fps=None, box_color=(0, 255, 0),tex
|
|
52 |
if __name__ == '__main__':
|
53 |
# Instantiate DaSiamRPN
|
54 |
model = DaSiamRPN(
|
55 |
-
model_path=args.model_path,
|
56 |
kernel_cls1_path=args.kernel_cls1_path,
|
57 |
-
kernel_r1_path=args.kernel_r1_path
|
|
|
58 |
)
|
59 |
|
60 |
# Read from args.input
|
@@ -92,4 +92,4 @@ if __name__ == '__main__':
|
|
92 |
# Visualize
|
93 |
frame = visualize(frame, bbox, score, isLocated, fps=tm.getFPS())
|
94 |
cv.imshow('DaSiamRPN Demo', frame)
|
95 |
-
tm.reset()
|
|
|
52 |
if __name__ == '__main__':
|
53 |
# Instantiate DaSiamRPN
|
54 |
model = DaSiamRPN(
|
|
|
55 |
kernel_cls1_path=args.kernel_cls1_path,
|
56 |
+
kernel_r1_path=args.kernel_r1_path,
|
57 |
+
model_path=args.model_path,
|
58 |
)
|
59 |
|
60 |
# Read from args.input
|
|
|
92 |
# Visualize
|
93 |
frame = visualize(frame, bbox, score, isLocated, fps=tm.getFPS())
|
94 |
cv.imshow('DaSiamRPN Demo', frame)
|
95 |
+
tm.reset()
|
models/text_recognition_crnn/charset_36_EN.txt
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
0
|
2 |
-
1
|
3 |
-
2
|
4 |
-
3
|
5 |
-
4
|
6 |
-
5
|
7 |
-
6
|
8 |
-
7
|
9 |
-
8
|
10 |
-
9
|
11 |
-
a
|
12 |
-
b
|
13 |
-
c
|
14 |
-
d
|
15 |
-
e
|
16 |
-
f
|
17 |
-
g
|
18 |
-
h
|
19 |
-
i
|
20 |
-
j
|
21 |
-
k
|
22 |
-
l
|
23 |
-
m
|
24 |
-
n
|
25 |
-
o
|
26 |
-
p
|
27 |
-
q
|
28 |
-
r
|
29 |
-
s
|
30 |
-
t
|
31 |
-
u
|
32 |
-
v
|
33 |
-
w
|
34 |
-
x
|
35 |
-
y
|
36 |
-
z
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/text_recognition_crnn/charset_3944_CN.txt
DELETED
@@ -1,3944 +0,0 @@
|
|
1 |
-
H
|
2 |
-
O
|
3 |
-
K
|
4 |
-
I
|
5 |
-
T
|
6 |
-
E
|
7 |
-
A
|
8 |
-
酱
|
9 |
-
鸭
|
10 |
-
传
|
11 |
-
奇
|
12 |
-
J
|
13 |
-
N
|
14 |
-
G
|
15 |
-
Y
|
16 |
-
C
|
17 |
-
U
|
18 |
-
Q
|
19 |
-
蝦
|
20 |
-
兵
|
21 |
-
蟹
|
22 |
-
煲
|
23 |
-
这
|
24 |
-
是
|
25 |
-
可
|
26 |
-
以
|
27 |
-
先
|
28 |
-
吃
|
29 |
-
后
|
30 |
-
涮
|
31 |
-
的
|
32 |
-
干
|
33 |
-
锅
|
34 |
-
菜
|
35 |
-
加
|
36 |
-
盟
|
37 |
-
电
|
38 |
-
话
|
39 |
-
:
|
40 |
-
1
|
41 |
-
7
|
42 |
-
3
|
43 |
-
9
|
44 |
-
8
|
45 |
-
郑
|
46 |
-
州
|
47 |
-
总
|
48 |
-
店
|
49 |
-
雪
|
50 |
-
花
|
51 |
-
勇
|
52 |
-
闯
|
53 |
-
天
|
54 |
-
涯
|
55 |
-
虾
|
56 |
-
,
|
57 |
-
一
|
58 |
-
送
|
59 |
-
鱼
|
60 |
-
锡
|
61 |
-
纸
|
62 |
-
蛤
|
63 |
-
土
|
64 |
-
豆
|
65 |
-
粉
|
66 |
-
砂
|
67 |
-
米
|
68 |
-
线
|
69 |
-
牛
|
70 |
-
筋
|
71 |
-
面
|
72 |
-
刀
|
73 |
-
削
|
74 |
-
水
|
75 |
-
饺
|
76 |
-
吧
|
77 |
-
沙
|
78 |
-
拉
|
79 |
-
老
|
80 |
-
饭
|
81 |
-
盒
|
82 |
-
教
|
83 |
-
室
|
84 |
-
主
|
85 |
-
题
|
86 |
-
餐
|
87 |
-
厅
|
88 |
-
仁
|
89 |
-
馄
|
90 |
-
饨
|
91 |
-
重
|
92 |
-
庆
|
93 |
-
小
|
94 |
-
便
|
95 |
-
当
|
96 |
-
全
|
97 |
-
国
|
98 |
-
连
|
99 |
-
锁
|
100 |
-
4
|
101 |
-
0
|
102 |
-
-
|
103 |
-
6
|
104 |
-
5
|
105 |
-
2
|
106 |
-
人
|
107 |
-
快
|
108 |
-
量
|
109 |
-
贩
|
110 |
-
蓬
|
111 |
-
朗
|
112 |
-
御
|
113 |
-
茶
|
114 |
-
川
|
115 |
-
渝
|
116 |
-
捞
|
117 |
-
火
|
118 |
-
古
|
119 |
-
之
|
120 |
-
匠
|
121 |
-
今
|
122 |
-
七
|
123 |
-
西
|
124 |
-
域
|
125 |
-
羊
|
126 |
-
城
|
127 |
-
l
|
128 |
-
i
|
129 |
-
k
|
130 |
-
n
|
131 |
-
g
|
132 |
-
c
|
133 |
-
o
|
134 |
-
f
|
135 |
-
e
|
136 |
-
w
|
137 |
-
贵
|
138 |
-
阳
|
139 |
-
素
|
140 |
-
有
|
141 |
-
家
|
142 |
-
会
|
143 |
-
展
|
144 |
-
口
|
145 |
-
乐
|
146 |
-
三
|
147 |
-
惹
|
148 |
-
烤
|
149 |
-
肉
|
150 |
-
h
|
151 |
-
t
|
152 |
-
子
|
153 |
-
馆
|
154 |
-
常
|
155 |
-
盖
|
156 |
-
浇
|
157 |
-
兴
|
158 |
-
业
|
159 |
-
路
|
160 |
-
书
|
161 |
-
亦
|
162 |
-
燒
|
163 |
-
仙
|
164 |
-
草
|
165 |
-
L
|
166 |
-
:
|
167 |
-
德
|
168 |
-
啤
|
169 |
-
工
|
170 |
-
坊
|
171 |
-
杏
|
172 |
-
屋
|
173 |
-
高
|
174 |
-
桥
|
175 |
-
号
|
176 |
-
品
|
177 |
-
麻
|
178 |
-
辣
|
179 |
-
烫
|
180 |
-
检
|
181 |
-
官
|
182 |
-
.
|
183 |
-
千
|
184 |
-
翼
|
185 |
-
木
|
186 |
-
兰
|
187 |
-
画
|
188 |
-
食
|
189 |
-
上
|
190 |
-
汤
|
191 |
-
剁
|
192 |
-
馅
|
193 |
-
手
|
194 |
-
煮
|
195 |
-
时
|
196 |
-
尚
|
197 |
-
健
|
198 |
-
康
|
199 |
-
傲
|
200 |
-
椒
|
201 |
-
B
|
202 |
-
啵
|
203 |
-
条
|
204 |
-
脾
|
205 |
-
气
|
206 |
-
!
|
207 |
-
/
|
208 |
-
月
|
209 |
-
腾
|
210 |
-
讯
|
211 |
-
应
|
212 |
-
用
|
213 |
-
喵
|
214 |
-
泡
|
215 |
-
我
|
216 |
-
鲜
|
217 |
-
滚
|
218 |
-
给
|
219 |
-
你
|
220 |
-
看
|
221 |
-
客
|
222 |
-
来
|
223 |
-
香
|
224 |
-
汉
|
225 |
-
湘
|
226 |
-
本
|
227 |
-
地
|
228 |
-
炒
|
229 |
-
系
|
230 |
-
列
|
231 |
-
订
|
232 |
-
仔
|
233 |
-
肘
|
234 |
-
蹄
|
235 |
-
梅
|
236 |
-
扣
|
237 |
-
黄
|
238 |
-
焖
|
239 |
-
排
|
240 |
-
骨
|
241 |
-
炖
|
242 |
-
鸡
|
243 |
-
韓
|
244 |
-
金
|
245 |
-
利
|
246 |
-
串
|
247 |
-
舊
|
248 |
-
街
|
249 |
-
梨
|
250 |
-
村
|
251 |
-
座
|
252 |
-
经
|
253 |
-
济
|
254 |
-
实
|
255 |
-
惠
|
256 |
-
绿
|
257 |
-
色
|
258 |
-
炭
|
259 |
-
庐
|
260 |
-
蛙
|
261 |
-
忆
|
262 |
-
蓉
|
263 |
-
源
|
264 |
-
真
|
265 |
-
d
|
266 |
-
D
|
267 |
-
概
|
268 |
-
念
|
269 |
-
创
|
270 |
-
意
|
271 |
-
六
|
272 |
-
熏
|
273 |
-
各
|
274 |
-
种
|
275 |
-
精
|
276 |
-
美
|
277 |
-
y
|
278 |
-
疯
|
279 |
-
狂
|
280 |
-
世
|
281 |
-
界
|
282 |
-
杯
|
283 |
-
特
|
284 |
-
价
|
285 |
-
酒
|
286 |
-
元
|
287 |
-
瓶
|
288 |
-
沸
|
289 |
-
带
|
290 |
-
F
|
291 |
-
请
|
292 |
-
二
|
293 |
-
楼
|
294 |
-
自
|
295 |
-
动
|
296 |
-
升
|
297 |
-
降
|
298 |
-
烏
|
299 |
-
邦
|
300 |
-
嗦
|
301 |
-
味
|
302 |
-
风
|
303 |
-
货
|
304 |
-
团
|
305 |
-
外
|
306 |
-
卖
|
307 |
-
嘞
|
308 |
-
个
|
309 |
-
折
|
310 |
-
辛
|
311 |
-
束
|
312 |
-
舌
|
313 |
-
尖
|
314 |
-
中
|
315 |
-
包
|
316 |
-
浆
|
317 |
-
腐
|
318 |
-
r
|
319 |
-
P
|
320 |
-
a
|
321 |
-
u
|
322 |
-
丸
|
323 |
-
作
|
324 |
-
福
|
325 |
-
M
|
326 |
-
漫
|
327 |
-
蜜
|
328 |
-
冰
|
329 |
-
拌
|
330 |
-
匆
|
331 |
-
那
|
332 |
-
年
|
333 |
-
R
|
334 |
-
S
|
335 |
-
果
|
336 |
-
光
|
337 |
-
夹
|
338 |
-
馍
|
339 |
-
凉
|
340 |
-
皮
|
341 |
-
过
|
342 |
-
祖
|
343 |
-
南
|
344 |
-
山
|
345 |
-
風
|
346 |
-
景
|
347 |
-
堂
|
348 |
-
烘
|
349 |
-
培
|
350 |
-
龍
|
351 |
-
坎
|
352 |
-
半
|
353 |
-
婆
|
354 |
-
建
|
355 |
-
设
|
356 |
-
富
|
357 |
-
强
|
358 |
-
丽
|
359 |
-
菏
|
360 |
-
泽
|
361 |
-
省
|
362 |
-
安
|
363 |
-
港
|
364 |
-
竹
|
365 |
-
签
|
366 |
-
撩
|
367 |
-
只
|
368 |
-
为
|
369 |
-
好
|
370 |
-
生
|
371 |
-
活
|
372 |
-
抓
|
373 |
-
海
|
374 |
-
最
|
375 |
-
网
|
376 |
-
红
|
377 |
-
铁
|
378 |
-
统
|
379 |
-
®
|
380 |
-
功
|
381 |
-
夫
|
382 |
-
鱿
|
383 |
-
大
|
384 |
-
闻
|
385 |
-
就
|
386 |
-
知
|
387 |
-
遇
|
388 |
-
见
|
389 |
-
文
|
390 |
-
合
|
391 |
-
热
|
392 |
-
森
|
393 |
-
台
|
394 |
-
湾
|
395 |
-
卤
|
396 |
-
然
|
397 |
-
汁
|
398 |
-
甄
|
399 |
-
选
|
400 |
-
材
|
401 |
-
还
|
402 |
-
原
|
403 |
-
初
|
404 |
-
衷
|
405 |
-
*
|
406 |
-
洪
|
407 |
-
龙
|
408 |
-
公
|
409 |
-
酸
|
410 |
-
巴
|
411 |
-
乡
|
412 |
-
焦
|
413 |
-
烧
|
414 |
-
淘
|
415 |
-
成
|
416 |
-
都
|
417 |
-
眼
|
418 |
-
镜
|
419 |
-
优
|
420 |
-
菓
|
421 |
-
恋
|
422 |
-
V
|
423 |
-
化
|
424 |
-
糖
|
425 |
-
、
|
426 |
-
粥
|
427 |
-
田
|
428 |
-
螺
|
429 |
-
斓
|
430 |
-
X
|
431 |
-
爺
|
432 |
-
W
|
433 |
-
j
|
434 |
-
院
|
435 |
-
华
|
436 |
-
Z
|
437 |
-
蜊
|
438 |
-
北
|
439 |
-
京
|
440 |
-
刷
|
441 |
-
蝎
|
442 |
-
腿
|
443 |
-
梦
|
444 |
-
幻
|
445 |
-
奶
|
446 |
-
式
|
447 |
-
蛋
|
448 |
-
鍋
|
449 |
-
区
|
450 |
-
·
|
451 |
-
领
|
452 |
-
航
|
453 |
-
者
|
454 |
-
四
|
455 |
-
通
|
456 |
-
往
|
457 |
-
楚
|
458 |
-
河
|
459 |
-
停
|
460 |
-
车
|
461 |
-
场
|
462 |
-
凌
|
463 |
-
晨
|
464 |
-
点
|
465 |
-
杞
|
466 |
-
缘
|
467 |
-
王
|
468 |
-
集
|
469 |
-
唐
|
470 |
-
菠
|
471 |
-
萝
|
472 |
-
泰
|
473 |
-
板
|
474 |
-
鳳
|
475 |
-
凰
|
476 |
-
樓
|
477 |
-
名
|
478 |
-
壹
|
479 |
-
猪
|
480 |
-
晴
|
481 |
-
舍
|
482 |
-
犟
|
483 |
-
师
|
484 |
-
傅
|
485 |
-
飯
|
486 |
-
致
|
487 |
-
青
|
488 |
-
春
|
489 |
-
轰
|
490 |
-
炸
|
491 |
-
卡
|
492 |
-
里
|
493 |
-
身
|
494 |
-
厨
|
495 |
-
房
|
496 |
-
x
|
497 |
-
聚
|
498 |
-
鑫
|
499 |
-
阁
|
500 |
-
岛
|
501 |
-
纯
|
502 |
-
聘
|
503 |
-
专
|
504 |
-
长
|
505 |
-
庄
|
506 |
-
鄉
|
507 |
-
更
|
508 |
-
珍
|
509 |
-
固
|
510 |
-
新
|
511 |
-
岩
|
512 |
-
v
|
513 |
-
s
|
514 |
-
m
|
515 |
-
至
|
516 |
-
尊
|
517 |
-
比
|
518 |
-
萨
|
519 |
-
广
|
520 |
-
披
|
521 |
-
饮
|
522 |
-
管
|
523 |
-
理
|
524 |
-
限
|
525 |
-
司
|
526 |
-
p
|
527 |
-
幸
|
528 |
-
东
|
529 |
-
正
|
530 |
-
挞
|
531 |
-
少
|
532 |
-
女
|
533 |
-
克
|
534 |
-
装
|
535 |
-
童
|
536 |
-
哒
|
537 |
-
磨
|
538 |
-
厂
|
539 |
-
怼
|
540 |
-
纤
|
541 |
-
入
|
542 |
-
户
|
543 |
-
独
|
544 |
-
溜
|
545 |
-
共
|
546 |
-
享
|
547 |
-
滋
|
548 |
-
江
|
549 |
-
门
|
550 |
-
九
|
551 |
-
蒸
|
552 |
-
胜
|
553 |
-
盛
|
554 |
-
&
|
555 |
-
魔
|
556 |
-
爪
|
557 |
-
鹅
|
558 |
-
皇
|
559 |
-
(
|
560 |
-
)
|
561 |
-
友
|
562 |
-
甲
|
563 |
-
魚
|
564 |
-
首
|
565 |
-
烹
|
566 |
-
行
|
567 |
-
员
|
568 |
-
若
|
569 |
-
资
|
570 |
-
议
|
571 |
-
联
|
572 |
-
同
|
573 |
-
急
|
574 |
-
私
|
575 |
-
燕
|
576 |
-
儿
|
577 |
-
巢
|
578 |
-
鹏
|
579 |
-
记
|
580 |
-
腊
|
581 |
-
营
|
582 |
-
欢
|
583 |
-
迎
|
584 |
-
旗
|
585 |
-
舰
|
586 |
-
叫
|
587 |
-
了
|
588 |
-
做
|
589 |
-
故
|
590 |
-
铃
|
591 |
-
煎
|
592 |
-
饼
|
593 |
-
哥
|
594 |
-
力
|
595 |
-
五
|
596 |
-
谷
|
597 |
-
野
|
598 |
-
戈
|
599 |
-
厠
|
600 |
-
所
|
601 |
-
超
|
602 |
-
牌
|
603 |
-
冒
|
604 |
-
陳
|
605 |
-
陈
|
606 |
-
苕
|
607 |
-
爽
|
608 |
-
滑
|
609 |
-
启
|
610 |
-
秦
|
611 |
-
择
|
612 |
-
现
|
613 |
-
进
|
614 |
-
惊
|
615 |
-
喜
|
616 |
-
定
|
617 |
-
于
|
618 |
-
雅
|
619 |
-
膳
|
620 |
-
多
|
621 |
-
推
|
622 |
-
淇
|
623 |
-
淋
|
624 |
-
b
|
625 |
-
思
|
626 |
-
堡
|
627 |
-
偶
|
628 |
-
相
|
629 |
-
伴
|
630 |
-
呈
|
631 |
-
湯
|
632 |
-
绝
|
633 |
-
浏
|
634 |
-
'
|
635 |
-
刘
|
636 |
-
态
|
637 |
-
牧
|
638 |
-
万
|
639 |
-
达
|
640 |
-
和
|
641 |
-
番
|
642 |
-
丼
|
643 |
-
—
|
644 |
-
机
|
645 |
-
瘦
|
646 |
-
绵
|
647 |
-
柔
|
648 |
-
厉
|
649 |
-
蚝
|
650 |
-
娘
|
651 |
-
彩
|
652 |
-
百
|
653 |
-
事
|
654 |
-
调
|
655 |
-
韩
|
656 |
-
爱
|
657 |
-
喝
|
658 |
-
玩
|
659 |
-
放
|
660 |
-
肆
|
661 |
-
寿
|
662 |
-
净
|
663 |
-
配
|
664 |
-
髓
|
665 |
-
非
|
666 |
-
道
|
667 |
-
额
|
668 |
-
吉
|
669 |
-
招
|
670 |
-
商
|
671 |
-
杂
|
672 |
-
粮
|
673 |
-
筐
|
674 |
-
运
|
675 |
-
转
|
676 |
-
服
|
677 |
-
务
|
678 |
-
缤
|
679 |
-
灿
|
680 |
-
腕
|
681 |
-
楠
|
682 |
-
彤
|
683 |
-
学
|
684 |
-
橋
|
685 |
-
试
|
686 |
-
浩
|
687 |
-
减
|
688 |
-
薪
|
689 |
-
诚
|
690 |
-
霸
|
691 |
-
第
|
692 |
-
间
|
693 |
-
日
|
694 |
-
极
|
695 |
-
料
|
696 |
-
開
|
697 |
-
業
|
698 |
-
霏
|
699 |
-
星
|
700 |
-
期
|
701 |
-
分
|
702 |
-
秒
|
703 |
-
内
|
704 |
-
咨
|
705 |
-
询
|
706 |
-
。
|
707 |
-
樐
|
708 |
-
头
|
709 |
-
开
|
710 |
-
氏
|
711 |
-
渔
|
712 |
-
约
|
713 |
-
劳
|
714 |
-
保
|
715 |
-
礼
|
716 |
-
宏
|
717 |
-
武
|
718 |
-
佘
|
719 |
-
轻
|
720 |
-
奢
|
721 |
-
艺
|
722 |
-
井
|
723 |
-
隆
|
724 |
-
鐵
|
725 |
-
卷
|
726 |
-
染
|
727 |
-
焙
|
728 |
-
钵
|
729 |
-
马
|
730 |
-
牟
|
731 |
-
洋
|
732 |
-
芋
|
733 |
-
片
|
734 |
-
流
|
735 |
-
宽
|
736 |
-
心
|
737 |
-
位
|
738 |
-
清
|
739 |
-
潼
|
740 |
-
关
|
741 |
-
祥
|
742 |
-
背
|
743 |
-
凡
|
744 |
-
哈
|
745 |
-
尔
|
746 |
-
滨
|
747 |
-
珠
|
748 |
-
派
|
749 |
-
艾
|
750 |
-
让
|
751 |
-
变
|
752 |
-
得
|
753 |
-
样
|
754 |
-
玖
|
755 |
-
等
|
756 |
-
综
|
757 |
-
性
|
758 |
-
涵
|
759 |
-
粗
|
760 |
-
冠
|
761 |
-
記
|
762 |
-
肠
|
763 |
-
湖
|
764 |
-
财
|
765 |
-
贡
|
766 |
-
桃
|
767 |
-
杭
|
768 |
-
平
|
769 |
-
桂
|
770 |
-
林
|
771 |
-
煨
|
772 |
-
档
|
773 |
-
案
|
774 |
-
造
|
775 |
-
潮
|
776 |
-
汕
|
777 |
-
宗
|
778 |
-
单
|
779 |
-
县
|
780 |
-
鲁
|
781 |
-
舜
|
782 |
-
脆
|
783 |
-
酥
|
784 |
-
糕
|
785 |
-
仕
|
786 |
-
十
|
787 |
-
临
|
788 |
-
簋
|
789 |
-
宴
|
790 |
-
字
|
791 |
-
太
|
792 |
-
灌
|
793 |
-
薄
|
794 |
-
尝
|
795 |
-
址
|
796 |
-
晗
|
797 |
-
幢
|
798 |
-
购
|
799 |
-
梁
|
800 |
-
醉
|
801 |
-
皖
|
802 |
-
庭
|
803 |
-
白
|
804 |
-
肥
|
805 |
-
块
|
806 |
-
石
|
807 |
-
碗
|
808 |
-
颜
|
809 |
-
值
|
810 |
-
張
|
811 |
-
瘾
|
812 |
-
跷
|
813 |
-
脚
|
814 |
-
而
|
815 |
-
叁
|
816 |
-
蜀
|
817 |
-
橙
|
818 |
-
市
|
819 |
-
边
|
820 |
-
早
|
821 |
-
晚
|
822 |
-
云
|
823 |
-
吞
|
824 |
-
目
|
825 |
-
表
|
826 |
-
赵
|
827 |
-
烩
|
828 |
-
擀
|
829 |
-
蔬
|
830 |
-
找
|
831 |
-
回
|
832 |
-
游
|
833 |
-
刃
|
834 |
-
余
|
835 |
-
支
|
836 |
-
洗
|
837 |
-
吹
|
838 |
-
休
|
839 |
-
闲
|
840 |
-
简
|
841 |
-
撸
|
842 |
-
根
|
843 |
-
据
|
844 |
-
鸽
|
845 |
-
铜
|
846 |
-
亲
|
847 |
-
贝
|
848 |
-
纪
|
849 |
-
吕
|
850 |
-
豚
|
851 |
-
饅
|
852 |
-
悦
|
853 |
-
汇
|
854 |
-
油
|
855 |
-
无
|
856 |
-
制
|
857 |
-
在
|
858 |
-
寻
|
859 |
-
碳
|
860 |
-
馋
|
861 |
-
嘴
|
862 |
-
架
|
863 |
-
荣
|
864 |
-
斋
|
865 |
-
护
|
866 |
-
角
|
867 |
-
落
|
868 |
-
铺
|
869 |
-
臊
|
870 |
-
丝
|
871 |
-
围
|
872 |
-
柳
|
873 |
-
蛳
|
874 |
-
蒲
|
875 |
-
庙
|
876 |
-
视
|
877 |
-
荐
|
878 |
-
缃
|
879 |
-
想
|
880 |
-
呀
|
881 |
-
姜
|
882 |
-
母
|
883 |
-
起
|
884 |
-
泉
|
885 |
-
族
|
886 |
-
群
|
887 |
-
众
|
888 |
-
其
|
889 |
-
它
|
890 |
-
血
|
891 |
-
双
|
892 |
-
补
|
893 |
-
阴
|
894 |
-
润
|
895 |
-
不
|
896 |
-
禽
|
897 |
-
类
|
898 |
-
款
|
899 |
-
较
|
900 |
-
候
|
901 |
-
些
|
902 |
-
畅
|
903 |
-
脉
|
904 |
-
痰
|
905 |
-
疏
|
906 |
-
肝
|
907 |
-
帮
|
908 |
-
助
|
909 |
-
消
|
910 |
-
增
|
911 |
-
欲
|
912 |
-
尤
|
913 |
-
对
|
914 |
-
胃
|
915 |
-
畏
|
916 |
-
寒
|
917 |
-
很
|
918 |
-
效
|
919 |
-
秘
|
920 |
-
黑
|
921 |
-
嘿
|
922 |
-
佳
|
923 |
-
越
|
924 |
-
脑
|
925 |
-
桶
|
926 |
-
项
|
927 |
-
▪
|
928 |
-
|
|
929 |
-
榜
|
930 |
-
许
|
931 |
-
仿
|
932 |
-
或
|
933 |
-
酬
|
934 |
-
宾
|
935 |
-
指
|
936 |
-
买
|
937 |
-
赠
|
938 |
-
笃
|
939 |
-
鼎
|
940 |
-
盆
|
941 |
-
™
|
942 |
-
咕
|
943 |
-
咾
|
944 |
-
肚
|
945 |
-
识
|
946 |
-
栖
|
947 |
-
凤
|
948 |
-
渡
|
949 |
-
筒
|
950 |
-
彬
|
951 |
-
弟
|
952 |
-
醋
|
953 |
-
財
|
954 |
-
師
|
955 |
-
民
|
956 |
-
博
|
957 |
-
丁
|
958 |
-
扒
|
959 |
-
翅
|
960 |
-
墨
|
961 |
-
柠
|
962 |
-
檬
|
963 |
-
紫
|
964 |
-
薯
|
965 |
-
焗
|
966 |
-
芝
|
967 |
-
士
|
968 |
-
胸
|
969 |
-
图
|
970 |
-
妮
|
971 |
-
杀
|
972 |
-
菌
|
973 |
-
爹
|
974 |
-
尽
|
975 |
-
归
|
976 |
-
宁
|
977 |
-
粽
|
978 |
-
瑞
|
979 |
-
轩
|
980 |
-
午
|
981 |
-
陕
|
982 |
-
出
|
983 |
-
才
|
984 |
-
盘
|
985 |
-
植
|
986 |
-
甜
|
987 |
-
粒
|
988 |
-
神
|
989 |
-
舟
|
990 |
-
玻
|
991 |
-
璃
|
992 |
-
医
|
993 |
-
划
|
994 |
-
药
|
995 |
-
郡
|
996 |
-
毛
|
997 |
-
张
|
998 |
-
姐
|
999 |
-
留
|
1000 |
-
满
|
1001 |
-
下
|
1002 |
-
兄
|
1003 |
-
法
|
1004 |
-
鋪
|
1005 |
-
é
|
1006 |
-
[
|
1007 |
-
槑
|
1008 |
-
]
|
1009 |
-
言
|
1010 |
-
密
|
1011 |
-
帝
|
1012 |
-
場
|
1013 |
-
朴
|
1014 |
-
寨
|
1015 |
-
奉
|
1016 |
-
z
|
1017 |
-
什
|
1018 |
-
顺
|
1019 |
-
疆
|
1020 |
-
馕
|
1021 |
-
豫
|
1022 |
-
怀
|
1023 |
-
旧
|
1024 |
-
验
|
1025 |
-
昙
|
1026 |
-
搞
|
1027 |
-
圣
|
1028 |
-
格
|
1029 |
-
ǐ
|
1030 |
-
à
|
1031 |
-
隱
|
1032 |
-
燙
|
1033 |
-
状
|
1034 |
-
居
|
1035 |
-
饱
|
1036 |
-
底
|
1037 |
-
免
|
1038 |
-
费
|
1039 |
-
廣
|
1040 |
-
點
|
1041 |
-
專
|
1042 |
-
門
|
1043 |
-
语
|
1044 |
-
叉
|
1045 |
-
左
|
1046 |
-
岸
|
1047 |
-
发
|
1048 |
-
乌
|
1049 |
-
齐
|
1050 |
-
��
|
1051 |
-
命
|
1052 |
-
●
|
1053 |
-
修
|
1054 |
-
闸
|
1055 |
-
飞
|
1056 |
-
空
|
1057 |
-
养
|
1058 |
-
笼
|
1059 |
-
興
|
1060 |
-
银
|
1061 |
-
套
|
1062 |
-
東
|
1063 |
-
吴
|
1064 |
-
麺
|
1065 |
-
館
|
1066 |
-
¥
|
1067 |
-
从
|
1068 |
-
前
|
1069 |
-
乙
|
1070 |
-
弘
|
1071 |
-
炝
|
1072 |
-
夏
|
1073 |
-
秋
|
1074 |
-
冬
|
1075 |
-
咖
|
1076 |
-
啡
|
1077 |
-
℃
|
1078 |
-
©
|
1079 |
-
莲
|
1080 |
-
塘
|
1081 |
-
哆
|
1082 |
-
梓
|
1083 |
-
依
|
1084 |
-
哎
|
1085 |
-
麦
|
1086 |
-
泗
|
1087 |
-
泾
|
1088 |
-
瓯
|
1089 |
-
胡
|
1090 |
-
∣
|
1091 |
-
歺
|
1092 |
-
八
|
1093 |
-
度
|
1094 |
-
深
|
1095 |
-
夜
|
1096 |
-
旋
|
1097 |
-
永
|
1098 |
-
远
|
1099 |
-
温
|
1100 |
-
又
|
1101 |
-
晶
|
1102 |
-
溏
|
1103 |
-
ä
|
1104 |
-
盔
|
1105 |
-
飘
|
1106 |
-
劲
|
1107 |
-
旺
|
1108 |
-
楸
|
1109 |
-
良
|
1110 |
-
譜
|
1111 |
-
餅
|
1112 |
-
苏
|
1113 |
-
莎
|
1114 |
-
足
|
1115 |
-
宵
|
1116 |
-
与
|
1117 |
-
楊
|
1118 |
-
國
|
1119 |
-
莱
|
1120 |
-
卜
|
1121 |
-
炊
|
1122 |
-
挑
|
1123 |
-
剔
|
1124 |
-
存
|
1125 |
-
错
|
1126 |
-
方
|
1127 |
-
程
|
1128 |
-
解
|
1129 |
-
能
|
1130 |
-
堆
|
1131 |
-
洲
|
1132 |
-
诗
|
1133 |
-
玛
|
1134 |
-
渴
|
1135 |
-
脖
|
1136 |
-
丛
|
1137 |
-
狼
|
1138 |
-
翁
|
1139 |
-
姓
|
1140 |
-
葫
|
1141 |
-
芦
|
1142 |
-
沾
|
1143 |
-
葵
|
1144 |
-
の
|
1145 |
-
咔
|
1146 |
-
粹
|
1147 |
-
弥
|
1148 |
-
乖
|
1149 |
-
悠
|
1150 |
-
茗
|
1151 |
-
别
|
1152 |
-
走
|
1153 |
-
柒
|
1154 |
-
榨
|
1155 |
-
咥
|
1156 |
-
虹
|
1157 |
-
沏
|
1158 |
-
桔
|
1159 |
-
叔
|
1160 |
-
贴
|
1161 |
-
办
|
1162 |
-
充
|
1163 |
-
崎
|
1164 |
-
鮮
|
1165 |
-
属
|
1166 |
-
彭
|
1167 |
-
浦
|
1168 |
-
町
|
1169 |
-
郎
|
1170 |
-
°
|
1171 |
-
悟
|
1172 |
-
惑
|
1173 |
-
科
|
1174 |
-
英
|
1175 |
-
育
|
1176 |
-
岁
|
1177 |
-
幼
|
1178 |
-
园
|
1179 |
-
慢
|
1180 |
-
摆
|
1181 |
-
_
|
1182 |
-
狐
|
1183 |
-
狸
|
1184 |
-
典
|
1185 |
-
暴
|
1186 |
-
帥
|
1187 |
-
尾
|
1188 |
-
琼
|
1189 |
-
見
|
1190 |
-
望
|
1191 |
-
烟
|
1192 |
-
坚
|
1193 |
-
鸳
|
1194 |
-
鸯
|
1195 |
-
直
|
1196 |
-
校
|
1197 |
-
饪
|
1198 |
-
承
|
1199 |
-
们
|
1200 |
-
么
|
1201 |
-
¥
|
1202 |
-
份
|
1203 |
-
宇
|
1204 |
-
炉
|
1205 |
-
峰
|
1206 |
-
乃
|
1207 |
-
趣
|
1208 |
-
代
|
1209 |
-
刨
|
1210 |
-
抖
|
1211 |
-
音
|
1212 |
-
占
|
1213 |
-
谜
|
1214 |
-
答
|
1215 |
-
熟
|
1216 |
-
控
|
1217 |
-
蕾
|
1218 |
-
节
|
1219 |
-
社
|
1220 |
-
您
|
1221 |
-
《
|
1222 |
-
羅
|
1223 |
-
茉
|
1224 |
-
瀞
|
1225 |
-
憨
|
1226 |
-
尼
|
1227 |
-
丰
|
1228 |
-
镇
|
1229 |
-
酿
|
1230 |
-
避
|
1231 |
-
抢
|
1232 |
-
突
|
1233 |
-
破
|
1234 |
-
杰
|
1235 |
-
姆
|
1236 |
-
波
|
1237 |
-
观
|
1238 |
-
澜
|
1239 |
-
庫
|
1240 |
-
舒
|
1241 |
-
谁
|
1242 |
-
短
|
1243 |
-
島
|
1244 |
-
爷
|
1245 |
-
码
|
1246 |
-
每
|
1247 |
-
欧
|
1248 |
-
注
|
1249 |
-
册
|
1250 |
-
标
|
1251 |
-
腸
|
1252 |
-
奈
|
1253 |
-
熊
|
1254 |
-
粵
|
1255 |
-
吳
|
1256 |
-
衢
|
1257 |
-
雄
|
1258 |
-
际
|
1259 |
-
葱
|
1260 |
-
柱
|
1261 |
-
压
|
1262 |
-
陪
|
1263 |
-
器
|
1264 |
-
厘
|
1265 |
-
柴
|
1266 |
-
席
|
1267 |
-
饿
|
1268 |
-
俏
|
1269 |
-
汽
|
1270 |
-
站
|
1271 |
-
霜
|
1272 |
-
荟
|
1273 |
-
禾
|
1274 |
-
咘
|
1275 |
-
臭
|
1276 |
-
夷
|
1277 |
-
肖
|
1278 |
-
微
|
1279 |
-
组
|
1280 |
-
刺
|
1281 |
-
拼
|
1282 |
-
打
|
1283 |
-
信
|
1284 |
-
步
|
1285 |
-
!
|
1286 |
-
说
|
1287 |
-
囍
|
1288 |
-
智
|
1289 |
-
藍
|
1290 |
-
鹿
|
1291 |
-
巷
|
1292 |
-
顾
|
1293 |
-
勃
|
1294 |
-
頭
|
1295 |
-
帕
|
1296 |
-
徐
|
1297 |
-
渣
|
1298 |
-
嗨
|
1299 |
-
鲍
|
1300 |
-
抽
|
1301 |
-
莊
|
1302 |
-
胗
|
1303 |
-
耳
|
1304 |
-
栈
|
1305 |
-
葑
|
1306 |
-
谊
|
1307 |
-
李
|
1308 |
-
够
|
1309 |
-
歪
|
1310 |
-
到
|
1311 |
-
杜
|
1312 |
-
绪
|
1313 |
-
始
|
1314 |
-
“
|
1315 |
-
”
|
1316 |
-
编
|
1317 |
-
感
|
1318 |
-
谢
|
1319 |
-
阿
|
1320 |
-
妹
|
1321 |
-
抄
|
1322 |
-
屿
|
1323 |
-
旁
|
1324 |
-
钟
|
1325 |
-
糰
|
1326 |
-
鷄
|
1327 |
-
觉
|
1328 |
-
队
|
1329 |
-
明
|
1330 |
-
没
|
1331 |
-
幺
|
1332 |
-
罗
|
1333 |
-
恭
|
1334 |
-
發
|
1335 |
-
溢
|
1336 |
-
圆
|
1337 |
-
筵
|
1338 |
-
鲩
|
1339 |
-
斤
|
1340 |
-
噜
|
1341 |
-
府
|
1342 |
-
雕
|
1343 |
-
牦
|
1344 |
-
津
|
1345 |
-
間
|
1346 |
-
粤
|
1347 |
-
义
|
1348 |
-
驾
|
1349 |
-
嫩
|
1350 |
-
眷
|
1351 |
-
苔
|
1352 |
-
怡
|
1353 |
-
逍
|
1354 |
-
遥
|
1355 |
-
即
|
1356 |
-
把
|
1357 |
-
季
|
1358 |
-
鹃
|
1359 |
-
妈
|
1360 |
-
烙
|
1361 |
-
淡
|
1362 |
-
嘟
|
1363 |
-
班
|
1364 |
-
散
|
1365 |
-
磐
|
1366 |
-
稣
|
1367 |
-
耍
|
1368 |
-
芽
|
1369 |
-
昌
|
1370 |
-
粿
|
1371 |
-
鼓
|
1372 |
-
姑
|
1373 |
-
央
|
1374 |
-
告
|
1375 |
-
翔
|
1376 |
-
迦
|
1377 |
-
缆
|
1378 |
-
怪
|
1379 |
-
俗
|
1380 |
-
菩
|
1381 |
-
宥
|
1382 |
-
酵
|
1383 |
-
男
|
1384 |
-
顿
|
1385 |
-
蚂
|
1386 |
-
蚁
|
1387 |
-
q
|
1388 |
-
緑
|
1389 |
-
瑩
|
1390 |
-
養
|
1391 |
-
滿
|
1392 |
-
接
|
1393 |
-
立
|
1394 |
-
勤
|
1395 |
-
封
|
1396 |
-
徽
|
1397 |
-
酷
|
1398 |
-
(
|
1399 |
-
慕
|
1400 |
-
曹
|
1401 |
-
吊
|
1402 |
-
咸
|
1403 |
-
矿
|
1404 |
-
黛
|
1405 |
-
刻
|
1406 |
-
呗
|
1407 |
-
布
|
1408 |
-
袋
|
1409 |
-
钝
|
1410 |
-
丘
|
1411 |
-
逗
|
1412 |
-
窗
|
1413 |
-
吾
|
1414 |
-
塔
|
1415 |
-
坡
|
1416 |
-
周
|
1417 |
-
雙
|
1418 |
-
朝
|
1419 |
-
末
|
1420 |
-
如
|
1421 |
-
杨
|
1422 |
-
淮
|
1423 |
-
摄
|
1424 |
-
影
|
1425 |
-
翻
|
1426 |
-
窝
|
1427 |
-
物
|
1428 |
-
椰
|
1429 |
-
荞
|
1430 |
-
搅
|
1431 |
-
陇
|
1432 |
-
收
|
1433 |
-
两
|
1434 |
-
倍
|
1435 |
-
狮
|
1436 |
-
伊
|
1437 |
-
後
|
1438 |
-
晖
|
1439 |
-
長
|
1440 |
-
箐
|
1441 |
-
豪
|
1442 |
-
耀
|
1443 |
-
漢
|
1444 |
-
釜
|
1445 |
-
宮
|
1446 |
-
次
|
1447 |
-
掌
|
1448 |
-
斯
|
1449 |
-
朋
|
1450 |
-
针
|
1451 |
-
菇
|
1452 |
-
蚬
|
1453 |
-
拍
|
1454 |
-
雒
|
1455 |
-
陽
|
1456 |
-
漿
|
1457 |
-
麵
|
1458 |
-
條
|
1459 |
-
部
|
1460 |
-
←
|
1461 |
-
柜
|
1462 |
-
驴
|
1463 |
-
证
|
1464 |
-
票
|
1465 |
-
账
|
1466 |
-
汗
|
1467 |
-
汆
|
1468 |
-
稍
|
1469 |
-
戏
|
1470 |
-
菋
|
1471 |
-
卫
|
1472 |
-
匹
|
1473 |
-
栋
|
1474 |
-
馨
|
1475 |
-
肯
|
1476 |
-
迪
|
1477 |
-
邢
|
1478 |
-
梯
|
1479 |
-
容
|
1480 |
-
嘉
|
1481 |
-
莞
|
1482 |
-
袁
|
1483 |
-
锦
|
1484 |
-
遮
|
1485 |
-
雨
|
1486 |
-
篷
|
1487 |
-
腰
|
1488 |
-
肺
|
1489 |
-
剡
|
1490 |
-
乾
|
1491 |
-
,
|
1492 |
-
翰
|
1493 |
-
蔚
|
1494 |
-
刁
|
1495 |
-
藤
|
1496 |
-
帅
|
1497 |
-
傳
|
1498 |
-
维
|
1499 |
-
笔
|
1500 |
-
历
|
1501 |
-
史
|
1502 |
-
】
|
1503 |
-
适
|
1504 |
-
煌
|
1505 |
-
倾
|
1506 |
-
沧
|
1507 |
-
姬
|
1508 |
-
训
|
1509 |
-
邵
|
1510 |
-
诺
|
1511 |
-
敢
|
1512 |
-
质
|
1513 |
-
益
|
1514 |
-
佬
|
1515 |
-
兼
|
1516 |
-
职
|
1517 |
-
盅
|
1518 |
-
诊
|
1519 |
-
扬
|
1520 |
-
速
|
1521 |
-
宝
|
1522 |
-
褚
|
1523 |
-
糁
|
1524 |
-
钢
|
1525 |
-
松
|
1526 |
-
婚
|
1527 |
-
秀
|
1528 |
-
盐
|
1529 |
-
及
|
1530 |
-
個
|
1531 |
-
飲
|
1532 |
-
绍
|
1533 |
-
槿
|
1534 |
-
觅
|
1535 |
-
逼
|
1536 |
-
兽
|
1537 |
-
》
|
1538 |
-
吐
|
1539 |
-
右
|
1540 |
-
久
|
1541 |
-
闺
|
1542 |
-
祝
|
1543 |
-
贺
|
1544 |
-
啦
|
1545 |
-
瓦
|
1546 |
-
甏
|
1547 |
-
探
|
1548 |
-
辰
|
1549 |
-
碚
|
1550 |
-
芳
|
1551 |
-
灣
|
1552 |
-
泷
|
1553 |
-
饰
|
1554 |
-
隔
|
1555 |
-
帐
|
1556 |
-
飮
|
1557 |
-
搜
|
1558 |
-
時
|
1559 |
-
宫
|
1560 |
-
蘭
|
1561 |
-
再
|
1562 |
-
糊
|
1563 |
-
仓
|
1564 |
-
稻
|
1565 |
-
玉
|
1566 |
-
印
|
1567 |
-
象
|
1568 |
-
稀
|
1569 |
-
拴
|
1570 |
-
桩
|
1571 |
-
餃
|
1572 |
-
贾
|
1573 |
-
贱
|
1574 |
-
球
|
1575 |
-
萌
|
1576 |
-
撕
|
1577 |
-
脂
|
1578 |
-
肪
|
1579 |
-
层
|
1580 |
-
晋
|
1581 |
-
荷
|
1582 |
-
钱
|
1583 |
-
潍
|
1584 |
-
失
|
1585 |
-
孜
|
1586 |
-
提
|
1587 |
-
供
|
1588 |
-
具
|
1589 |
-
洛
|
1590 |
-
涂
|
1591 |
-
叠
|
1592 |
-
豊
|
1593 |
-
积
|
1594 |
-
媒
|
1595 |
-
级
|
1596 |
-
纷
|
1597 |
-
巧
|
1598 |
-
瓜
|
1599 |
-
苹
|
1600 |
-
琥
|
1601 |
-
珀
|
1602 |
-
蜂
|
1603 |
-
柚
|
1604 |
-
莉
|
1605 |
-
爆
|
1606 |
-
龄
|
1607 |
-
饸
|
1608 |
-
饹
|
1609 |
-
郞
|
1610 |
-
嫡
|
1611 |
-
億
|
1612 |
-
姚
|
1613 |
-
繁
|
1614 |
-
监
|
1615 |
-
督
|
1616 |
-
示
|
1617 |
-
佰
|
1618 |
-
汍
|
1619 |
-
%
|
1620 |
-
甘
|
1621 |
-
蔗
|
1622 |
-
喻
|
1623 |
-
骄
|
1624 |
-
基
|
1625 |
-
因
|
1626 |
-
匙
|
1627 |
-
评
|
1628 |
-
侠
|
1629 |
-
赢
|
1630 |
-
交
|
1631 |
-
歡
|
1632 |
-
待
|
1633 |
-
馒
|
1634 |
-
产
|
1635 |
-
倡
|
1636 |
-
导
|
1637 |
-
低
|
1638 |
-
茂
|
1639 |
-
沐
|
1640 |
-
熙
|
1641 |
-
延
|
1642 |
-
丧
|
1643 |
-
受
|
1644 |
-
确
|
1645 |
-
睡
|
1646 |
-
蓝
|
1647 |
-
未
|
1648 |
-
賣
|
1649 |
-
電
|
1650 |
-
話
|
1651 |
-
农
|
1652 |
-
札
|
1653 |
-
岗
|
1654 |
-
树
|
1655 |
-
赖
|
1656 |
-
琪
|
1657 |
-
驻
|
1658 |
-
辉
|
1659 |
-
软
|
1660 |
-
防
|
1661 |
-
盗
|
1662 |
-
隐
|
1663 |
-
形
|
1664 |
-
纱
|
1665 |
-
灶
|
1666 |
-
扎
|
1667 |
-
环
|
1668 |
-
禁
|
1669 |
-
止
|
1670 |
-
吸
|
1671 |
-
萬
|
1672 |
-
昆
|
1673 |
-
几
|
1674 |
-
跳
|
1675 |
-
媳
|
1676 |
-
婦
|
1677 |
-
坛
|
1678 |
-
<
|
1679 |
-
>
|
1680 |
-
拿
|
1681 |
-
妖
|
1682 |
-
协
|
1683 |
-
朱
|
1684 |
-
住
|
1685 |
-
宿
|
1686 |
-
魅
|
1687 |
-
照
|
1688 |
-
碰
|
1689 |
-
滴
|
1690 |
-
何
|
1691 |
-
贤
|
1692 |
-
棒
|
1693 |
-
持
|
1694 |
-
啊
|
1695 |
-
赛
|
1696 |
-
版
|
1697 |
-
帆
|
1698 |
-
順
|
1699 |
-
狗
|
1700 |
-
情
|
1701 |
-
+
|
1702 |
-
洞
|
1703 |
-
奋
|
1704 |
-
斗
|
1705 |
-
亨
|
1706 |
-
叶
|
1707 |
-
涛
|
1708 |
-
铝
|
1709 |
-
范
|
1710 |
-
汀
|
1711 |
-
號
|
1712 |
-
律
|
1713 |
-
價
|
1714 |
-
鞭
|
1715 |
-
肩
|
1716 |
-
#
|
1717 |
-
愚
|
1718 |
-
奥
|
1719 |
-
脯
|
1720 |
-
沁
|
1721 |
-
奚
|
1722 |
-
魏
|
1723 |
-
批
|
1724 |
-
租
|
1725 |
-
宠
|
1726 |
-
炲
|
1727 |
-
横
|
1728 |
-
沥
|
1729 |
-
彪
|
1730 |
-
投
|
1731 |
-
诉
|
1732 |
-
犀
|
1733 |
-
去
|
1734 |
-
屠
|
1735 |
-
鲅
|
1736 |
-
~
|
1737 |
-
俱
|
1738 |
-
徒
|
1739 |
-
鴻
|
1740 |
-
劉
|
1741 |
-
迷
|
1742 |
-
荤
|
1743 |
-
威
|
1744 |
-
曜
|
1745 |
-
連
|
1746 |
-
鎖
|
1747 |
-
馳
|
1748 |
-
载
|
1749 |
-
添
|
1750 |
-
筑
|
1751 |
-
陵
|
1752 |
-
佐
|
1753 |
-
敦
|
1754 |
-
>
|
1755 |
-
郭
|
1756 |
-
厢
|
1757 |
-
祛
|
1758 |
-
茄
|
1759 |
-
堰
|
1760 |
-
漂
|
1761 |
-
亮
|
1762 |
-
爅
|
1763 |
-
虎
|
1764 |
-
膀
|
1765 |
-
叼
|
1766 |
-
猫
|
1767 |
-
藏
|
1768 |
-
陶
|
1769 |
-
鲈
|
1770 |
-
栏
|
1771 |
-
…
|
1772 |
-
考
|
1773 |
-
冲
|
1774 |
-
胖
|
1775 |
-
裕
|
1776 |
-
沃
|
1777 |
-
挂
|
1778 |
-
报
|
1779 |
-
兔
|
1780 |
-
胶
|
1781 |
-
臨
|
1782 |
-
附
|
1783 |
-
处
|
1784 |
-
嫂
|
1785 |
-
萃
|
1786 |
-
幂
|
1787 |
-
吻
|
1788 |
-
聪
|
1789 |
-
糯
|
1790 |
-
糍
|
1791 |
-
棋
|
1792 |
-
烓
|
1793 |
-
脊
|
1794 |
-
衡
|
1795 |
-
亚
|
1796 |
-
副
|
1797 |
-
肤
|
1798 |
-
荆
|
1799 |
-
榴
|
1800 |
-
绚
|
1801 |
-
黔
|
1802 |
-
圈
|
1803 |
-
纳
|
1804 |
-
课
|
1805 |
-
逸
|
1806 |
-
宜
|
1807 |
-
=
|
1808 |
-
烊
|
1809 |
-
姨
|
1810 |
-
施
|
1811 |
-
救
|
1812 |
-
贸
|
1813 |
-
啥
|
1814 |
-
也
|
1815 |
-
贯
|
1816 |
-
雷
|
1817 |
-
呆
|
1818 |
-
棠
|
1819 |
-
伙
|
1820 |
-
岐
|
1821 |
-
宛
|
1822 |
-
媽
|
1823 |
-
寸
|
1824 |
-
澳
|
1825 |
-
已
|
1826 |
-
還
|
1827 |
-
兒
|
1828 |
-
Ⅱ
|
1829 |
-
凯
|
1830 |
-
株
|
1831 |
-
藕
|
1832 |
-
闽
|
1833 |
-
窖
|
1834 |
-
瀘
|
1835 |
-
售
|
1836 |
-
索
|
1837 |
-
体
|
1838 |
-
型
|
1839 |
-
樂
|
1840 |
-
琅
|
1841 |
-
琊
|
1842 |
-
夺
|
1843 |
-
扩
|
1844 |
-
)
|
1845 |
-
诱
|
1846 |
-
滩
|
1847 |
-
浓
|
1848 |
-
要
|
1849 |
-
芹
|
1850 |
-
君
|
1851 |
-
反
|
1852 |
-
复
|
1853 |
-
羔
|
1854 |
-
追
|
1855 |
-
演
|
1856 |
-
唱
|
1857 |
-
過
|
1858 |
-
綫
|
1859 |
-
乳
|
1860 |
-
涩
|
1861 |
-
芒
|
1862 |
-
露
|
1863 |
-
蒙
|
1864 |
-
羯
|
1865 |
-
励
|
1866 |
-
志
|
1867 |
-
嵊
|
1868 |
-
閒
|
1869 |
-
罐
|
1870 |
-
佛
|
1871 |
-
墙
|
1872 |
-
頁
|
1873 |
-
坐
|
1874 |
-
眯
|
1875 |
-
预
|
1876 |
-
華
|
1877 |
-
廉
|
1878 |
-
释
|
1879 |
-
必
|
1880 |
-
随
|
1881 |
-
逐
|
1882 |
-
引
|
1883 |
-
究
|
1884 |
-
爸
|
1885 |
-
灵
|
1886 |
-
勺
|
1887 |
-
岂
|
1888 |
-
俵
|
1889 |
-
廷
|
1890 |
-
苗
|
1891 |
-
岭
|
1892 |
-
将
|
1893 |
-
來
|
1894 |
-
泛
|
1895 |
-
朵
|
1896 |
-
維
|
1897 |
-
園
|
1898 |
-
廳
|
1899 |
-
圳
|
1900 |
-
伦
|
1901 |
-
寶
|
1902 |
-
付
|
1903 |
-
仅
|
1904 |
-
減
|
1905 |
-
谦
|
1906 |
-
硕
|
1907 |
-
抚
|
1908 |
-
慶
|
1909 |
-
雞
|
1910 |
-
郝
|
1911 |
-
计
|
1912 |
-
熱
|
1913 |
-
杖
|
1914 |
-
亭
|
1915 |
-
喱
|
1916 |
-
惜
|
1917 |
-
莒
|
1918 |
-
另
|
1919 |
-
陆
|
1920 |
-
拾
|
1921 |
-
伍
|
1922 |
-
谈
|
1923 |
-
嚼
|
1924 |
-
娅
|
1925 |
-
翟
|
1926 |
-
別
|
1927 |
-
颈
|
1928 |
-
邮
|
1929 |
-
弄
|
1930 |
-
•
|
1931 |
-
扇
|
1932 |
-
哦
|
1933 |
-
吼
|
1934 |
-
耶
|
1935 |
-
宅
|
1936 |
-
帽
|
1937 |
-
魂
|
1938 |
-
搭
|
1939 |
-
笨
|
1940 |
-
映
|
1941 |
-
拨
|
1942 |
-
烂
|
1943 |
-
馈
|
1944 |
-
胎
|
1945 |
-
溶
|
1946 |
-
\
|
1947 |
-
善
|
1948 |
-
销
|
1949 |
-
难
|
1950 |
-
忘
|
1951 |
-
斑
|
1952 |
-
噢
|
1953 |
-
錫
|
1954 |
-
娟
|
1955 |
-
語
|
1956 |
-
哨
|
1957 |
-
筷
|
1958 |
-
摊
|
1959 |
-
均
|
1960 |
-
椅
|
1961 |
-
改
|
1962 |
-
换
|
1963 |
-
跟
|
1964 |
-
帖
|
1965 |
-
勾
|
1966 |
-
缅
|
1967 |
-
孙
|
1968 |
-
啪
|
1969 |
-
栗
|
1970 |
-
着
|
1971 |
-
漁
|
1972 |
-
吓
|
1973 |
-
易
|
1974 |
-
漲
|
1975 |
-
靖
|
1976 |
-
枸
|
1977 |
-
馬
|
1978 |
-
昇
|
1979 |
-
當
|
1980 |
-
麥
|
1981 |
-
妆
|
1982 |
-
塑
|
1983 |
-
魯
|
1984 |
-
鎮
|
1985 |
-
吗
|
1986 |
-
魁
|
1987 |
-
丹
|
1988 |
-
杈
|
1989 |
-
技
|
1990 |
-
术
|
1991 |
-
泼
|
1992 |
-
零
|
1993 |
-
忙
|
1994 |
-
漾
|
1995 |
-
創
|
1996 |
-
攀
|
1997 |
-
郫
|
1998 |
-
抿
|
1999 |
-
稼
|
2000 |
-
假
|
2001 |
-
循
|
2002 |
-
泳
|
2003 |
-
池
|
2004 |
-
膨
|
2005 |
-
巨
|
2006 |
-
歧
|
2007 |
-
愛
|
2008 |
-
鵝
|
2009 |
-
悉
|
2010 |
-
灯
|
2011 |
-
激
|
2012 |
-
踪
|
2013 |
-
细
|
2014 |
-
會
|
2015 |
-
舔
|
2016 |
-
愿
|
2017 |
-
們
|
2018 |
-
衹
|
2019 |
-
令
|
2020 |
-
浔
|
2021 |
-
丨
|
2022 |
-
酉
|
2023 |
-
惦
|
2024 |
-
耕
|
2025 |
-
×
|
2026 |
-
闪
|
2027 |
-
經
|
2028 |
-
玺
|
2029 |
-
芯
|
2030 |
-
襄
|
2031 |
-
賦
|
2032 |
-
予
|
2033 |
-
學
|
2034 |
-
苑
|
2035 |
-
托
|
2036 |
-
丢
|
2037 |
-
赔
|
2038 |
-
ā
|
2039 |
-
聽
|
2040 |
-
濤
|
2041 |
-
浮
|
2042 |
-
伯
|
2043 |
-
兑
|
2044 |
-
币
|
2045 |
-
治
|
2046 |
-
愈
|
2047 |
-
盱
|
2048 |
-
眙
|
2049 |
-
漏
|
2050 |
-
夕
|
2051 |
-
搏
|
2052 |
-
由
|
2053 |
-
完
|
2054 |
-
切
|
2055 |
-
罕
|
2056 |
-
息
|
2057 |
-
燃
|
2058 |
-
叙
|
2059 |
-
萍
|
2060 |
-
碑
|
2061 |
-
腌
|
2062 |
-
衣
|
2063 |
-
害
|
2064 |
-
己
|
2065 |
-
患
|
2066 |
-
浙
|
2067 |
-
闫
|
2068 |
-
|
|
2069 |
-
芈
|
2070 |
-
谣
|
2071 |
-
戴
|
2072 |
-
錦
|
2073 |
-
謝
|
2074 |
-
恩
|
2075 |
-
芊
|
2076 |
-
拇
|
2077 |
-
矾
|
2078 |
-
政
|
2079 |
-
锣
|
2080 |
-
跃
|
2081 |
-
���
|
2082 |
-
寺
|
2083 |
-
驼
|
2084 |
-
芙
|
2085 |
-
插
|
2086 |
-
恒
|
2087 |
-
咪
|
2088 |
-
禄
|
2089 |
-
摩
|
2090 |
-
轮
|
2091 |
-
譚
|
2092 |
-
鴨
|
2093 |
-
戊
|
2094 |
-
申
|
2095 |
-
丙
|
2096 |
-
邊
|
2097 |
-
唯
|
2098 |
-
登
|
2099 |
-
困
|
2100 |
-
貢
|
2101 |
-
誉
|
2102 |
-
賀
|
2103 |
-
认
|
2104 |
-
准
|
2105 |
-
妃
|
2106 |
-
潜
|
2107 |
-
旨
|
2108 |
-
死
|
2109 |
-
桌
|
2110 |
-
尧
|
2111 |
-
箱
|
2112 |
-
届
|
2113 |
-
获
|
2114 |
-
顶
|
2115 |
-
柿
|
2116 |
-
臂
|
2117 |
-
蓮
|
2118 |
-
凭
|
2119 |
-
慵
|
2120 |
-
懒
|
2121 |
-
醇
|
2122 |
-
籍
|
2123 |
-
静
|
2124 |
-
淌
|
2125 |
-
此
|
2126 |
-
甚
|
2127 |
-
绣
|
2128 |
-
渌
|
2129 |
-
呢
|
2130 |
-
问
|
2131 |
-
抹
|
2132 |
-
弹
|
2133 |
-
捷
|
2134 |
-
邱
|
2135 |
-
旦
|
2136 |
-
曉
|
2137 |
-
艳
|
2138 |
-
雲
|
2139 |
-
研
|
2140 |
-
守
|
2141 |
-
鼻
|
2142 |
-
¦
|
2143 |
-
揽
|
2144 |
-
含
|
2145 |
-
沂
|
2146 |
-
听
|
2147 |
-
帛
|
2148 |
-
端
|
2149 |
-
兆
|
2150 |
-
舆
|
2151 |
-
谐
|
2152 |
-
帘
|
2153 |
-
笑
|
2154 |
-
寅
|
2155 |
-
【
|
2156 |
-
車
|
2157 |
-
@
|
2158 |
-
&
|
2159 |
-
胪
|
2160 |
-
臻
|
2161 |
-
蘆
|
2162 |
-
衙
|
2163 |
-
餌
|
2164 |
-
①
|
2165 |
-
鉴
|
2166 |
-
敬
|
2167 |
-
枝
|
2168 |
-
沈
|
2169 |
-
衔
|
2170 |
-
蝉
|
2171 |
-
芜
|
2172 |
-
烈
|
2173 |
-
库
|
2174 |
-
椿
|
2175 |
-
稳
|
2176 |
-
’
|
2177 |
-
豌
|
2178 |
-
亿
|
2179 |
-
缙
|
2180 |
-
獨
|
2181 |
-
菊
|
2182 |
-
沤
|
2183 |
-
迟
|
2184 |
-
忧
|
2185 |
-
沫
|
2186 |
-
伟
|
2187 |
-
靠
|
2188 |
-
并
|
2189 |
-
互
|
2190 |
-
晓
|
2191 |
-
枫
|
2192 |
-
窑
|
2193 |
-
芭
|
2194 |
-
夯
|
2195 |
-
鸿
|
2196 |
-
無
|
2197 |
-
烦
|
2198 |
-
恼
|
2199 |
-
闖
|
2200 |
-
贞
|
2201 |
-
鳥
|
2202 |
-
厦
|
2203 |
-
抱
|
2204 |
-
歐
|
2205 |
-
藝
|
2206 |
-
廖
|
2207 |
-
振
|
2208 |
-
腦
|
2209 |
-
舖
|
2210 |
-
酪
|
2211 |
-
碎
|
2212 |
-
浪
|
2213 |
-
荔
|
2214 |
-
巫
|
2215 |
-
撈
|
2216 |
-
醬
|
2217 |
-
段
|
2218 |
-
昔
|
2219 |
-
潘
|
2220 |
-
Λ
|
2221 |
-
禧
|
2222 |
-
妻
|
2223 |
-
瓢
|
2224 |
-
柏
|
2225 |
-
郁
|
2226 |
-
暹
|
2227 |
-
兮
|
2228 |
-
娃
|
2229 |
-
敏
|
2230 |
-
進
|
2231 |
-
距
|
2232 |
-
离
|
2233 |
-
倪
|
2234 |
-
征
|
2235 |
-
咱
|
2236 |
-
继
|
2237 |
-
责
|
2238 |
-
任
|
2239 |
-
銅
|
2240 |
-
啖
|
2241 |
-
赞
|
2242 |
-
菲
|
2243 |
-
蛇
|
2244 |
-
焰
|
2245 |
-
娜
|
2246 |
-
芮
|
2247 |
-
坦
|
2248 |
-
磅
|
2249 |
-
薛
|
2250 |
-
緣
|
2251 |
-
乔
|
2252 |
-
拱
|
2253 |
-
骚
|
2254 |
-
扰
|
2255 |
-
約
|
2256 |
-
喷
|
2257 |
-
驢
|
2258 |
-
仨
|
2259 |
-
纬
|
2260 |
-
臘
|
2261 |
-
邳
|
2262 |
-
终
|
2263 |
-
喏
|
2264 |
-
扫
|
2265 |
-
除
|
2266 |
-
恶
|
2267 |
-
争
|
2268 |
-
率
|
2269 |
-
‘
|
2270 |
-
肃
|
2271 |
-
雀
|
2272 |
-
鈴
|
2273 |
-
贼
|
2274 |
-
绕
|
2275 |
-
笋
|
2276 |
-
钩
|
2277 |
-
勒
|
2278 |
-
翠
|
2279 |
-
黎
|
2280 |
-
董
|
2281 |
-
澄
|
2282 |
-
境
|
2283 |
-
采
|
2284 |
-
拳
|
2285 |
-
捆
|
2286 |
-
粄
|
2287 |
-
诸
|
2288 |
-
暨
|
2289 |
-
榧
|
2290 |
-
葛
|
2291 |
-
親
|
2292 |
-
戚
|
2293 |
-
访
|
2294 |
-
股
|
2295 |
-
融
|
2296 |
-
潤
|
2297 |
-
寄
|
2298 |
-
递
|
2299 |
-
藩
|
2300 |
-
滇
|
2301 |
-
湛
|
2302 |
-
他
|
2303 |
-
篓
|
2304 |
-
普
|
2305 |
-
撞
|
2306 |
-
莅
|
2307 |
-
但
|
2308 |
-
沟
|
2309 |
-
暑
|
2310 |
-
促
|
2311 |
-
玲
|
2312 |
-
腩
|
2313 |
-
碼
|
2314 |
-
偏
|
2315 |
-
楹
|
2316 |
-
嘎
|
2317 |
-
洒
|
2318 |
-
抛
|
2319 |
-
危
|
2320 |
-
险
|
2321 |
-
损
|
2322 |
-
负
|
2323 |
-
銘
|
2324 |
-
黃
|
2325 |
-
燜
|
2326 |
-
說
|
2327 |
-
杆
|
2328 |
-
称
|
2329 |
-
蹭
|
2330 |
-
聊
|
2331 |
-
妙
|
2332 |
-
滕
|
2333 |
-
曦
|
2334 |
-
肴
|
2335 |
-
萧
|
2336 |
-
颗
|
2337 |
-
剂
|
2338 |
-
義
|
2339 |
-
锋
|
2340 |
-
授
|
2341 |
-
权
|
2342 |
-
著
|
2343 |
-
茴
|
2344 |
-
蒝
|
2345 |
-
侬
|
2346 |
-
顏
|
2347 |
-
菁
|
2348 |
-
擦
|
2349 |
-
鞋
|
2350 |
-
庞
|
2351 |
-
毕
|
2352 |
-
谱
|
2353 |
-
樱
|
2354 |
-
→
|
2355 |
-
綦
|
2356 |
-
舞
|
2357 |
-
蹈
|
2358 |
-
躁
|
2359 |
-
渠
|
2360 |
-
俐
|
2361 |
-
涧
|
2362 |
-
馀
|
2363 |
-
潇
|
2364 |
-
邻
|
2365 |
-
须
|
2366 |
-
藻
|
2367 |
-
纺
|
2368 |
-
织
|
2369 |
-
军
|
2370 |
-
沅
|
2371 |
-
豐
|
2372 |
-
爐
|
2373 |
-
韭
|
2374 |
-
棚
|
2375 |
-
綿
|
2376 |
-
麯
|
2377 |
-
剑
|
2378 |
-
娱
|
2379 |
-
链
|
2380 |
-
锤
|
2381 |
-
炼
|
2382 |
-
献
|
2383 |
-
晟
|
2384 |
-
章
|
2385 |
-
謎
|
2386 |
-
数
|
2387 |
-
侯
|
2388 |
-
她
|
2389 |
-
疗
|
2390 |
-
途
|
2391 |
-
篇
|
2392 |
-
则
|
2393 |
-
邓
|
2394 |
-
赐
|
2395 |
-
閣
|
2396 |
-
對
|
2397 |
-
猩
|
2398 |
-
邑
|
2399 |
-
區
|
2400 |
-
鬼
|
2401 |
-
莫
|
2402 |
-
沪
|
2403 |
-
淼
|
2404 |
-
赤
|
2405 |
-
混
|
2406 |
-
沌
|
2407 |
-
需
|
2408 |
-
求
|
2409 |
-
痛
|
2410 |
-
绮
|
2411 |
-
琦
|
2412 |
-
荃
|
2413 |
-
熳
|
2414 |
-
佑
|
2415 |
-
Á
|
2416 |
-
ō
|
2417 |
-
現
|
2418 |
-
専
|
2419 |
-
卢
|
2420 |
-
譽
|
2421 |
-
缠
|
2422 |
-
曾
|
2423 |
-
鸣
|
2424 |
-
琴
|
2425 |
-
汊
|
2426 |
-
濮
|
2427 |
-
哇
|
2428 |
-
哩
|
2429 |
-
唝
|
2430 |
-
曲
|
2431 |
-
坂
|
2432 |
-
呼
|
2433 |
-
莴
|
2434 |
-
怕
|
2435 |
-
蒋
|
2436 |
-
伞
|
2437 |
-
炙
|
2438 |
-
燻
|
2439 |
-
瑧
|
2440 |
-
冈
|
2441 |
-
讲
|
2442 |
-
硬
|
2443 |
-
详
|
2444 |
-
鹵
|
2445 |
-
摇
|
2446 |
-
偃
|
2447 |
-
嵩
|
2448 |
-
严
|
2449 |
-
谨
|
2450 |
-
′
|
2451 |
-
剥
|
2452 |
-
穗
|
2453 |
-
榮
|
2454 |
-
禹
|
2455 |
-
颐
|
2456 |
-
局
|
2457 |
-
刚
|
2458 |
-
▕
|
2459 |
-
暖
|
2460 |
-
漠
|
2461 |
-
炎
|
2462 |
-
頤
|
2463 |
-
樟
|
2464 |
-
?
|
2465 |
-
储
|
2466 |
-
移
|
2467 |
-
缕
|
2468 |
-
艰
|
2469 |
-
袍
|
2470 |
-
瑪
|
2471 |
-
麗
|
2472 |
-
参
|
2473 |
-
䬺
|
2474 |
-
趁
|
2475 |
-
呦
|
2476 |
-
霖
|
2477 |
-
饵
|
2478 |
-
溪
|
2479 |
-
孔
|
2480 |
-
澤
|
2481 |
-
袜
|
2482 |
-
蔓
|
2483 |
-
熠
|
2484 |
-
显
|
2485 |
-
屏
|
2486 |
-
缇
|
2487 |
-
寇
|
2488 |
-
亞
|
2489 |
-
坑
|
2490 |
-
槟
|
2491 |
-
榔
|
2492 |
-
絳
|
2493 |
-
驿
|
2494 |
-
歹
|
2495 |
-
匾
|
2496 |
-
猴
|
2497 |
-
旭
|
2498 |
-
竞
|
2499 |
-
|
2500 |
-
唛
|
2501 |
-
介
|
2502 |
-
习
|
2503 |
-
涡
|
2504 |
-
寓
|
2505 |
-
掉
|
2506 |
-
蘸
|
2507 |
-
愉
|
2508 |
-
佼
|
2509 |
-
ǒ
|
2510 |
-
納
|
2511 |
-
∶
|
2512 |
-
革
|
2513 |
-
嚸
|
2514 |
-
募
|
2515 |
-
螃
|
2516 |
-
鲢
|
2517 |
-
俤
|
2518 |
-
扁
|
2519 |
-
寳
|
2520 |
-
辽
|
2521 |
-
∧
|
2522 |
-
厚
|
2523 |
-
裤
|
2524 |
-
扯
|
2525 |
-
屯
|
2526 |
-
废
|
2527 |
-
挪
|
2528 |
-
辘
|
2529 |
-
碉
|
2530 |
-
歇
|
2531 |
-
漓
|
2532 |
-
腻
|
2533 |
-
捣
|
2534 |
-
孩
|
2535 |
-
烁
|
2536 |
-
整
|
2537 |
-
按
|
2538 |
-
Ⓡ
|
2539 |
-
眉
|
2540 |
-
脸
|
2541 |
-
痣
|
2542 |
-
粑
|
2543 |
-
序
|
2544 |
-
穿
|
2545 |
-
樊
|
2546 |
-
玮
|
2547 |
-
★
|
2548 |
-
扑
|
2549 |
-
渊
|
2550 |
-
醴
|
2551 |
-
瑶
|
2552 |
-
農
|
2553 |
-
檔
|
2554 |
-
憩
|
2555 |
-
霊
|
2556 |
-
赫
|
2557 |
-
呜
|
2558 |
-
~
|
2559 |
-
备
|
2560 |
-
説
|
2561 |
-
莓
|
2562 |
-
钻
|
2563 |
-
播
|
2564 |
-
冻
|
2565 |
-
紅
|
2566 |
-
菽
|
2567 |
-
喪
|
2568 |
-
埔
|
2569 |
-
壽
|
2570 |
-
❤
|
2571 |
-
籽
|
2572 |
-
咻
|
2573 |
-
籣
|
2574 |
-
尹
|
2575 |
-
潭
|
2576 |
-
穆
|
2577 |
-
壮
|
2578 |
-
使
|
2579 |
-
霄
|
2580 |
-
蔵
|
2581 |
-
浒
|
2582 |
-
岳
|
2583 |
-
熘
|
2584 |
-
臺
|
2585 |
-
殷
|
2586 |
-
孤
|
2587 |
-
邂
|
2588 |
-
逅
|
2589 |
-
厕
|
2590 |
-
郸
|
2591 |
-
铭
|
2592 |
-
莆
|
2593 |
-
抻
|
2594 |
-
虽
|
2595 |
-
倦
|
2596 |
-
怠
|
2597 |
-
矣
|
2598 |
-
茵
|
2599 |
-
垂
|
2600 |
-
殿
|
2601 |
-
鄂
|
2602 |
-
嗑
|
2603 |
-
续
|
2604 |
-
钦
|
2605 |
-
党
|
2606 |
-
鲫
|
2607 |
-
蔡
|
2608 |
-
侧
|
2609 |
-
割
|
2610 |
-
彰
|
2611 |
-
凝
|
2612 |
-
熬
|
2613 |
-
叕
|
2614 |
-
純
|
2615 |
-
谛
|
2616 |
-
籠
|
2617 |
-
宋
|
2618 |
-
峡
|
2619 |
-
俩
|
2620 |
-
雜
|
2621 |
-
跑
|
2622 |
-
⑧
|
2623 |
-
焼
|
2624 |
-
-
|
2625 |
-
逢
|
2626 |
-
澧
|
2627 |
-
舵
|
2628 |
-
异
|
2629 |
-
冯
|
2630 |
-
战
|
2631 |
-
决
|
2632 |
-
棍
|
2633 |
-
;
|
2634 |
-
﹣
|
2635 |
-
丑
|
2636 |
-
妇
|
2637 |
-
焉
|
2638 |
-
芷
|
2639 |
-
楂
|
2640 |
-
坞
|
2641 |
-
壳
|
2642 |
-
馐
|
2643 |
-
帜
|
2644 |
-
旅
|
2645 |
-
鳯
|
2646 |
-
簡
|
2647 |
-
凍
|
2648 |
-
秜
|
2649 |
-
结
|
2650 |
-
咩
|
2651 |
-
丫
|
2652 |
-
稠
|
2653 |
-
暗
|
2654 |
-
缔
|
2655 |
-
乎
|
2656 |
-
被
|
2657 |
-
狠
|
2658 |
-
皲
|
2659 |
-
豉
|
2660 |
-
崇
|
2661 |
-
渭
|
2662 |
-
担
|
2663 |
-
鹤
|
2664 |
-
製
|
2665 |
-
蛎
|
2666 |
-
笛
|
2667 |
-
奔
|
2668 |
-
赴
|
2669 |
-
盼
|
2670 |
-
鳌
|
2671 |
-
拜
|
2672 |
-
络
|
2673 |
-
灸
|
2674 |
-
膜
|
2675 |
-
刮
|
2676 |
-
痧
|
2677 |
-
毒
|
2678 |
-
萊
|
2679 |
-
陂
|
2680 |
-
濑
|
2681 |
-
唇
|
2682 |
-
抵
|
2683 |
-
押
|
2684 |
-
置
|
2685 |
-
馇
|
2686 |
-
泌
|
2687 |
-
尿
|
2688 |
-
傻
|
2689 |
-
像
|
2690 |
-
孃
|
2691 |
-
陣
|
2692 |
-
靓
|
2693 |
-
规
|
2694 |
-
企
|
2695 |
-
矮
|
2696 |
-
凳
|
2697 |
-
贰
|
2698 |
-
兎
|
2699 |
-
庵
|
2700 |
-
質
|
2701 |
-
阅
|
2702 |
-
读
|
2703 |
-
◆
|
2704 |
-
练
|
2705 |
-
墩
|
2706 |
-
曼
|
2707 |
-
呱
|
2708 |
-
泓
|
2709 |
-
耐
|
2710 |
-
磁
|
2711 |
-
枣
|
2712 |
-
罉
|
2713 |
-
浴
|
2714 |
-
氧
|
2715 |
-
洱
|
2716 |
-
鳅
|
2717 |
-
線
|
2718 |
-
炳
|
2719 |
-
顽
|
2720 |
-
符
|
2721 |
-
倌
|
2722 |
-
泥
|
2723 |
-
郊
|
2724 |
-
柯
|
2725 |
-
餘
|
2726 |
-
巍
|
2727 |
-
论
|
2728 |
-
沽
|
2729 |
-
荘
|
2730 |
-
奕
|
2731 |
-
啃
|
2732 |
-
髙
|
2733 |
-
○
|
2734 |
-
芬
|
2735 |
-
苟
|
2736 |
-
且
|
2737 |
-
阆
|
2738 |
-
確
|
2739 |
-
獅
|
2740 |
-
匣
|
2741 |
-
睫
|
2742 |
-
牙
|
2743 |
-
戒
|
2744 |
-
俊
|
2745 |
-
阜
|
2746 |
-
遵
|
2747 |
-
爵
|
2748 |
-
遗
|
2749 |
-
捧
|
2750 |
-
仑
|
2751 |
-
构
|
2752 |
-
豬
|
2753 |
-
挡
|
2754 |
-
弓
|
2755 |
-
蠔
|
2756 |
-
旬
|
2757 |
-
鱻
|
2758 |
-
镖
|
2759 |
-
燚
|
2760 |
-
歌
|
2761 |
-
壁
|
2762 |
-
啫
|
2763 |
-
饷
|
2764 |
-
仰
|
2765 |
-
韶
|
2766 |
-
勞
|
2767 |
-
軒
|
2768 |
-
菒
|
2769 |
-
炫
|
2770 |
-
廊
|
2771 |
-
塞
|
2772 |
-
脏
|
2773 |
-
堤
|
2774 |
-
浅
|
2775 |
-
辈
|
2776 |
-
靡
|
2777 |
-
裙
|
2778 |
-
尺
|
2779 |
-
廚
|
2780 |
-
向
|
2781 |
-
磊
|
2782 |
-
咬
|
2783 |
-
皓
|
2784 |
-
卿
|
2785 |
-
懂
|
2786 |
-
葉
|
2787 |
-
廿
|
2788 |
-
芸
|
2789 |
-
賴
|
2790 |
-
埠
|
2791 |
-
應
|
2792 |
-
碟
|
2793 |
-
溧
|
2794 |
-
訂
|
2795 |
-
選
|
2796 |
-
睦
|
2797 |
-
举
|
2798 |
-
钳
|
2799 |
-
哟
|
2800 |
-
霍
|
2801 |
-
扞
|
2802 |
-
侣
|
2803 |
-
營
|
2804 |
-
龟
|
2805 |
-
钜
|
2806 |
-
埭
|
2807 |
-
が
|
2808 |
-
搽
|
2809 |
-
螞
|
2810 |
-
蟻
|
2811 |
-
娚
|
2812 |
-
蒜
|
2813 |
-
厝
|
2814 |
-
垵
|
2815 |
-
☎
|
2816 |
-
捌
|
2817 |
-
倒
|
2818 |
-
骑
|
2819 |
-
Ξ
|
2820 |
-
谋
|
2821 |
-
黍
|
2822 |
-
侍
|
2823 |
-
赏
|
2824 |
-
扮
|
2825 |
-
忱
|
2826 |
-
蘑
|
2827 |
-
洁
|
2828 |
-
嘆
|
2829 |
-
闹
|
2830 |
-
谭
|
2831 |
-
鶏
|
2832 |
-
種
|
2833 |
-
φ
|
2834 |
-
坤
|
2835 |
-
麓
|
2836 |
-
麒
|
2837 |
-
麟
|
2838 |
-
喂
|
2839 |
-
琳
|
2840 |
-
Ⓑ
|
2841 |
-
趙
|
2842 |
-
總
|
2843 |
-
這
|
2844 |
-
奖
|
2845 |
-
取
|
2846 |
-
拔
|
2847 |
-
錯
|
2848 |
-
仉
|
2849 |
-
缸
|
2850 |
-
廟
|
2851 |
-
暢
|
2852 |
-
腔
|
2853 |
-
卓
|
2854 |
-
腱
|
2855 |
-
朙
|
2856 |
-
紹
|
2857 |
-
莹
|
2858 |
-
缺
|
2859 |
-
抺
|
2860 |
-
睿
|
2861 |
-
氣
|
2862 |
-
该
|
2863 |
-
貼
|
2864 |
-
妍
|
2865 |
-
拆
|
2866 |
-
穇
|
2867 |
-
箩
|
2868 |
-
希
|
2869 |
-
廰
|
2870 |
-
祗
|
2871 |
-
盲
|
2872 |
-
坝
|
2873 |
-
骆
|
2874 |
-
熄
|
2875 |
-
蛮
|
2876 |
-
賓
|
2877 |
-
馮
|
2878 |
-
尋
|
2879 |
-
泊
|
2880 |
-
孫
|
2881 |
-
槁
|
2882 |
-
亖
|
2883 |
-
俯
|
2884 |
-
浣
|
2885 |
-
婴
|
2886 |
-
锨
|
2887 |
-
馥
|
2888 |
-
闷
|
2889 |
-
梆
|
2890 |
-
▫
|
2891 |
-
姥
|
2892 |
-
哲
|
2893 |
-
录
|
2894 |
-
甫
|
2895 |
-
床
|
2896 |
-
嬌
|
2897 |
-
烎
|
2898 |
-
梵
|
2899 |
-
枪
|
2900 |
-
乍
|
2901 |
-
璜
|
2902 |
-
羌
|
2903 |
-
崂
|
2904 |
-
穷
|
2905 |
-
榕
|
2906 |
-
聲
|
2907 |
-
喚
|
2908 |
-
駕
|
2909 |
-
晕
|
2910 |
-
嬷
|
2911 |
-
箕
|
2912 |
-
婧
|
2913 |
-
盧
|
2914 |
-
楓
|
2915 |
-
柃
|
2916 |
-
差
|
2917 |
-
「
|
2918 |
-
」
|
2919 |
-
佶
|
2920 |
-
唔
|
2921 |
-
壕
|
2922 |
-
歆
|
2923 |
-
盏
|
2924 |
-
擂
|
2925 |
-
睇
|
2926 |
-
巾
|
2927 |
-
查
|
2928 |
-
淖
|
2929 |
-
哪
|
2930 |
-
沣
|
2931 |
-
赣
|
2932 |
-
優
|
2933 |
-
諾
|
2934 |
-
礁
|
2935 |
-
努
|
2936 |
-
畔
|
2937 |
-
疙
|
2938 |
-
瘩
|
2939 |
-
握
|
2940 |
-
叮
|
2941 |
-
栙
|
2942 |
-
甑
|
2943 |
-
嶺
|
2944 |
-
涌
|
2945 |
-
透
|
2946 |
-
钓
|
2947 |
-
斜
|
2948 |
-
搬
|
2949 |
-
迁
|
2950 |
-
妨
|
2951 |
-
借
|
2952 |
-
仍
|
2953 |
-
鳕
|
2954 |
-
瓷
|
2955 |
-
绘
|
2956 |
-
餠
|
2957 |
-
á
|
2958 |
-
ǎ
|
2959 |
-
祈
|
2960 |
-
邨
|
2961 |
-
醒
|
2962 |
-
闵
|
2963 |
-
砖
|
2964 |
-
锹
|
2965 |
-
咀
|
2966 |
-
綠
|
2967 |
-
幕
|
2968 |
-
忠
|
2969 |
-
雾
|
2970 |
-
覓
|
2971 |
-
靜
|
2972 |
-
擔
|
2973 |
-
篮
|
2974 |
-
杉
|
2975 |
-
势
|
2976 |
-
薇
|
2977 |
-
甬
|
2978 |
-
频
|
2979 |
-
般
|
2980 |
-
仲
|
2981 |
-
蘇
|
2982 |
-
鸟
|
2983 |
-
卞
|
2984 |
-
憾
|
2985 |
-
資
|
2986 |
-
駱
|
2987 |
-
蝶
|
2988 |
-
為
|
2989 |
-
仟
|
2990 |
-
耗
|
2991 |
-
莘
|
2992 |
-
涉
|
2993 |
-
昕
|
2994 |
-
盈
|
2995 |
-
熹
|
2996 |
-
觀
|
2997 |
-
瑭
|
2998 |
-
湃
|
2999 |
-
兢
|
3000 |
-
淞
|
3001 |
-
䒩
|
3002 |
-
結
|
3003 |
-
柗
|
3004 |
-
鲤
|
3005 |
-
糟
|
3006 |
-
粕
|
3007 |
-
塗
|
3008 |
-
簽
|
3009 |
-
怎
|
3010 |
-
桐
|
3011 |
-
皆
|
3012 |
-
羽
|
3013 |
-
盯
|
3014 |
-
氽
|
3015 |
-
晏
|
3016 |
-
液
|
3017 |
-
镀
|
3018 |
-
珂
|
3019 |
-
悸
|
3020 |
-
∙
|
3021 |
-
桑
|
3022 |
-
夢
|
3023 |
-
楽
|
3024 |
-
剩
|
3025 |
-
纵
|
3026 |
-
逝
|
3027 |
-
欺
|
3028 |
-
統
|
3029 |
-
飛
|
3030 |
-
姣
|
3031 |
-
俄
|
3032 |
-
揪
|
3033 |
-
薡
|
3034 |
-
幅
|
3035 |
-
蓋
|
3036 |
-
︳
|
3037 |
-
屉
|
3038 |
-
㕔
|
3039 |
-
а
|
3040 |
-
铸
|
3041 |
-
韦
|
3042 |
-
銀
|
3043 |
-
檀
|
3044 |
-
击
|
3045 |
-
伿
|
3046 |
-
隍
|
3047 |
-
『
|
3048 |
-
』
|
3049 |
-
芥
|
3050 |
-
☆
|
3051 |
-
声
|
3052 |
-
跆
|
3053 |
-
肋
|
3054 |
-
榭
|
3055 |
-
牵
|
3056 |
-
棧
|
3057 |
-
網
|
3058 |
-
愁
|
3059 |
-
嗏
|
3060 |
-
嵗
|
3061 |
-
巡
|
3062 |
-
稚
|
3063 |
-
貴
|
3064 |
-
買
|
3065 |
-
恰
|
3066 |
-
㸆
|
3067 |
-
捻
|
3068 |
-
玫
|
3069 |
-
瑰
|
3070 |
-
炕
|
3071 |
-
梧
|
3072 |
-
餡
|
3073 |
-
锌
|
3074 |
-
焱
|
3075 |
-
驰
|
3076 |
-
堽
|
3077 |
-
邯
|
3078 |
-
珑
|
3079 |
-
尕
|
3080 |
-
宰
|
3081 |
-
栓
|
3082 |
-
喃
|
3083 |
-
殊
|
3084 |
-
燊
|
3085 |
-
慈
|
3086 |
-
羴
|
3087 |
-
逃
|
3088 |
-
脱
|
3089 |
-
邹
|
3090 |
-
檐
|
3091 |
-
碌
|
3092 |
-
页
|
3093 |
-
荠
|
3094 |
-
券
|
3095 |
-
題
|
3096 |
-
龚
|
3097 |
-
肌
|
3098 |
-
蕉
|
3099 |
-
囬
|
3100 |
-
肫
|
3101 |
-
坪
|
3102 |
-
沉
|
3103 |
-
淀
|
3104 |
-
斌
|
3105 |
-
鳝
|
3106 |
-
核
|
3107 |
-
喳
|
3108 |
-
剃
|
3109 |
-
昭
|
3110 |
-
{
|
3111 |
-
}
|
3112 |
-
坏
|
3113 |
-
烜
|
3114 |
-
媛
|
3115 |
-
猛
|
3116 |
-
桓
|
3117 |
-
欣
|
3118 |
-
碁
|
3119 |
-
竭
|
3120 |
-
堇
|
3121 |
-
↑
|
3122 |
-
扛
|
3123 |
-
罄
|
3124 |
-
栾
|
3125 |
-
鲶
|
3126 |
-
鍕
|
3127 |
-
崔
|
3128 |
-
橘
|
3129 |
-
携
|
3130 |
-
丈
|
3131 |
-
射
|
3132 |
-
梗
|
3133 |
-
檸
|
3134 |
-
疼
|
3135 |
-
卑
|
3136 |
-
捉
|
3137 |
-
障
|
3138 |
-
裏
|
3139 |
-
遍
|
3140 |
-
蓓
|
3141 |
-
析
|
3142 |
-
許
|
3143 |
-
虫
|
3144 |
-
坨
|
3145 |
-
馔
|
3146 |
-
窄
|
3147 |
-
姫
|
3148 |
-
噤
|
3149 |
-
係
|
3150 |
-
湿
|
3151 |
-
汐
|
3152 |
-
鳜
|
3153 |
-
船
|
3154 |
-
崽
|
3155 |
-
+
|
3156 |
-
例
|
3157 |
-
灼
|
3158 |
-
祿
|
3159 |
-
腥
|
3160 |
-
峭
|
3161 |
-
酌
|
3162 |
-
喽
|
3163 |
-
件
|
3164 |
-
郏
|
3165 |
-
栀
|
3166 |
-
鲨
|
3167 |
-
寫
|
3168 |
-
與
|
3169 |
-
诈
|
3170 |
-
斥
|
3171 |
-
炮
|
3172 |
-
稿
|
3173 |
-
懿
|
3174 |
-
掂
|
3175 |
-
鹭
|
3176 |
-
乱
|
3177 |
-
恬
|
3178 |
-
婷
|
3179 |
-
苦
|
3180 |
-
埃
|
3181 |
-
珊
|
3182 |
-
禅
|
3183 |
-
裹
|
3184 |
-
圃
|
3185 |
-
鹌
|
3186 |
-
鹑
|
3187 |
-
û
|
3188 |
-
澡
|
3189 |
-
囧
|
3190 |
-
阡
|
3191 |
-
靑
|
3192 |
-
警
|
3193 |
-
牢
|
3194 |
-
嘱
|
3195 |
-
鳞
|
3196 |
-
浃
|
3197 |
-
贷
|
3198 |
-
慧
|
3199 |
-
翊
|
3200 |
-
讨
|
3201 |
-
碧
|
3202 |
-
剪
|
3203 |
-
陌
|
3204 |
-
冀
|
3205 |
-
砵
|
3206 |
-
迅
|
3207 |
-
鹰
|
3208 |
-
竟
|
3209 |
-
召
|
3210 |
-
敌
|
3211 |
-
鯡
|
3212 |
-
蒌
|
3213 |
-
蒿
|
3214 |
-
扶
|
3215 |
-
③
|
3216 |
-
誘
|
3217 |
-
嘻
|
3218 |
-
輪
|
3219 |
-
嬢
|
3220 |
-
瓮
|
3221 |
-
絲
|
3222 |
-
嚣
|
3223 |
-
荀
|
3224 |
-
莽
|
3225 |
-
鄧
|
3226 |
-
咋
|
3227 |
-
勿
|
3228 |
-
佈
|
3229 |
-
洽
|
3230 |
-
羹
|
3231 |
-
模
|
3232 |
-
貨
|
3233 |
-
粱
|
3234 |
-
凈
|
3235 |
-
腹
|
3236 |
-
鄭
|
3237 |
-
署
|
3238 |
-
儒
|
3239 |
-
隧
|
3240 |
-
鉢
|
3241 |
-
茫
|
3242 |
-
蔻
|
3243 |
-
í
|
3244 |
-
ó
|
3245 |
-
裴
|
3246 |
-
偉
|
3247 |
-
Θ
|
3248 |
-
祎
|
3249 |
-
褥
|
3250 |
-
殖
|
3251 |
-
湫
|
3252 |
-
瀚
|
3253 |
-
貓
|
3254 |
-
汪
|
3255 |
-
紙
|
3256 |
-
極
|
3257 |
-
伤
|
3258 |
-
灰
|
3259 |
-
團
|
3260 |
-
橄
|
3261 |
-
榄
|
3262 |
-
拽
|
3263 |
-
响
|
3264 |
-
貌
|
3265 |
-
傣
|
3266 |
-
舂
|
3267 |
-
斩
|
3268 |
-
飨
|
3269 |
-
执
|
3270 |
-
諸
|
3271 |
-
蒂
|
3272 |
-
嘣
|
3273 |
-
葡
|
3274 |
-
渤
|
3275 |
-
惺
|
3276 |
-
驛
|
3277 |
-
戰
|
3278 |
-
箬
|
3279 |
-
俭
|
3280 |
-
瀏
|
3281 |
-
嫦
|
3282 |
-
琵
|
3283 |
-
琶
|
3284 |
-
咿
|
3285 |
-
吖
|
3286 |
-
舱
|
3287 |
-
韵
|
3288 |
-
揭
|
3289 |
-
祁
|
3290 |
-
將
|
3291 |
-
軍
|
3292 |
-
吟
|
3293 |
-
彼
|
3294 |
-
岚
|
3295 |
-
绒
|
3296 |
-
煤
|
3297 |
-
淝
|
3298 |
-
歸
|
3299 |
-
锐
|
3300 |
-
嗯
|
3301 |
-
傾
|
3302 |
-
甩
|
3303 |
-
瞳
|
3304 |
-
睁
|
3305 |
-
鳗
|
3306 |
-
遜
|
3307 |
-
嗲
|
3308 |
-
虚
|
3309 |
-
娴
|
3310 |
-
碱
|
3311 |
-
呷
|
3312 |
-
{
|
3313 |
-
哚
|
3314 |
-
兜
|
3315 |
-
喇
|
3316 |
-
叭
|
3317 |
-
燦
|
3318 |
-
逻
|
3319 |
-
匪
|
3320 |
-
槐
|
3321 |
-
撒
|
3322 |
-
写
|
3323 |
-
踩
|
3324 |
-
踏
|
3325 |
-
霞
|
3326 |
-
喫
|
3327 |
-
返
|
3328 |
-
赚
|
3329 |
-
拓
|
3330 |
-
動
|
3331 |
-
觞
|
3332 |
-
鲽
|
3333 |
-
鐘
|
3334 |
-
闰
|
3335 |
-
扳
|
3336 |
-
沖
|
3337 |
-
賈
|
3338 |
-
璐
|
3339 |
-
煸
|
3340 |
-
棵
|
3341 |
-
峪
|
3342 |
-
π
|
3343 |
-
憶
|
3344 |
-
齋
|
3345 |
-
娇
|
3346 |
-
穎
|
3347 |
-
嫁
|
3348 |
-
玥
|
3349 |
-
胚
|
3350 |
-
喊
|
3351 |
-
阻
|
3352 |
-
餓
|
3353 |
-
截
|
3354 |
-
孵
|
3355 |
-
屎
|
3356 |
-
爾
|
3357 |
-
莳
|
3358 |
-
倔
|
3359 |
-
娄
|
3360 |
-
祸
|
3361 |
-
`
|
3362 |
-
姿
|
3363 |
-
稽
|
3364 |
-
戌
|
3365 |
-
缪
|
3366 |
-
ī
|
3367 |
-
糠
|
3368 |
-
痴
|
3369 |
-
猎
|
3370 |
-
嬉
|
3371 |
-
柑
|
3372 |
-
鞍
|
3373 |
-
兹
|
3374 |
-
凼
|
3375 |
-
舅
|
3376 |
-
褐
|
3377 |
-
醪
|
3378 |
-
仪
|
3379 |
-
氷
|
3380 |
-
單
|
3381 |
-
丞
|
3382 |
-
碛
|
3383 |
-
绽
|
3384 |
-
袂
|
3385 |
-
檢
|
3386 |
-
瀾
|
3387 |
-
饃
|
3388 |
-
孖
|
3389 |
-
雍
|
3390 |
-
ò
|
3391 |
-
螄
|
3392 |
-
涤
|
3393 |
-
茨
|
3394 |
-
寮
|
3395 |
-
近
|
3396 |
-
辜
|
3397 |
-
茅
|
3398 |
-
孟
|
3399 |
-
累
|
3400 |
-
宣
|
3401 |
-
樹
|
3402 |
-
鷹
|
3403 |
-
膝
|
3404 |
-
臉
|
3405 |
-
襪
|
3406 |
-
嘢
|
3407 |
-
嵐
|
3408 |
-
▲
|
3409 |
-
璇
|
3410 |
-
竺
|
3411 |
-
気
|
3412 |
-
迈
|
3413 |
-
糐
|
3414 |
-
挥
|
3415 |
-
瑜
|
3416 |
-
伽
|
3417 |
-
"
|
3418 |
-
裳
|
3419 |
-
纹
|
3420 |
-
潯
|
3421 |
-
幾
|
3422 |
-
朔
|
3423 |
-
枊
|
3424 |
-
釀
|
3425 |
-
劝
|
3426 |
-
俺
|
3427 |
-
粢
|
3428 |
-
馓
|
3429 |
-
胥
|
3430 |
-
拥
|
3431 |
-
嘶
|
3432 |
-
達
|
3433 |
-
蝴
|
3434 |
-
昱
|
3435 |
-
ホ
|
3436 |
-
ル
|
3437 |
-
モ
|
3438 |
-
ニ
|
3439 |
-
颂
|
3440 |
-
噫
|
3441 |
-
否
|
3442 |
-
笙
|
3443 |
-
绎
|
3444 |
-
俞
|
3445 |
-
泵
|
3446 |
-
测
|
3447 |
-
耿
|
3448 |
-
揚
|
3449 |
-
犇
|
3450 |
-
锄
|
3451 |
-
卧
|
3452 |
-
炯
|
3453 |
-
烽
|
3454 |
-
橡
|
3455 |
-
操
|
3456 |
-
齊
|
3457 |
-
隴
|
3458 |
-
宀
|
3459 |
-
荥
|
3460 |
-
滙
|
3461 |
-
贪
|
3462 |
-
関
|
3463 |
-
垦
|
3464 |
-
↓
|
3465 |
-
麽
|
3466 |
-
暧
|
3467 |
-
匯
|
3468 |
-
恨
|
3469 |
-
叽
|
3470 |
-
断
|
3471 |
-
鮪
|
3472 |
-
椎
|
3473 |
-
病
|
3474 |
-
迹
|
3475 |
-
禺
|
3476 |
-
搓
|
3477 |
-
瀛
|
3478 |
-
唤
|
3479 |
-
埕
|
3480 |
-
愤
|
3481 |
-
怒
|
3482 |
-
拐
|
3483 |
-
狱
|
3484 |
-
垅
|
3485 |
-
绅
|
3486 |
-
設
|
3487 |
-
計
|
3488 |
-
書
|
3489 |
-
楷
|
3490 |
-
鮨
|
3491 |
-
邪
|
3492 |
-
郴
|
3493 |
-
盞
|
3494 |
-
榆
|
3495 |
-
恺
|
3496 |
-
樵
|
3497 |
-
煙
|
3498 |
-
舫
|
3499 |
-
翡
|
3500 |
-
砸
|
3501 |
-
叹
|
3502 |
-
縣
|
3503 |
-
璞
|
3504 |
-
禮
|
3505 |
-
獻
|
3506 |
-
似
|
3507 |
-
吆
|
3508 |
-
嘛
|
3509 |
-
灭
|
3510 |
-
擇
|
3511 |
-
夥
|
3512 |
-
ē
|
3513 |
-
曰
|
3514 |
-
蜗
|
3515 |
-
櫻
|
3516 |
-
▏
|
3517 |
-
鑪
|
3518 |
-
鯊
|
3519 |
-
視
|
3520 |
-
淄
|
3521 |
-
钰
|
3522 |
-
〝
|
3523 |
-
〞
|
3524 |
-
報
|
3525 |
-
退
|
3526 |
-
壶
|
3527 |
-
鳴
|
3528 |
-
拒
|
3529 |
-
旱
|
3530 |
-
鼠
|
3531 |
-
蕴
|
3532 |
-
峧
|
3533 |
-
赶
|
3534 |
-
咏
|
3535 |
-
寬
|
3536 |
-
渎
|
3537 |
-
靣
|
3538 |
-
卟
|
3539 |
-
宙
|
3540 |
-
趟
|
3541 |
-
負
|
3542 |
-
镫
|
3543 |
-
讷
|
3544 |
-
迭
|
3545 |
-
彝
|
3546 |
-
樣
|
3547 |
-
輕
|
3548 |
-
却
|
3549 |
-
覆
|
3550 |
-
庖
|
3551 |
-
扉
|
3552 |
-
聖
|
3553 |
-
喬
|
3554 |
-
瞻
|
3555 |
-
瞿
|
3556 |
-
箭
|
3557 |
-
胆
|
3558 |
-
ε
|
3559 |
-
韧
|
3560 |
-
誌
|
3561 |
-
既
|
3562 |
-
淳
|
3563 |
-
饞
|
3564 |
-
ě
|
3565 |
-
圍
|
3566 |
-
墟
|
3567 |
-
俚
|
3568 |
-
翕
|
3569 |
-
貂
|
3570 |
-
畜
|
3571 |
-
緹
|
3572 |
-
搄
|
3573 |
-
旮
|
3574 |
-
旯
|
3575 |
-
寂
|
3576 |
-
寞
|
3577 |
-
詹
|
3578 |
-
茜
|
3579 |
-
鉄
|
3580 |
-
絕
|
3581 |
-
泸
|
3582 |
-
嬤
|
3583 |
-
允
|
3584 |
-
炘
|
3585 |
-
骏
|
3586 |
-
侑
|
3587 |
-
晒
|
3588 |
-
玄
|
3589 |
-
粧
|
3590 |
-
糘
|
3591 |
-
毫
|
3592 |
-
幽
|
3593 |
-
攸
|
3594 |
-
愧
|
3595 |
-
侨
|
3596 |
-
衰
|
3597 |
-
ぉ
|
3598 |
-
に
|
3599 |
-
き
|
3600 |
-
ぃ
|
3601 |
-
炽
|
3602 |
-
倉
|
3603 |
-
斛
|
3604 |
-
領
|
3605 |
-
盾
|
3606 |
-
窜
|
3607 |
-
鲷
|
3608 |
-
瓏
|
3609 |
-
媚
|
3610 |
-
爲
|
3611 |
-
裸
|
3612 |
-
窦
|
3613 |
-
虞
|
3614 |
-
處
|
3615 |
-
魷
|
3616 |
-
}
|
3617 |
-
羡
|
3618 |
-
冕
|
3619 |
-
祺
|
3620 |
-
裁
|
3621 |
-
粶
|
3622 |
-
䬴
|
3623 |
-
嚟
|
3624 |
-
辆
|
3625 |
-
撮
|
3626 |
-
隋
|
3627 |
-
'
|
3628 |
-
勝
|
3629 |
-
梭
|
3630 |
-
茸
|
3631 |
-
咭
|
3632 |
-
崟
|
3633 |
-
滷
|
3634 |
-
緻
|
3635 |
-
沩
|
3636 |
-
颠
|
3637 |
-
诠
|
3638 |
-
珺
|
3639 |
-
拙
|
3640 |
-
察
|
3641 |
-
≡
|
3642 |
-
辅
|
3643 |
-
父
|
3644 |
-
雁
|
3645 |
-
裱
|
3646 |
-
瞄
|
3647 |
-
漖
|
3648 |
-
鯨
|
3649 |
-
略
|
3650 |
-
橱
|
3651 |
-
帼
|
3652 |
-
棉
|
3653 |
-
濠
|
3654 |
-
蕃
|
3655 |
-
ǔ
|
3656 |
-
崮
|
3657 |
-
阮
|
3658 |
-
勋
|
3659 |
-
苍
|
3660 |
-
喔
|
3661 |
-
猜
|
3662 |
-
箔
|
3663 |
-
è
|
3664 |
-
雏
|
3665 |
-
睐
|
3666 |
-
袭
|
3667 |
-
皋
|
3668 |
-
彻
|
3669 |
-
売
|
3670 |
-
垚
|
3671 |
-
咯
|
3672 |
-
凑
|
3673 |
-
汴
|
3674 |
-
纽
|
3675 |
-
巩
|
3676 |
-
宸
|
3677 |
-
墅
|
3678 |
-
茏
|
3679 |
-
裡
|
3680 |
-
昧
|
3681 |
-
飽
|
3682 |
-
坯
|
3683 |
-
濟
|
3684 |
-
└
|
3685 |
-
┐
|
3686 |
-
懷
|
3687 |
-
霾
|
3688 |
-
´
|
3689 |
-
閑
|
3690 |
-
茹
|
3691 |
-
闳
|
3692 |
-
湶
|
3693 |
-
鈣
|
3694 |
-
圓
|
3695 |
-
昊
|
3696 |
-
眞
|
3697 |
-
標
|
3698 |
-
凖
|
3699 |
-
皱
|
3700 |
-
箍
|
3701 |
-
筹
|
3702 |
-
孬
|
3703 |
-
唠
|
3704 |
-
輝
|
3705 |
-
输
|
3706 |
-
綺
|
3707 |
-
驭
|
3708 |
-
哼
|
3709 |
-
匡
|
3710 |
-
偵
|
3711 |
-
蝇
|
3712 |
-
運
|
3713 |
-
漟
|
3714 |
-
乘
|
3715 |
-
Ē
|
3716 |
-
卉
|
3717 |
-
邴
|
3718 |
-
謠
|
3719 |
-
怿
|
3720 |
-
亁
|
3721 |
-
棱
|
3722 |
-
呐
|
3723 |
-
湄
|
3724 |
-
莜
|
3725 |
-
阶
|
3726 |
-
堔
|
3727 |
-
炜
|
3728 |
-
邀
|
3729 |
-
笠
|
3730 |
-
遏
|
3731 |
-
犯
|
3732 |
-
罪
|
3733 |
-
栢
|
3734 |
-
餛
|
3735 |
-
亀
|
3736 |
-
苓
|
3737 |
-
膏
|
3738 |
-
伸
|
3739 |
-
?
|
3740 |
-
阪
|
3741 |
-
委
|
3742 |
-
妯
|
3743 |
-
娌
|
3744 |
-
仝
|
3745 |
-
咧
|
3746 |
-
鍚
|
3747 |
-
▼
|
3748 |
-
遠
|
3749 |
-
摑
|
3750 |
-
滘
|
3751 |
-
颁
|
3752 |
-
ʌ
|
3753 |
-
锈
|
3754 |
-
佤
|
3755 |
-
佗
|
3756 |
-
卌
|
3757 |
-
É
|
3758 |
-
↙
|
3759 |
-
蔺
|
3760 |
-
汰
|
3761 |
-
塍
|
3762 |
-
認
|
3763 |
-
鳟
|
3764 |
-
畿
|
3765 |
-
耦
|
3766 |
-
吨
|
3767 |
-
䒕
|
3768 |
-
茬
|
3769 |
-
枼
|
3770 |
-
饕
|
3771 |
-
涼
|
3772 |
-
烀
|
3773 |
-
汶
|
3774 |
-
齿
|
3775 |
-
貳
|
3776 |
-
沱
|
3777 |
-
楞
|
3778 |
-
屹
|
3779 |
-
掺
|
3780 |
-
挢
|
3781 |
-
荻
|
3782 |
-
偷
|
3783 |
-
辶
|
3784 |
-
饌
|
3785 |
-
泮
|
3786 |
-
喧
|
3787 |
-
某
|
3788 |
-
聂
|
3789 |
-
夾
|
3790 |
-
吁
|
3791 |
-
鎬
|
3792 |
-
谅
|
3793 |
-
鞘
|
3794 |
-
泪
|
3795 |
-
佩
|
3796 |
-
㎡
|
3797 |
-
鐡
|
3798 |
-
犊
|
3799 |
-
漳
|
3800 |
-
睢
|
3801 |
-
粘
|
3802 |
-
輔
|
3803 |
-
爬
|
3804 |
-
濃
|
3805 |
-
し
|
3806 |
-
ん
|
3807 |
-
い
|
3808 |
-
ち
|
3809 |
-
ょ
|
3810 |
-
く
|
3811 |
-
ど
|
3812 |
-
ぅ
|
3813 |
-
戍
|
3814 |
-
咚
|
3815 |
-
蒡
|
3816 |
-
惯
|
3817 |
-
隣
|
3818 |
-
沭
|
3819 |
-
撇
|
3820 |
-
妞
|
3821 |
-
筛
|
3822 |
-
昵
|
3823 |
-
赁
|
3824 |
-
震
|
3825 |
-
欠
|
3826 |
-
涞
|
3827 |
-
從
|
3828 |
-
靚
|
3829 |
-
绥
|
3830 |
-
俑
|
3831 |
-
熔
|
3832 |
-
曙
|
3833 |
-
侗
|
3834 |
-
√
|
3835 |
-
仗
|
3836 |
-
袖
|
3837 |
-
饶
|
3838 |
-
辫
|
3839 |
-
琉
|
3840 |
-
鴿
|
3841 |
-
裂
|
3842 |
-
缝
|
3843 |
-
灞
|
3844 |
-
崖
|
3845 |
-
炑
|
3846 |
-
昝
|
3847 |
-
┌
|
3848 |
-
┘
|
3849 |
-
邕
|
3850 |
-
趴
|
3851 |
-
踢
|
3852 |
-
迩
|
3853 |
-
浈
|
3854 |
-
挚
|
3855 |
-
聆
|
3856 |
-
犁
|
3857 |
-
陝
|
3858 |
-
滾
|
3859 |
-
彎
|
3860 |
-
問
|
3861 |
-
癮
|
3862 |
-
砚
|
3863 |
-
ú
|
3864 |
-
瀧
|
3865 |
-
吮
|
3866 |
-
毓
|
3867 |
-
劵
|
3868 |
-
槽
|
3869 |
-
黒
|
3870 |
-
忍
|
3871 |
-
畈
|
3872 |
-
姊
|
3873 |
-
沛
|
3874 |
-
忽
|
3875 |
-
摘
|
3876 |
-
燍
|
3877 |
-
♡
|
3878 |
-
汝
|
3879 |
-
贛
|
3880 |
-
叻
|
3881 |
-
甸
|
3882 |
-
乞
|
3883 |
-
丐
|
3884 |
-
践
|
3885 |
-
嗞
|
3886 |
-
㥁
|
3887 |
-
斐
|
3888 |
-
圖
|
3889 |
-
祯
|
3890 |
-
牤
|
3891 |
-
攻
|
3892 |
-
弯
|
3893 |
-
幹
|
3894 |
-
杠
|
3895 |
-
苞
|
3896 |
-
滤
|
3897 |
-
筆
|
3898 |
-
練
|
3899 |
-
鞑
|
3900 |
-
ˊ
|
3901 |
-
萤
|
3902 |
-
榶
|
3903 |
-
叨
|
3904 |
-
轨
|
3905 |
-
耒
|
3906 |
-
嚮
|
3907 |
-
┃
|
3908 |
-
漪
|
3909 |
-
剛
|
3910 |
-
键
|
3911 |
-
弋
|
3912 |
-
彦
|
3913 |
-
瘋
|
3914 |
-
词
|
3915 |
-
敖
|
3916 |
-
鸦
|
3917 |
-
秧
|
3918 |
-
囚
|
3919 |
-
绾
|
3920 |
-
镶
|
3921 |
-
濂
|
3922 |
-
↘
|
3923 |
-
豁
|
3924 |
-
煒
|
3925 |
-
萄
|
3926 |
-
珲
|
3927 |
-
緋
|
3928 |
-
昂
|
3929 |
-
瀨
|
3930 |
-
缓
|
3931 |
-
疲
|
3932 |
-
替
|
3933 |
-
汥
|
3934 |
-
殡
|
3935 |
-
葬
|
3936 |
-
靳
|
3937 |
-
揉
|
3938 |
-
闭
|
3939 |
-
睛
|
3940 |
-
偘
|
3941 |
-
佚
|
3942 |
-
$
|
3943 |
-
;
|
3944 |
-
^
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/text_recognition_crnn/charset_94_CH.txt
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
0
|
2 |
-
1
|
3 |
-
2
|
4 |
-
3
|
5 |
-
4
|
6 |
-
5
|
7 |
-
6
|
8 |
-
7
|
9 |
-
8
|
10 |
-
9
|
11 |
-
a
|
12 |
-
b
|
13 |
-
c
|
14 |
-
d
|
15 |
-
e
|
16 |
-
f
|
17 |
-
g
|
18 |
-
h
|
19 |
-
i
|
20 |
-
j
|
21 |
-
k
|
22 |
-
l
|
23 |
-
m
|
24 |
-
n
|
25 |
-
o
|
26 |
-
p
|
27 |
-
q
|
28 |
-
r
|
29 |
-
s
|
30 |
-
t
|
31 |
-
u
|
32 |
-
v
|
33 |
-
w
|
34 |
-
x
|
35 |
-
y
|
36 |
-
z
|
37 |
-
A
|
38 |
-
B
|
39 |
-
C
|
40 |
-
D
|
41 |
-
E
|
42 |
-
F
|
43 |
-
G
|
44 |
-
H
|
45 |
-
I
|
46 |
-
J
|
47 |
-
K
|
48 |
-
L
|
49 |
-
M
|
50 |
-
N
|
51 |
-
O
|
52 |
-
P
|
53 |
-
Q
|
54 |
-
R
|
55 |
-
S
|
56 |
-
T
|
57 |
-
U
|
58 |
-
V
|
59 |
-
W
|
60 |
-
X
|
61 |
-
Y
|
62 |
-
Z
|
63 |
-
!
|
64 |
-
"
|
65 |
-
#
|
66 |
-
$
|
67 |
-
%
|
68 |
-
&
|
69 |
-
'
|
70 |
-
(
|
71 |
-
)
|
72 |
-
*
|
73 |
-
+
|
74 |
-
,
|
75 |
-
-
|
76 |
-
.
|
77 |
-
/
|
78 |
-
:
|
79 |
-
;
|
80 |
-
<
|
81 |
-
=
|
82 |
-
>
|
83 |
-
?
|
84 |
-
@
|
85 |
-
[
|
86 |
-
\
|
87 |
-
]
|
88 |
-
^
|
89 |
-
_
|
90 |
-
`
|
91 |
-
{
|
92 |
-
|
|
93 |
-
}
|
94 |
-
~
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/text_recognition_crnn/crnn.py
CHANGED
@@ -8,9 +8,8 @@ import numpy as np
|
|
8 |
import cv2 as cv
|
9 |
|
10 |
class CRNN:
|
11 |
-
def __init__(self, modelPath,
|
12 |
self._model_path = modelPath
|
13 |
-
self._charsetPath = charsetPath
|
14 |
self._backendId = backendId
|
15 |
self._targetId = targetId
|
16 |
|
@@ -18,7 +17,17 @@ class CRNN:
|
|
18 |
self._model.setPreferableBackend(self._backendId)
|
19 |
self._model.setPreferableTarget(self._targetId)
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
self._inputSize = [100, 32] # Fixed
|
23 |
self._targetVertices = np.array([
|
24 |
[0, self._inputSize[1] - 1],
|
@@ -31,13 +40,8 @@ class CRNN:
|
|
31 |
def name(self):
|
32 |
return self.__class__.__name__
|
33 |
|
34 |
-
def _load_charset(self,
|
35 |
-
|
36 |
-
with open(charsetPath, 'r') as f:
|
37 |
-
for char in f:
|
38 |
-
char = char.strip()
|
39 |
-
charset += char
|
40 |
-
return charset
|
41 |
|
42 |
def setBackend(self, backend_id):
|
43 |
self._backendId = backend_id
|
@@ -94,3 +98,4081 @@ class CRNN:
|
|
94 |
char_list.append(text[i])
|
95 |
return ''.join(char_list)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import cv2 as cv
|
9 |
|
10 |
class CRNN:
|
11 |
+
def __init__(self, modelPath, backendId=0, targetId=0):
|
12 |
self._model_path = modelPath
|
|
|
13 |
self._backendId = backendId
|
14 |
self._targetId = targetId
|
15 |
|
|
|
17 |
self._model.setPreferableBackend(self._backendId)
|
18 |
self._model.setPreferableTarget(self._targetId)
|
19 |
|
20 |
+
# load charset by the name of model
|
21 |
+
if '_EN_' in self._model_path:
|
22 |
+
self._charset = self._load_charset(self.CHARSET_EN_36)
|
23 |
+
elif '_CH_' in self._model_path:
|
24 |
+
self._charset = self._load_charset(self.CHARSET_CH_94)
|
25 |
+
elif '_CN_' in self._model_path:
|
26 |
+
self._charset = self._load_charset(self.CHARSET_CN_3944)
|
27 |
+
else:
|
28 |
+
print('Charset not supported! Exiting ...')
|
29 |
+
exit()
|
30 |
+
|
31 |
self._inputSize = [100, 32] # Fixed
|
32 |
self._targetVertices = np.array([
|
33 |
[0, self._inputSize[1] - 1],
|
|
|
40 |
def name(self):
|
41 |
return self.__class__.__name__
|
42 |
|
43 |
+
def _load_charset(self, charset):
|
44 |
+
return ''.join(charset.splitlines())
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def setBackend(self, backend_id):
|
47 |
self._backendId = backend_id
|
|
|
98 |
char_list.append(text[i])
|
99 |
return ''.join(char_list)
|
100 |
|
101 |
+
CHARSET_EN_36 = '''0
|
102 |
+
1
|
103 |
+
2
|
104 |
+
3
|
105 |
+
4
|
106 |
+
5
|
107 |
+
6
|
108 |
+
7
|
109 |
+
8
|
110 |
+
9
|
111 |
+
a
|
112 |
+
b
|
113 |
+
c
|
114 |
+
d
|
115 |
+
e
|
116 |
+
f
|
117 |
+
g
|
118 |
+
h
|
119 |
+
i
|
120 |
+
j
|
121 |
+
k
|
122 |
+
l
|
123 |
+
m
|
124 |
+
n
|
125 |
+
o
|
126 |
+
p
|
127 |
+
q
|
128 |
+
r
|
129 |
+
s
|
130 |
+
t
|
131 |
+
u
|
132 |
+
v
|
133 |
+
w
|
134 |
+
x
|
135 |
+
y
|
136 |
+
z'''
|
137 |
+
|
138 |
+
CHARSET_CH_94 = '''
|
139 |
+
0
|
140 |
+
1
|
141 |
+
2
|
142 |
+
3
|
143 |
+
4
|
144 |
+
5
|
145 |
+
6
|
146 |
+
7
|
147 |
+
8
|
148 |
+
9
|
149 |
+
a
|
150 |
+
b
|
151 |
+
c
|
152 |
+
d
|
153 |
+
e
|
154 |
+
f
|
155 |
+
g
|
156 |
+
h
|
157 |
+
i
|
158 |
+
j
|
159 |
+
k
|
160 |
+
l
|
161 |
+
m
|
162 |
+
n
|
163 |
+
o
|
164 |
+
p
|
165 |
+
q
|
166 |
+
r
|
167 |
+
s
|
168 |
+
t
|
169 |
+
u
|
170 |
+
v
|
171 |
+
w
|
172 |
+
x
|
173 |
+
y
|
174 |
+
z
|
175 |
+
A
|
176 |
+
B
|
177 |
+
C
|
178 |
+
D
|
179 |
+
E
|
180 |
+
F
|
181 |
+
G
|
182 |
+
H
|
183 |
+
I
|
184 |
+
J
|
185 |
+
K
|
186 |
+
L
|
187 |
+
M
|
188 |
+
N
|
189 |
+
O
|
190 |
+
P
|
191 |
+
Q
|
192 |
+
R
|
193 |
+
S
|
194 |
+
T
|
195 |
+
U
|
196 |
+
V
|
197 |
+
W
|
198 |
+
X
|
199 |
+
Y
|
200 |
+
Z
|
201 |
+
!
|
202 |
+
"
|
203 |
+
#
|
204 |
+
$
|
205 |
+
%
|
206 |
+
&
|
207 |
+
'
|
208 |
+
(
|
209 |
+
)
|
210 |
+
*
|
211 |
+
+
|
212 |
+
,
|
213 |
+
-
|
214 |
+
.
|
215 |
+
/
|
216 |
+
:
|
217 |
+
;
|
218 |
+
<
|
219 |
+
=
|
220 |
+
>
|
221 |
+
?
|
222 |
+
@
|
223 |
+
[
|
224 |
+
\
|
225 |
+
]
|
226 |
+
^
|
227 |
+
_
|
228 |
+
`
|
229 |
+
{
|
230 |
+
|
|
231 |
+
}
|
232 |
+
~'''
|
233 |
+
|
234 |
+
CHARSET_CN_3944 = '''
|
235 |
+
H
|
236 |
+
O
|
237 |
+
K
|
238 |
+
I
|
239 |
+
T
|
240 |
+
E
|
241 |
+
A
|
242 |
+
酱
|
243 |
+
鸭
|
244 |
+
传
|
245 |
+
奇
|
246 |
+
J
|
247 |
+
N
|
248 |
+
G
|
249 |
+
Y
|
250 |
+
C
|
251 |
+
U
|
252 |
+
Q
|
253 |
+
蝦
|
254 |
+
兵
|
255 |
+
蟹
|
256 |
+
煲
|
257 |
+
这
|
258 |
+
是
|
259 |
+
可
|
260 |
+
以
|
261 |
+
先
|
262 |
+
吃
|
263 |
+
后
|
264 |
+
涮
|
265 |
+
的
|
266 |
+
干
|
267 |
+
锅
|
268 |
+
菜
|
269 |
+
加
|
270 |
+
盟
|
271 |
+
电
|
272 |
+
话
|
273 |
+
:
|
274 |
+
1
|
275 |
+
7
|
276 |
+
3
|
277 |
+
9
|
278 |
+
8
|
279 |
+
郑
|
280 |
+
州
|
281 |
+
总
|
282 |
+
店
|
283 |
+
雪
|
284 |
+
花
|
285 |
+
勇
|
286 |
+
闯
|
287 |
+
天
|
288 |
+
涯
|
289 |
+
虾
|
290 |
+
,
|
291 |
+
一
|
292 |
+
送
|
293 |
+
鱼
|
294 |
+
锡
|
295 |
+
纸
|
296 |
+
蛤
|
297 |
+
土
|
298 |
+
豆
|
299 |
+
粉
|
300 |
+
砂
|
301 |
+
米
|
302 |
+
线
|
303 |
+
牛
|
304 |
+
筋
|
305 |
+
面
|
306 |
+
刀
|
307 |
+
削
|
308 |
+
水
|
309 |
+
饺
|
310 |
+
吧
|
311 |
+
沙
|
312 |
+
拉
|
313 |
+
老
|
314 |
+
饭
|
315 |
+
盒
|
316 |
+
教
|
317 |
+
室
|
318 |
+
主
|
319 |
+
题
|
320 |
+
餐
|
321 |
+
厅
|
322 |
+
仁
|
323 |
+
馄
|
324 |
+
饨
|
325 |
+
重
|
326 |
+
庆
|
327 |
+
小
|
328 |
+
便
|
329 |
+
当
|
330 |
+
全
|
331 |
+
国
|
332 |
+
连
|
333 |
+
锁
|
334 |
+
4
|
335 |
+
0
|
336 |
+
-
|
337 |
+
6
|
338 |
+
5
|
339 |
+
2
|
340 |
+
人
|
341 |
+
快
|
342 |
+
量
|
343 |
+
贩
|
344 |
+
蓬
|
345 |
+
朗
|
346 |
+
御
|
347 |
+
茶
|
348 |
+
川
|
349 |
+
渝
|
350 |
+
捞
|
351 |
+
火
|
352 |
+
古
|
353 |
+
之
|
354 |
+
匠
|
355 |
+
今
|
356 |
+
七
|
357 |
+
西
|
358 |
+
域
|
359 |
+
羊
|
360 |
+
城
|
361 |
+
l
|
362 |
+
i
|
363 |
+
k
|
364 |
+
n
|
365 |
+
g
|
366 |
+
c
|
367 |
+
o
|
368 |
+
f
|
369 |
+
e
|
370 |
+
w
|
371 |
+
贵
|
372 |
+
阳
|
373 |
+
素
|
374 |
+
有
|
375 |
+
家
|
376 |
+
会
|
377 |
+
展
|
378 |
+
口
|
379 |
+
乐
|
380 |
+
三
|
381 |
+
惹
|
382 |
+
烤
|
383 |
+
肉
|
384 |
+
h
|
385 |
+
t
|
386 |
+
子
|
387 |
+
馆
|
388 |
+
常
|
389 |
+
盖
|
390 |
+
浇
|
391 |
+
兴
|
392 |
+
业
|
393 |
+
路
|
394 |
+
书
|
395 |
+
亦
|
396 |
+
燒
|
397 |
+
仙
|
398 |
+
草
|
399 |
+
L
|
400 |
+
:
|
401 |
+
德
|
402 |
+
啤
|
403 |
+
工
|
404 |
+
坊
|
405 |
+
杏
|
406 |
+
屋
|
407 |
+
高
|
408 |
+
桥
|
409 |
+
号
|
410 |
+
品
|
411 |
+
麻
|
412 |
+
辣
|
413 |
+
烫
|
414 |
+
检
|
415 |
+
官
|
416 |
+
.
|
417 |
+
千
|
418 |
+
翼
|
419 |
+
木
|
420 |
+
兰
|
421 |
+
画
|
422 |
+
食
|
423 |
+
上
|
424 |
+
汤
|
425 |
+
剁
|
426 |
+
馅
|
427 |
+
手
|
428 |
+
煮
|
429 |
+
时
|
430 |
+
尚
|
431 |
+
健
|
432 |
+
康
|
433 |
+
傲
|
434 |
+
椒
|
435 |
+
B
|
436 |
+
啵
|
437 |
+
条
|
438 |
+
脾
|
439 |
+
气
|
440 |
+
!
|
441 |
+
/
|
442 |
+
月
|
443 |
+
腾
|
444 |
+
讯
|
445 |
+
应
|
446 |
+
用
|
447 |
+
喵
|
448 |
+
泡
|
449 |
+
我
|
450 |
+
鲜
|
451 |
+
滚
|
452 |
+
给
|
453 |
+
你
|
454 |
+
看
|
455 |
+
客
|
456 |
+
来
|
457 |
+
香
|
458 |
+
汉
|
459 |
+
湘
|
460 |
+
本
|
461 |
+
地
|
462 |
+
炒
|
463 |
+
系
|
464 |
+
列
|
465 |
+
订
|
466 |
+
仔
|
467 |
+
肘
|
468 |
+
蹄
|
469 |
+
梅
|
470 |
+
扣
|
471 |
+
黄
|
472 |
+
焖
|
473 |
+
排
|
474 |
+
骨
|
475 |
+
炖
|
476 |
+
鸡
|
477 |
+
韓
|
478 |
+
金
|
479 |
+
利
|
480 |
+
串
|
481 |
+
舊
|
482 |
+
街
|
483 |
+
梨
|
484 |
+
村
|
485 |
+
座
|
486 |
+
经
|
487 |
+
济
|
488 |
+
实
|
489 |
+
惠
|
490 |
+
绿
|
491 |
+
色
|
492 |
+
炭
|
493 |
+
庐
|
494 |
+
蛙
|
495 |
+
忆
|
496 |
+
蓉
|
497 |
+
源
|
498 |
+
真
|
499 |
+
d
|
500 |
+
D
|
501 |
+
概
|
502 |
+
念
|
503 |
+
创
|
504 |
+
意
|
505 |
+
六
|
506 |
+
熏
|
507 |
+
各
|
508 |
+
种
|
509 |
+
精
|
510 |
+
美
|
511 |
+
y
|
512 |
+
疯
|
513 |
+
狂
|
514 |
+
世
|
515 |
+
界
|
516 |
+
杯
|
517 |
+
特
|
518 |
+
价
|
519 |
+
酒
|
520 |
+
元
|
521 |
+
瓶
|
522 |
+
沸
|
523 |
+
带
|
524 |
+
F
|
525 |
+
请
|
526 |
+
二
|
527 |
+
楼
|
528 |
+
自
|
529 |
+
动
|
530 |
+
升
|
531 |
+
降
|
532 |
+
烏
|
533 |
+
邦
|
534 |
+
嗦
|
535 |
+
味
|
536 |
+
风
|
537 |
+
货
|
538 |
+
团
|
539 |
+
外
|
540 |
+
卖
|
541 |
+
嘞
|
542 |
+
个
|
543 |
+
折
|
544 |
+
辛
|
545 |
+
束
|
546 |
+
舌
|
547 |
+
尖
|
548 |
+
中
|
549 |
+
包
|
550 |
+
浆
|
551 |
+
腐
|
552 |
+
r
|
553 |
+
P
|
554 |
+
a
|
555 |
+
u
|
556 |
+
丸
|
557 |
+
作
|
558 |
+
福
|
559 |
+
M
|
560 |
+
漫
|
561 |
+
蜜
|
562 |
+
冰
|
563 |
+
拌
|
564 |
+
匆
|
565 |
+
那
|
566 |
+
年
|
567 |
+
R
|
568 |
+
S
|
569 |
+
果
|
570 |
+
光
|
571 |
+
夹
|
572 |
+
馍
|
573 |
+
凉
|
574 |
+
皮
|
575 |
+
过
|
576 |
+
祖
|
577 |
+
南
|
578 |
+
山
|
579 |
+
風
|
580 |
+
景
|
581 |
+
堂
|
582 |
+
烘
|
583 |
+
培
|
584 |
+
龍
|
585 |
+
坎
|
586 |
+
半
|
587 |
+
婆
|
588 |
+
建
|
589 |
+
设
|
590 |
+
富
|
591 |
+
强
|
592 |
+
丽
|
593 |
+
菏
|
594 |
+
泽
|
595 |
+
省
|
596 |
+
安
|
597 |
+
港
|
598 |
+
竹
|
599 |
+
签
|
600 |
+
撩
|
601 |
+
只
|
602 |
+
为
|
603 |
+
好
|
604 |
+
生
|
605 |
+
活
|
606 |
+
抓
|
607 |
+
海
|
608 |
+
最
|
609 |
+
网
|
610 |
+
红
|
611 |
+
铁
|
612 |
+
统
|
613 |
+
®
|
614 |
+
功
|
615 |
+
夫
|
616 |
+
鱿
|
617 |
+
大
|
618 |
+
闻
|
619 |
+
就
|
620 |
+
知
|
621 |
+
遇
|
622 |
+
见
|
623 |
+
文
|
624 |
+
合
|
625 |
+
热
|
626 |
+
森
|
627 |
+
台
|
628 |
+
湾
|
629 |
+
卤
|
630 |
+
然
|
631 |
+
汁
|
632 |
+
甄
|
633 |
+
选
|
634 |
+
材
|
635 |
+
还
|
636 |
+
原
|
637 |
+
初
|
638 |
+
衷
|
639 |
+
*
|
640 |
+
洪
|
641 |
+
龙
|
642 |
+
公
|
643 |
+
酸
|
644 |
+
巴
|
645 |
+
乡
|
646 |
+
焦
|
647 |
+
烧
|
648 |
+
淘
|
649 |
+
成
|
650 |
+
都
|
651 |
+
眼
|
652 |
+
镜
|
653 |
+
优
|
654 |
+
菓
|
655 |
+
恋
|
656 |
+
V
|
657 |
+
化
|
658 |
+
糖
|
659 |
+
、
|
660 |
+
粥
|
661 |
+
田
|
662 |
+
螺
|
663 |
+
斓
|
664 |
+
X
|
665 |
+
爺
|
666 |
+
W
|
667 |
+
j
|
668 |
+
院
|
669 |
+
华
|
670 |
+
Z
|
671 |
+
蜊
|
672 |
+
北
|
673 |
+
京
|
674 |
+
刷
|
675 |
+
蝎
|
676 |
+
腿
|
677 |
+
梦
|
678 |
+
幻
|
679 |
+
奶
|
680 |
+
式
|
681 |
+
蛋
|
682 |
+
鍋
|
683 |
+
区
|
684 |
+
·
|
685 |
+
领
|
686 |
+
航
|
687 |
+
者
|
688 |
+
四
|
689 |
+
通
|
690 |
+
往
|
691 |
+
楚
|
692 |
+
河
|
693 |
+
停
|
694 |
+
车
|
695 |
+
场
|
696 |
+
凌
|
697 |
+
晨
|
698 |
+
点
|
699 |
+
杞
|
700 |
+
缘
|
701 |
+
王
|
702 |
+
集
|
703 |
+
唐
|
704 |
+
菠
|
705 |
+
萝
|
706 |
+
泰
|
707 |
+
板
|
708 |
+
鳳
|
709 |
+
凰
|
710 |
+
樓
|
711 |
+
名
|
712 |
+
壹
|
713 |
+
猪
|
714 |
+
晴
|
715 |
+
舍
|
716 |
+
犟
|
717 |
+
师
|
718 |
+
傅
|
719 |
+
飯
|
720 |
+
致
|
721 |
+
青
|
722 |
+
春
|
723 |
+
轰
|
724 |
+
炸
|
725 |
+
卡
|
726 |
+
里
|
727 |
+
身
|
728 |
+
厨
|
729 |
+
房
|
730 |
+
x
|
731 |
+
聚
|
732 |
+
鑫
|
733 |
+
阁
|
734 |
+
岛
|
735 |
+
纯
|
736 |
+
聘
|
737 |
+
专
|
738 |
+
长
|
739 |
+
庄
|
740 |
+
鄉
|
741 |
+
更
|
742 |
+
珍
|
743 |
+
固
|
744 |
+
新
|
745 |
+
岩
|
746 |
+
v
|
747 |
+
s
|
748 |
+
m
|
749 |
+
至
|
750 |
+
尊
|
751 |
+
比
|
752 |
+
萨
|
753 |
+
广
|
754 |
+
披
|
755 |
+
饮
|
756 |
+
管
|
757 |
+
理
|
758 |
+
限
|
759 |
+
司
|
760 |
+
p
|
761 |
+
幸
|
762 |
+
东
|
763 |
+
正
|
764 |
+
挞
|
765 |
+
少
|
766 |
+
女
|
767 |
+
克
|
768 |
+
装
|
769 |
+
童
|
770 |
+
哒
|
771 |
+
磨
|
772 |
+
厂
|
773 |
+
怼
|
774 |
+
纤
|
775 |
+
入
|
776 |
+
户
|
777 |
+
独
|
778 |
+
溜
|
779 |
+
共
|
780 |
+
享
|
781 |
+
滋
|
782 |
+
江
|
783 |
+
门
|
784 |
+
九
|
785 |
+
蒸
|
786 |
+
胜
|
787 |
+
盛
|
788 |
+
&
|
789 |
+
魔
|
790 |
+
爪
|
791 |
+
鹅
|
792 |
+
皇
|
793 |
+
(
|
794 |
+
)
|
795 |
+
友
|
796 |
+
甲
|
797 |
+
魚
|
798 |
+
首
|
799 |
+
烹
|
800 |
+
行
|
801 |
+
员
|
802 |
+
若
|
803 |
+
资
|
804 |
+
议
|
805 |
+
联
|
806 |
+
同
|
807 |
+
急
|
808 |
+
私
|
809 |
+
燕
|
810 |
+
儿
|
811 |
+
巢
|
812 |
+
鹏
|
813 |
+
记
|
814 |
+
腊
|
815 |
+
营
|
816 |
+
欢
|
817 |
+
迎
|
818 |
+
旗
|
819 |
+
舰
|
820 |
+
叫
|
821 |
+
了
|
822 |
+
做
|
823 |
+
故
|
824 |
+
铃
|
825 |
+
煎
|
826 |
+
饼
|
827 |
+
哥
|
828 |
+
力
|
829 |
+
五
|
830 |
+
谷
|
831 |
+
野
|
832 |
+
戈
|
833 |
+
厠
|
834 |
+
所
|
835 |
+
超
|
836 |
+
牌
|
837 |
+
冒
|
838 |
+
陳
|
839 |
+
陈
|
840 |
+
苕
|
841 |
+
爽
|
842 |
+
滑
|
843 |
+
启
|
844 |
+
秦
|
845 |
+
择
|
846 |
+
现
|
847 |
+
进
|
848 |
+
惊
|
849 |
+
喜
|
850 |
+
定
|
851 |
+
于
|
852 |
+
雅
|
853 |
+
膳
|
854 |
+
多
|
855 |
+
推
|
856 |
+
淇
|
857 |
+
淋
|
858 |
+
b
|
859 |
+
思
|
860 |
+
堡
|
861 |
+
偶
|
862 |
+
相
|
863 |
+
伴
|
864 |
+
呈
|
865 |
+
湯
|
866 |
+
绝
|
867 |
+
浏
|
868 |
+
'
|
869 |
+
刘
|
870 |
+
态
|
871 |
+
牧
|
872 |
+
万
|
873 |
+
达
|
874 |
+
和
|
875 |
+
番
|
876 |
+
丼
|
877 |
+
—
|
878 |
+
机
|
879 |
+
瘦
|
880 |
+
绵
|
881 |
+
柔
|
882 |
+
厉
|
883 |
+
蚝
|
884 |
+
娘
|
885 |
+
彩
|
886 |
+
百
|
887 |
+
事
|
888 |
+
调
|
889 |
+
韩
|
890 |
+
爱
|
891 |
+
喝
|
892 |
+
玩
|
893 |
+
放
|
894 |
+
肆
|
895 |
+
寿
|
896 |
+
净
|
897 |
+
配
|
898 |
+
髓
|
899 |
+
非
|
900 |
+
道
|
901 |
+
额
|
902 |
+
吉
|
903 |
+
招
|
904 |
+
商
|
905 |
+
杂
|
906 |
+
粮
|
907 |
+
筐
|
908 |
+
运
|
909 |
+
转
|
910 |
+
服
|
911 |
+
务
|
912 |
+
缤
|
913 |
+
灿
|
914 |
+
腕
|
915 |
+
楠
|
916 |
+
彤
|
917 |
+
学
|
918 |
+
橋
|
919 |
+
试
|
920 |
+
浩
|
921 |
+
减
|
922 |
+
薪
|
923 |
+
诚
|
924 |
+
霸
|
925 |
+
第
|
926 |
+
间
|
927 |
+
日
|
928 |
+
极
|
929 |
+
料
|
930 |
+
開
|
931 |
+
業
|
932 |
+
霏
|
933 |
+
星
|
934 |
+
期
|
935 |
+
分
|
936 |
+
秒
|
937 |
+
内
|
938 |
+
咨
|
939 |
+
询
|
940 |
+
。
|
941 |
+
樐
|
942 |
+
头
|
943 |
+
开
|
944 |
+
氏
|
945 |
+
渔
|
946 |
+
约
|
947 |
+
劳
|
948 |
+
保
|
949 |
+
礼
|
950 |
+
宏
|
951 |
+
武
|
952 |
+
佘
|
953 |
+
轻
|
954 |
+
奢
|
955 |
+
艺
|
956 |
+
井
|
957 |
+
隆
|
958 |
+
鐵
|
959 |
+
卷
|
960 |
+
染
|
961 |
+
焙
|
962 |
+
钵
|
963 |
+
马
|
964 |
+
牟
|
965 |
+
洋
|
966 |
+
芋
|
967 |
+
片
|
968 |
+
流
|
969 |
+
宽
|
970 |
+
心
|
971 |
+
位
|
972 |
+
清
|
973 |
+
潼
|
974 |
+
关
|
975 |
+
祥
|
976 |
+
背
|
977 |
+
凡
|
978 |
+
哈
|
979 |
+
尔
|
980 |
+
滨
|
981 |
+
珠
|
982 |
+
派
|
983 |
+
艾
|
984 |
+
让
|
985 |
+
变
|
986 |
+
得
|
987 |
+
样
|
988 |
+
玖
|
989 |
+
等
|
990 |
+
综
|
991 |
+
性
|
992 |
+
涵
|
993 |
+
粗
|
994 |
+
冠
|
995 |
+
記
|
996 |
+
肠
|
997 |
+
湖
|
998 |
+
财
|
999 |
+
贡
|
1000 |
+
桃
|
1001 |
+
杭
|
1002 |
+
平
|
1003 |
+
桂
|
1004 |
+
林
|
1005 |
+
煨
|
1006 |
+
档
|
1007 |
+
案
|
1008 |
+
造
|
1009 |
+
潮
|
1010 |
+
汕
|
1011 |
+
宗
|
1012 |
+
单
|
1013 |
+
县
|
1014 |
+
鲁
|
1015 |
+
舜
|
1016 |
+
脆
|
1017 |
+
酥
|
1018 |
+
糕
|
1019 |
+
仕
|
1020 |
+
十
|
1021 |
+
临
|
1022 |
+
簋
|
1023 |
+
宴
|
1024 |
+
字
|
1025 |
+
太
|
1026 |
+
灌
|
1027 |
+
薄
|
1028 |
+
尝
|
1029 |
+
址
|
1030 |
+
晗
|
1031 |
+
幢
|
1032 |
+
购
|
1033 |
+
梁
|
1034 |
+
醉
|
1035 |
+
皖
|
1036 |
+
庭
|
1037 |
+
白
|
1038 |
+
肥
|
1039 |
+
块
|
1040 |
+
石
|
1041 |
+
碗
|
1042 |
+
颜
|
1043 |
+
值
|
1044 |
+
張
|
1045 |
+
瘾
|
1046 |
+
跷
|
1047 |
+
脚
|
1048 |
+
而
|
1049 |
+
叁
|
1050 |
+
蜀
|
1051 |
+
橙
|
1052 |
+
市
|
1053 |
+
边
|
1054 |
+
早
|
1055 |
+
晚
|
1056 |
+
云
|
1057 |
+
吞
|
1058 |
+
目
|
1059 |
+
表
|
1060 |
+
赵
|
1061 |
+
烩
|
1062 |
+
擀
|
1063 |
+
蔬
|
1064 |
+
找
|
1065 |
+
回
|
1066 |
+
游
|
1067 |
+
刃
|
1068 |
+
余
|
1069 |
+
支
|
1070 |
+
洗
|
1071 |
+
吹
|
1072 |
+
休
|
1073 |
+
闲
|
1074 |
+
简
|
1075 |
+
撸
|
1076 |
+
根
|
1077 |
+
据
|
1078 |
+
鸽
|
1079 |
+
铜
|
1080 |
+
亲
|
1081 |
+
贝
|
1082 |
+
纪
|
1083 |
+
吕
|
1084 |
+
豚
|
1085 |
+
饅
|
1086 |
+
悦
|
1087 |
+
汇
|
1088 |
+
油
|
1089 |
+
无
|
1090 |
+
制
|
1091 |
+
在
|
1092 |
+
寻
|
1093 |
+
碳
|
1094 |
+
馋
|
1095 |
+
嘴
|
1096 |
+
架
|
1097 |
+
荣
|
1098 |
+
斋
|
1099 |
+
护
|
1100 |
+
角
|
1101 |
+
落
|
1102 |
+
铺
|
1103 |
+
臊
|
1104 |
+
丝
|
1105 |
+
围
|
1106 |
+
柳
|
1107 |
+
蛳
|
1108 |
+
蒲
|
1109 |
+
庙
|
1110 |
+
视
|
1111 |
+
荐
|
1112 |
+
缃
|
1113 |
+
想
|
1114 |
+
呀
|
1115 |
+
姜
|
1116 |
+
母
|
1117 |
+
起
|
1118 |
+
泉
|
1119 |
+
族
|
1120 |
+
群
|
1121 |
+
众
|
1122 |
+
其
|
1123 |
+
它
|
1124 |
+
血
|
1125 |
+
双
|
1126 |
+
补
|
1127 |
+
阴
|
1128 |
+
润
|
1129 |
+
不
|
1130 |
+
禽
|
1131 |
+
类
|
1132 |
+
款
|
1133 |
+
较
|
1134 |
+
候
|
1135 |
+
些
|
1136 |
+
畅
|
1137 |
+
脉
|
1138 |
+
痰
|
1139 |
+
疏
|
1140 |
+
肝
|
1141 |
+
帮
|
1142 |
+
助
|
1143 |
+
消
|
1144 |
+
增
|
1145 |
+
欲
|
1146 |
+
尤
|
1147 |
+
对
|
1148 |
+
胃
|
1149 |
+
畏
|
1150 |
+
寒
|
1151 |
+
很
|
1152 |
+
效
|
1153 |
+
秘
|
1154 |
+
黑
|
1155 |
+
嘿
|
1156 |
+
佳
|
1157 |
+
越
|
1158 |
+
脑
|
1159 |
+
桶
|
1160 |
+
项
|
1161 |
+
▪
|
1162 |
+
|
|
1163 |
+
榜
|
1164 |
+
许
|
1165 |
+
仿
|
1166 |
+
或
|
1167 |
+
酬
|
1168 |
+
宾
|
1169 |
+
指
|
1170 |
+
买
|
1171 |
+
赠
|
1172 |
+
笃
|
1173 |
+
鼎
|
1174 |
+
盆
|
1175 |
+
™
|
1176 |
+
咕
|
1177 |
+
咾
|
1178 |
+
肚
|
1179 |
+
识
|
1180 |
+
栖
|
1181 |
+
凤
|
1182 |
+
渡
|
1183 |
+
筒
|
1184 |
+
彬
|
1185 |
+
弟
|
1186 |
+
醋
|
1187 |
+
財
|
1188 |
+
師
|
1189 |
+
民
|
1190 |
+
博
|
1191 |
+
丁
|
1192 |
+
扒
|
1193 |
+
翅
|
1194 |
+
墨
|
1195 |
+
柠
|
1196 |
+
檬
|
1197 |
+
紫
|
1198 |
+
薯
|
1199 |
+
焗
|
1200 |
+
芝
|
1201 |
+
士
|
1202 |
+
胸
|
1203 |
+
图
|
1204 |
+
妮
|
1205 |
+
杀
|
1206 |
+
菌
|
1207 |
+
爹
|
1208 |
+
尽
|
1209 |
+
归
|
1210 |
+
宁
|
1211 |
+
粽
|
1212 |
+
瑞
|
1213 |
+
轩
|
1214 |
+
午
|
1215 |
+
陕
|
1216 |
+
出
|
1217 |
+
才
|
1218 |
+
盘
|
1219 |
+
植
|
1220 |
+
甜
|
1221 |
+
粒
|
1222 |
+
神
|
1223 |
+
舟
|
1224 |
+
玻
|
1225 |
+
璃
|
1226 |
+
医
|
1227 |
+
划
|
1228 |
+
药
|
1229 |
+
郡
|
1230 |
+
毛
|
1231 |
+
张
|
1232 |
+
姐
|
1233 |
+
留
|
1234 |
+
满
|
1235 |
+
下
|
1236 |
+
兄
|
1237 |
+
法
|
1238 |
+
鋪
|
1239 |
+
é
|
1240 |
+
[
|
1241 |
+
槑
|
1242 |
+
]
|
1243 |
+
言
|
1244 |
+
密
|
1245 |
+
帝
|
1246 |
+
場
|
1247 |
+
朴
|
1248 |
+
寨
|
1249 |
+
奉
|
1250 |
+
z
|
1251 |
+
什
|
1252 |
+
顺
|
1253 |
+
疆
|
1254 |
+
馕
|
1255 |
+
豫
|
1256 |
+
怀
|
1257 |
+
旧
|
1258 |
+
验
|
1259 |
+
昙
|
1260 |
+
搞
|
1261 |
+
圣
|
1262 |
+
格
|
1263 |
+
ǐ
|
1264 |
+
à
|
1265 |
+
隱
|
1266 |
+
燙
|
1267 |
+
状
|
1268 |
+
居
|
1269 |
+
饱
|
1270 |
+
底
|
1271 |
+
免
|
1272 |
+
费
|
1273 |
+
廣
|
1274 |
+
點
|
1275 |
+
專
|
1276 |
+
門
|
1277 |
+
语
|
1278 |
+
叉
|
1279 |
+
左
|
1280 |
+
岸
|
1281 |
+
发
|
1282 |
+
乌
|
1283 |
+
齐
|
1284 |
+
冷
|
1285 |
+
命
|
1286 |
+
●
|
1287 |
+
修
|
1288 |
+
闸
|
1289 |
+
飞
|
1290 |
+
空
|
1291 |
+
养
|
1292 |
+
笼
|
1293 |
+
興
|
1294 |
+
银
|
1295 |
+
套
|
1296 |
+
東
|
1297 |
+
吴
|
1298 |
+
麺
|
1299 |
+
館
|
1300 |
+
¥
|
1301 |
+
从
|
1302 |
+
前
|
1303 |
+
乙
|
1304 |
+
弘
|
1305 |
+
炝
|
1306 |
+
夏
|
1307 |
+
秋
|
1308 |
+
冬
|
1309 |
+
咖
|
1310 |
+
啡
|
1311 |
+
℃
|
1312 |
+
©
|
1313 |
+
莲
|
1314 |
+
塘
|
1315 |
+
哆
|
1316 |
+
梓
|
1317 |
+
依
|
1318 |
+
哎
|
1319 |
+
麦
|
1320 |
+
泗
|
1321 |
+
泾
|
1322 |
+
瓯
|
1323 |
+
胡
|
1324 |
+
∣
|
1325 |
+
歺
|
1326 |
+
八
|
1327 |
+
度
|
1328 |
+
深
|
1329 |
+
夜
|
1330 |
+
旋
|
1331 |
+
永
|
1332 |
+
远
|
1333 |
+
温
|
1334 |
+
又
|
1335 |
+
晶
|
1336 |
+
溏
|
1337 |
+
ä
|
1338 |
+
盔
|
1339 |
+
飘
|
1340 |
+
劲
|
1341 |
+
旺
|
1342 |
+
楸
|
1343 |
+
良
|
1344 |
+
譜
|
1345 |
+
餅
|
1346 |
+
苏
|
1347 |
+
莎
|
1348 |
+
足
|
1349 |
+
宵
|
1350 |
+
与
|
1351 |
+
楊
|
1352 |
+
國
|
1353 |
+
莱
|
1354 |
+
卜
|
1355 |
+
炊
|
1356 |
+
挑
|
1357 |
+
剔
|
1358 |
+
存
|
1359 |
+
错
|
1360 |
+
方
|
1361 |
+
程
|
1362 |
+
解
|
1363 |
+
能
|
1364 |
+
堆
|
1365 |
+
洲
|
1366 |
+
诗
|
1367 |
+
玛
|
1368 |
+
渴
|
1369 |
+
脖
|
1370 |
+
丛
|
1371 |
+
狼
|
1372 |
+
翁
|
1373 |
+
姓
|
1374 |
+
葫
|
1375 |
+
芦
|
1376 |
+
沾
|
1377 |
+
葵
|
1378 |
+
の
|
1379 |
+
咔
|
1380 |
+
粹
|
1381 |
+
弥
|
1382 |
+
乖
|
1383 |
+
悠
|
1384 |
+
茗
|
1385 |
+
别
|
1386 |
+
走
|
1387 |
+
柒
|
1388 |
+
榨
|
1389 |
+
咥
|
1390 |
+
虹
|
1391 |
+
沏
|
1392 |
+
桔
|
1393 |
+
叔
|
1394 |
+
贴
|
1395 |
+
办
|
1396 |
+
充
|
1397 |
+
崎
|
1398 |
+
鮮
|
1399 |
+
属
|
1400 |
+
彭
|
1401 |
+
浦
|
1402 |
+
町
|
1403 |
+
郎
|
1404 |
+
°
|
1405 |
+
悟
|
1406 |
+
惑
|
1407 |
+
科
|
1408 |
+
英
|
1409 |
+
育
|
1410 |
+
岁
|
1411 |
+
幼
|
1412 |
+
园
|
1413 |
+
慢
|
1414 |
+
摆
|
1415 |
+
_
|
1416 |
+
狐
|
1417 |
+
狸
|
1418 |
+
典
|
1419 |
+
暴
|
1420 |
+
帥
|
1421 |
+
尾
|
1422 |
+
琼
|
1423 |
+
見
|
1424 |
+
望
|
1425 |
+
烟
|
1426 |
+
坚
|
1427 |
+
鸳
|
1428 |
+
鸯
|
1429 |
+
直
|
1430 |
+
校
|
1431 |
+
饪
|
1432 |
+
承
|
1433 |
+
们
|
1434 |
+
么
|
1435 |
+
¥
|
1436 |
+
份
|
1437 |
+
宇
|
1438 |
+
炉
|
1439 |
+
峰
|
1440 |
+
乃
|
1441 |
+
趣
|
1442 |
+
代
|
1443 |
+
刨
|
1444 |
+
抖
|
1445 |
+
音
|
1446 |
+
占
|
1447 |
+
谜
|
1448 |
+
答
|
1449 |
+
熟
|
1450 |
+
控
|
1451 |
+
蕾
|
1452 |
+
节
|
1453 |
+
社
|
1454 |
+
您
|
1455 |
+
《
|
1456 |
+
羅
|
1457 |
+
茉
|
1458 |
+
瀞
|
1459 |
+
憨
|
1460 |
+
尼
|
1461 |
+
丰
|
1462 |
+
镇
|
1463 |
+
酿
|
1464 |
+
避
|
1465 |
+
抢
|
1466 |
+
突
|
1467 |
+
破
|
1468 |
+
杰
|
1469 |
+
姆
|
1470 |
+
波
|
1471 |
+
观
|
1472 |
+
澜
|
1473 |
+
庫
|
1474 |
+
舒
|
1475 |
+
谁
|
1476 |
+
短
|
1477 |
+
島
|
1478 |
+
爷
|
1479 |
+
码
|
1480 |
+
每
|
1481 |
+
欧
|
1482 |
+
注
|
1483 |
+
册
|
1484 |
+
标
|
1485 |
+
腸
|
1486 |
+
奈
|
1487 |
+
熊
|
1488 |
+
粵
|
1489 |
+
吳
|
1490 |
+
衢
|
1491 |
+
雄
|
1492 |
+
际
|
1493 |
+
葱
|
1494 |
+
柱
|
1495 |
+
压
|
1496 |
+
陪
|
1497 |
+
器
|
1498 |
+
厘
|
1499 |
+
柴
|
1500 |
+
席
|
1501 |
+
饿
|
1502 |
+
俏
|
1503 |
+
汽
|
1504 |
+
站
|
1505 |
+
霜
|
1506 |
+
荟
|
1507 |
+
禾
|
1508 |
+
咘
|
1509 |
+
臭
|
1510 |
+
夷
|
1511 |
+
肖
|
1512 |
+
微
|
1513 |
+
组
|
1514 |
+
刺
|
1515 |
+
拼
|
1516 |
+
打
|
1517 |
+
信
|
1518 |
+
步
|
1519 |
+
!
|
1520 |
+
说
|
1521 |
+
囍
|
1522 |
+
智
|
1523 |
+
藍
|
1524 |
+
鹿
|
1525 |
+
巷
|
1526 |
+
顾
|
1527 |
+
勃
|
1528 |
+
頭
|
1529 |
+
帕
|
1530 |
+
徐
|
1531 |
+
渣
|
1532 |
+
嗨
|
1533 |
+
鲍
|
1534 |
+
抽
|
1535 |
+
莊
|
1536 |
+
胗
|
1537 |
+
耳
|
1538 |
+
栈
|
1539 |
+
葑
|
1540 |
+
谊
|
1541 |
+
李
|
1542 |
+
够
|
1543 |
+
歪
|
1544 |
+
到
|
1545 |
+
杜
|
1546 |
+
绪
|
1547 |
+
始
|
1548 |
+
“
|
1549 |
+
”
|
1550 |
+
编
|
1551 |
+
感
|
1552 |
+
谢
|
1553 |
+
阿
|
1554 |
+
妹
|
1555 |
+
抄
|
1556 |
+
屿
|
1557 |
+
旁
|
1558 |
+
钟
|
1559 |
+
糰
|
1560 |
+
鷄
|
1561 |
+
觉
|
1562 |
+
队
|
1563 |
+
明
|
1564 |
+
没
|
1565 |
+
幺
|
1566 |
+
罗
|
1567 |
+
恭
|
1568 |
+
發
|
1569 |
+
溢
|
1570 |
+
圆
|
1571 |
+
筵
|
1572 |
+
鲩
|
1573 |
+
斤
|
1574 |
+
噜
|
1575 |
+
府
|
1576 |
+
雕
|
1577 |
+
牦
|
1578 |
+
津
|
1579 |
+
間
|
1580 |
+
粤
|
1581 |
+
义
|
1582 |
+
驾
|
1583 |
+
嫩
|
1584 |
+
眷
|
1585 |
+
苔
|
1586 |
+
怡
|
1587 |
+
逍
|
1588 |
+
遥
|
1589 |
+
即
|
1590 |
+
把
|
1591 |
+
季
|
1592 |
+
鹃
|
1593 |
+
妈
|
1594 |
+
烙
|
1595 |
+
淡
|
1596 |
+
嘟
|
1597 |
+
班
|
1598 |
+
散
|
1599 |
+
磐
|
1600 |
+
稣
|
1601 |
+
耍
|
1602 |
+
芽
|
1603 |
+
昌
|
1604 |
+
粿
|
1605 |
+
鼓
|
1606 |
+
姑
|
1607 |
+
央
|
1608 |
+
告
|
1609 |
+
翔
|
1610 |
+
迦
|
1611 |
+
缆
|
1612 |
+
怪
|
1613 |
+
俗
|
1614 |
+
菩
|
1615 |
+
宥
|
1616 |
+
酵
|
1617 |
+
男
|
1618 |
+
顿
|
1619 |
+
蚂
|
1620 |
+
蚁
|
1621 |
+
q
|
1622 |
+
緑
|
1623 |
+
瑩
|
1624 |
+
養
|
1625 |
+
滿
|
1626 |
+
接
|
1627 |
+
立
|
1628 |
+
勤
|
1629 |
+
封
|
1630 |
+
徽
|
1631 |
+
酷
|
1632 |
+
(
|
1633 |
+
慕
|
1634 |
+
曹
|
1635 |
+
吊
|
1636 |
+
咸
|
1637 |
+
矿
|
1638 |
+
黛
|
1639 |
+
刻
|
1640 |
+
呗
|
1641 |
+
布
|
1642 |
+
袋
|
1643 |
+
钝
|
1644 |
+
丘
|
1645 |
+
逗
|
1646 |
+
窗
|
1647 |
+
吾
|
1648 |
+
塔
|
1649 |
+
坡
|
1650 |
+
周
|
1651 |
+
雙
|
1652 |
+
朝
|
1653 |
+
末
|
1654 |
+
如
|
1655 |
+
杨
|
1656 |
+
淮
|
1657 |
+
摄
|
1658 |
+
影
|
1659 |
+
翻
|
1660 |
+
窝
|
1661 |
+
物
|
1662 |
+
椰
|
1663 |
+
荞
|
1664 |
+
搅
|
1665 |
+
陇
|
1666 |
+
收
|
1667 |
+
两
|
1668 |
+
倍
|
1669 |
+
狮
|
1670 |
+
伊
|
1671 |
+
後
|
1672 |
+
晖
|
1673 |
+
長
|
1674 |
+
箐
|
1675 |
+
豪
|
1676 |
+
耀
|
1677 |
+
漢
|
1678 |
+
釜
|
1679 |
+
宮
|
1680 |
+
次
|
1681 |
+
掌
|
1682 |
+
斯
|
1683 |
+
朋
|
1684 |
+
针
|
1685 |
+
菇
|
1686 |
+
蚬
|
1687 |
+
拍
|
1688 |
+
雒
|
1689 |
+
陽
|
1690 |
+
漿
|
1691 |
+
麵
|
1692 |
+
條
|
1693 |
+
部
|
1694 |
+
←
|
1695 |
+
柜
|
1696 |
+
驴
|
1697 |
+
证
|
1698 |
+
票
|
1699 |
+
账
|
1700 |
+
汗
|
1701 |
+
汆
|
1702 |
+
稍
|
1703 |
+
戏
|
1704 |
+
菋
|
1705 |
+
卫
|
1706 |
+
匹
|
1707 |
+
栋
|
1708 |
+
馨
|
1709 |
+
肯
|
1710 |
+
迪
|
1711 |
+
邢
|
1712 |
+
梯
|
1713 |
+
容
|
1714 |
+
嘉
|
1715 |
+
莞
|
1716 |
+
袁
|
1717 |
+
锦
|
1718 |
+
遮
|
1719 |
+
雨
|
1720 |
+
篷
|
1721 |
+
腰
|
1722 |
+
肺
|
1723 |
+
剡
|
1724 |
+
乾
|
1725 |
+
,
|
1726 |
+
翰
|
1727 |
+
蔚
|
1728 |
+
刁
|
1729 |
+
藤
|
1730 |
+
帅
|
1731 |
+
傳
|
1732 |
+
维
|
1733 |
+
笔
|
1734 |
+
历
|
1735 |
+
史
|
1736 |
+
】
|
1737 |
+
适
|
1738 |
+
煌
|
1739 |
+
倾
|
1740 |
+
沧
|
1741 |
+
姬
|
1742 |
+
训
|
1743 |
+
邵
|
1744 |
+
诺
|
1745 |
+
敢
|
1746 |
+
质
|
1747 |
+
益
|
1748 |
+
佬
|
1749 |
+
兼
|
1750 |
+
职
|
1751 |
+
盅
|
1752 |
+
诊
|
1753 |
+
扬
|
1754 |
+
速
|
1755 |
+
宝
|
1756 |
+
褚
|
1757 |
+
糁
|
1758 |
+
钢
|
1759 |
+
松
|
1760 |
+
婚
|
1761 |
+
秀
|
1762 |
+
盐
|
1763 |
+
及
|
1764 |
+
個
|
1765 |
+
飲
|
1766 |
+
绍
|
1767 |
+
槿
|
1768 |
+
觅
|
1769 |
+
逼
|
1770 |
+
兽
|
1771 |
+
》
|
1772 |
+
吐
|
1773 |
+
右
|
1774 |
+
久
|
1775 |
+
闺
|
1776 |
+
祝
|
1777 |
+
贺
|
1778 |
+
啦
|
1779 |
+
瓦
|
1780 |
+
甏
|
1781 |
+
探
|
1782 |
+
辰
|
1783 |
+
碚
|
1784 |
+
芳
|
1785 |
+
灣
|
1786 |
+
泷
|
1787 |
+
饰
|
1788 |
+
隔
|
1789 |
+
帐
|
1790 |
+
飮
|
1791 |
+
搜
|
1792 |
+
時
|
1793 |
+
宫
|
1794 |
+
蘭
|
1795 |
+
再
|
1796 |
+
糊
|
1797 |
+
仓
|
1798 |
+
稻
|
1799 |
+
玉
|
1800 |
+
印
|
1801 |
+
象
|
1802 |
+
稀
|
1803 |
+
拴
|
1804 |
+
桩
|
1805 |
+
餃
|
1806 |
+
贾
|
1807 |
+
贱
|
1808 |
+
球
|
1809 |
+
萌
|
1810 |
+
撕
|
1811 |
+
脂
|
1812 |
+
肪
|
1813 |
+
层
|
1814 |
+
晋
|
1815 |
+
荷
|
1816 |
+
钱
|
1817 |
+
潍
|
1818 |
+
失
|
1819 |
+
孜
|
1820 |
+
提
|
1821 |
+
供
|
1822 |
+
具
|
1823 |
+
洛
|
1824 |
+
涂
|
1825 |
+
叠
|
1826 |
+
豊
|
1827 |
+
积
|
1828 |
+
媒
|
1829 |
+
级
|
1830 |
+
纷
|
1831 |
+
巧
|
1832 |
+
瓜
|
1833 |
+
苹
|
1834 |
+
琥
|
1835 |
+
珀
|
1836 |
+
蜂
|
1837 |
+
柚
|
1838 |
+
莉
|
1839 |
+
爆
|
1840 |
+
龄
|
1841 |
+
饸
|
1842 |
+
饹
|
1843 |
+
郞
|
1844 |
+
嫡
|
1845 |
+
億
|
1846 |
+
姚
|
1847 |
+
繁
|
1848 |
+
监
|
1849 |
+
督
|
1850 |
+
示
|
1851 |
+
佰
|
1852 |
+
汍
|
1853 |
+
%
|
1854 |
+
甘
|
1855 |
+
蔗
|
1856 |
+
喻
|
1857 |
+
骄
|
1858 |
+
基
|
1859 |
+
因
|
1860 |
+
匙
|
1861 |
+
评
|
1862 |
+
侠
|
1863 |
+
赢
|
1864 |
+
交
|
1865 |
+
歡
|
1866 |
+
待
|
1867 |
+
馒
|
1868 |
+
产
|
1869 |
+
倡
|
1870 |
+
导
|
1871 |
+
低
|
1872 |
+
茂
|
1873 |
+
沐
|
1874 |
+
熙
|
1875 |
+
延
|
1876 |
+
丧
|
1877 |
+
受
|
1878 |
+
确
|
1879 |
+
睡
|
1880 |
+
蓝
|
1881 |
+
未
|
1882 |
+
賣
|
1883 |
+
電
|
1884 |
+
話
|
1885 |
+
农
|
1886 |
+
札
|
1887 |
+
岗
|
1888 |
+
树
|
1889 |
+
赖
|
1890 |
+
琪
|
1891 |
+
驻
|
1892 |
+
辉
|
1893 |
+
软
|
1894 |
+
防
|
1895 |
+
盗
|
1896 |
+
隐
|
1897 |
+
形
|
1898 |
+
纱
|
1899 |
+
灶
|
1900 |
+
扎
|
1901 |
+
环
|
1902 |
+
禁
|
1903 |
+
止
|
1904 |
+
吸
|
1905 |
+
萬
|
1906 |
+
昆
|
1907 |
+
几
|
1908 |
+
跳
|
1909 |
+
媳
|
1910 |
+
婦
|
1911 |
+
坛
|
1912 |
+
<
|
1913 |
+
>
|
1914 |
+
拿
|
1915 |
+
妖
|
1916 |
+
协
|
1917 |
+
朱
|
1918 |
+
住
|
1919 |
+
宿
|
1920 |
+
魅
|
1921 |
+
照
|
1922 |
+
碰
|
1923 |
+
滴
|
1924 |
+
何
|
1925 |
+
贤
|
1926 |
+
棒
|
1927 |
+
持
|
1928 |
+
啊
|
1929 |
+
赛
|
1930 |
+
版
|
1931 |
+
帆
|
1932 |
+
順
|
1933 |
+
狗
|
1934 |
+
情
|
1935 |
+
+
|
1936 |
+
洞
|
1937 |
+
奋
|
1938 |
+
斗
|
1939 |
+
亨
|
1940 |
+
叶
|
1941 |
+
涛
|
1942 |
+
铝
|
1943 |
+
范
|
1944 |
+
汀
|
1945 |
+
號
|
1946 |
+
律
|
1947 |
+
價
|
1948 |
+
鞭
|
1949 |
+
肩
|
1950 |
+
#
|
1951 |
+
愚
|
1952 |
+
奥
|
1953 |
+
脯
|
1954 |
+
沁
|
1955 |
+
奚
|
1956 |
+
魏
|
1957 |
+
批
|
1958 |
+
租
|
1959 |
+
宠
|
1960 |
+
炲
|
1961 |
+
横
|
1962 |
+
沥
|
1963 |
+
彪
|
1964 |
+
投
|
1965 |
+
诉
|
1966 |
+
犀
|
1967 |
+
去
|
1968 |
+
屠
|
1969 |
+
鲅
|
1970 |
+
~
|
1971 |
+
俱
|
1972 |
+
徒
|
1973 |
+
鴻
|
1974 |
+
劉
|
1975 |
+
迷
|
1976 |
+
荤
|
1977 |
+
威
|
1978 |
+
曜
|
1979 |
+
連
|
1980 |
+
鎖
|
1981 |
+
馳
|
1982 |
+
载
|
1983 |
+
添
|
1984 |
+
筑
|
1985 |
+
陵
|
1986 |
+
佐
|
1987 |
+
敦
|
1988 |
+
>
|
1989 |
+
郭
|
1990 |
+
厢
|
1991 |
+
祛
|
1992 |
+
茄
|
1993 |
+
堰
|
1994 |
+
漂
|
1995 |
+
亮
|
1996 |
+
爅
|
1997 |
+
虎
|
1998 |
+
膀
|
1999 |
+
叼
|
2000 |
+
猫
|
2001 |
+
藏
|
2002 |
+
陶
|
2003 |
+
鲈
|
2004 |
+
栏
|
2005 |
+
…
|
2006 |
+
考
|
2007 |
+
冲
|
2008 |
+
胖
|
2009 |
+
裕
|
2010 |
+
沃
|
2011 |
+
挂
|
2012 |
+
报
|
2013 |
+
兔
|
2014 |
+
胶
|
2015 |
+
臨
|
2016 |
+
附
|
2017 |
+
处
|
2018 |
+
嫂
|
2019 |
+
萃
|
2020 |
+
幂
|
2021 |
+
吻
|
2022 |
+
聪
|
2023 |
+
糯
|
2024 |
+
糍
|
2025 |
+
棋
|
2026 |
+
烓
|
2027 |
+
脊
|
2028 |
+
衡
|
2029 |
+
亚
|
2030 |
+
副
|
2031 |
+
肤
|
2032 |
+
荆
|
2033 |
+
榴
|
2034 |
+
绚
|
2035 |
+
黔
|
2036 |
+
圈
|
2037 |
+
纳
|
2038 |
+
课
|
2039 |
+
逸
|
2040 |
+
宜
|
2041 |
+
=
|
2042 |
+
烊
|
2043 |
+
姨
|
2044 |
+
施
|
2045 |
+
救
|
2046 |
+
贸
|
2047 |
+
啥
|
2048 |
+
也
|
2049 |
+
贯
|
2050 |
+
雷
|
2051 |
+
呆
|
2052 |
+
棠
|
2053 |
+
伙
|
2054 |
+
岐
|
2055 |
+
宛
|
2056 |
+
媽
|
2057 |
+
寸
|
2058 |
+
澳
|
2059 |
+
已
|
2060 |
+
還
|
2061 |
+
兒
|
2062 |
+
Ⅱ
|
2063 |
+
凯
|
2064 |
+
株
|
2065 |
+
藕
|
2066 |
+
闽
|
2067 |
+
窖
|
2068 |
+
瀘
|
2069 |
+
售
|
2070 |
+
索
|
2071 |
+
体
|
2072 |
+
型
|
2073 |
+
樂
|
2074 |
+
琅
|
2075 |
+
琊
|
2076 |
+
夺
|
2077 |
+
扩
|
2078 |
+
)
|
2079 |
+
诱
|
2080 |
+
滩
|
2081 |
+
浓
|
2082 |
+
要
|
2083 |
+
芹
|
2084 |
+
君
|
2085 |
+
反
|
2086 |
+
复
|
2087 |
+
羔
|
2088 |
+
追
|
2089 |
+
演
|
2090 |
+
唱
|
2091 |
+
過
|
2092 |
+
綫
|
2093 |
+
乳
|
2094 |
+
涩
|
2095 |
+
芒
|
2096 |
+
露
|
2097 |
+
蒙
|
2098 |
+
羯
|
2099 |
+
励
|
2100 |
+
志
|
2101 |
+
嵊
|
2102 |
+
閒
|
2103 |
+
罐
|
2104 |
+
佛
|
2105 |
+
墙
|
2106 |
+
頁
|
2107 |
+
坐
|
2108 |
+
眯
|
2109 |
+
预
|
2110 |
+
華
|
2111 |
+
廉
|
2112 |
+
释
|
2113 |
+
必
|
2114 |
+
随
|
2115 |
+
逐
|
2116 |
+
引
|
2117 |
+
究
|
2118 |
+
爸
|
2119 |
+
灵
|
2120 |
+
勺
|
2121 |
+
岂
|
2122 |
+
俵
|
2123 |
+
廷
|
2124 |
+
苗
|
2125 |
+
岭
|
2126 |
+
将
|
2127 |
+
來
|
2128 |
+
泛
|
2129 |
+
朵
|
2130 |
+
維
|
2131 |
+
園
|
2132 |
+
廳
|
2133 |
+
圳
|
2134 |
+
伦
|
2135 |
+
寶
|
2136 |
+
付
|
2137 |
+
仅
|
2138 |
+
減
|
2139 |
+
谦
|
2140 |
+
硕
|
2141 |
+
抚
|
2142 |
+
慶
|
2143 |
+
雞
|
2144 |
+
郝
|
2145 |
+
计
|
2146 |
+
熱
|
2147 |
+
杖
|
2148 |
+
亭
|
2149 |
+
喱
|
2150 |
+
惜
|
2151 |
+
莒
|
2152 |
+
另
|
2153 |
+
陆
|
2154 |
+
拾
|
2155 |
+
伍
|
2156 |
+
谈
|
2157 |
+
嚼
|
2158 |
+
娅
|
2159 |
+
翟
|
2160 |
+
別
|
2161 |
+
颈
|
2162 |
+
邮
|
2163 |
+
弄
|
2164 |
+
•
|
2165 |
+
扇
|
2166 |
+
哦
|
2167 |
+
吼
|
2168 |
+
耶
|
2169 |
+
宅
|
2170 |
+
帽
|
2171 |
+
魂
|
2172 |
+
搭
|
2173 |
+
笨
|
2174 |
+
映
|
2175 |
+
拨
|
2176 |
+
烂
|
2177 |
+
馈
|
2178 |
+
胎
|
2179 |
+
溶
|
2180 |
+
\
|
2181 |
+
善
|
2182 |
+
销
|
2183 |
+
难
|
2184 |
+
忘
|
2185 |
+
斑
|
2186 |
+
噢
|
2187 |
+
錫
|
2188 |
+
娟
|
2189 |
+
語
|
2190 |
+
哨
|
2191 |
+
筷
|
2192 |
+
摊
|
2193 |
+
均
|
2194 |
+
椅
|
2195 |
+
改
|
2196 |
+
换
|
2197 |
+
跟
|
2198 |
+
帖
|
2199 |
+
勾
|
2200 |
+
缅
|
2201 |
+
孙
|
2202 |
+
啪
|
2203 |
+
栗
|
2204 |
+
着
|
2205 |
+
漁
|
2206 |
+
吓
|
2207 |
+
易
|
2208 |
+
漲
|
2209 |
+
靖
|
2210 |
+
枸
|
2211 |
+
馬
|
2212 |
+
昇
|
2213 |
+
當
|
2214 |
+
麥
|
2215 |
+
妆
|
2216 |
+
塑
|
2217 |
+
魯
|
2218 |
+
鎮
|
2219 |
+
吗
|
2220 |
+
魁
|
2221 |
+
丹
|
2222 |
+
杈
|
2223 |
+
技
|
2224 |
+
术
|
2225 |
+
泼
|
2226 |
+
零
|
2227 |
+
忙
|
2228 |
+
漾
|
2229 |
+
創
|
2230 |
+
攀
|
2231 |
+
郫
|
2232 |
+
抿
|
2233 |
+
稼
|
2234 |
+
假
|
2235 |
+
循
|
2236 |
+
泳
|
2237 |
+
池
|
2238 |
+
膨
|
2239 |
+
巨
|
2240 |
+
歧
|
2241 |
+
愛
|
2242 |
+
鵝
|
2243 |
+
悉
|
2244 |
+
灯
|
2245 |
+
激
|
2246 |
+
踪
|
2247 |
+
细
|
2248 |
+
會
|
2249 |
+
舔
|
2250 |
+
愿
|
2251 |
+
們
|
2252 |
+
衹
|
2253 |
+
令
|
2254 |
+
浔
|
2255 |
+
丨
|
2256 |
+
酉
|
2257 |
+
惦
|
2258 |
+
耕
|
2259 |
+
×
|
2260 |
+
闪
|
2261 |
+
經
|
2262 |
+
玺
|
2263 |
+
芯
|
2264 |
+
襄
|
2265 |
+
賦
|
2266 |
+
予
|
2267 |
+
學
|
2268 |
+
苑
|
2269 |
+
托
|
2270 |
+
丢
|
2271 |
+
赔
|
2272 |
+
ā
|
2273 |
+
聽
|
2274 |
+
濤
|
2275 |
+
浮
|
2276 |
+
伯
|
2277 |
+
兑
|
2278 |
+
币
|
2279 |
+
治
|
2280 |
+
愈
|
2281 |
+
盱
|
2282 |
+
眙
|
2283 |
+
漏
|
2284 |
+
夕
|
2285 |
+
搏
|
2286 |
+
由
|
2287 |
+
完
|
2288 |
+
切
|
2289 |
+
罕
|
2290 |
+
息
|
2291 |
+
燃
|
2292 |
+
叙
|
2293 |
+
萍
|
2294 |
+
碑
|
2295 |
+
腌
|
2296 |
+
衣
|
2297 |
+
害
|
2298 |
+
己
|
2299 |
+
患
|
2300 |
+
浙
|
2301 |
+
闫
|
2302 |
+
|
|
2303 |
+
芈
|
2304 |
+
谣
|
2305 |
+
戴
|
2306 |
+
錦
|
2307 |
+
謝
|
2308 |
+
恩
|
2309 |
+
芊
|
2310 |
+
拇
|
2311 |
+
矾
|
2312 |
+
政
|
2313 |
+
锣
|
2314 |
+
跃
|
2315 |
+
钥
|
2316 |
+
寺
|
2317 |
+
驼
|
2318 |
+
芙
|
2319 |
+
插
|
2320 |
+
恒
|
2321 |
+
咪
|
2322 |
+
禄
|
2323 |
+
摩
|
2324 |
+
轮
|
2325 |
+
譚
|
2326 |
+
鴨
|
2327 |
+
戊
|
2328 |
+
申
|
2329 |
+
丙
|
2330 |
+
邊
|
2331 |
+
唯
|
2332 |
+
登
|
2333 |
+
困
|
2334 |
+
貢
|
2335 |
+
誉
|
2336 |
+
賀
|
2337 |
+
认
|
2338 |
+
准
|
2339 |
+
妃
|
2340 |
+
潜
|
2341 |
+
旨
|
2342 |
+
死
|
2343 |
+
桌
|
2344 |
+
尧
|
2345 |
+
箱
|
2346 |
+
届
|
2347 |
+
获
|
2348 |
+
顶
|
2349 |
+
柿
|
2350 |
+
臂
|
2351 |
+
蓮
|
2352 |
+
凭
|
2353 |
+
慵
|
2354 |
+
懒
|
2355 |
+
醇
|
2356 |
+
籍
|
2357 |
+
静
|
2358 |
+
淌
|
2359 |
+
此
|
2360 |
+
甚
|
2361 |
+
绣
|
2362 |
+
渌
|
2363 |
+
呢
|
2364 |
+
问
|
2365 |
+
抹
|
2366 |
+
弹
|
2367 |
+
捷
|
2368 |
+
邱
|
2369 |
+
旦
|
2370 |
+
曉
|
2371 |
+
艳
|
2372 |
+
雲
|
2373 |
+
研
|
2374 |
+
守
|
2375 |
+
鼻
|
2376 |
+
¦
|
2377 |
+
揽
|
2378 |
+
含
|
2379 |
+
沂
|
2380 |
+
听
|
2381 |
+
帛
|
2382 |
+
端
|
2383 |
+
兆
|
2384 |
+
舆
|
2385 |
+
谐
|
2386 |
+
帘
|
2387 |
+
笑
|
2388 |
+
寅
|
2389 |
+
【
|
2390 |
+
車
|
2391 |
+
@
|
2392 |
+
&
|
2393 |
+
胪
|
2394 |
+
臻
|
2395 |
+
蘆
|
2396 |
+
衙
|
2397 |
+
餌
|
2398 |
+
①
|
2399 |
+
鉴
|
2400 |
+
敬
|
2401 |
+
枝
|
2402 |
+
沈
|
2403 |
+
衔
|
2404 |
+
蝉
|
2405 |
+
芜
|
2406 |
+
烈
|
2407 |
+
库
|
2408 |
+
椿
|
2409 |
+
稳
|
2410 |
+
’
|
2411 |
+
豌
|
2412 |
+
亿
|
2413 |
+
缙
|
2414 |
+
獨
|
2415 |
+
菊
|
2416 |
+
沤
|
2417 |
+
迟
|
2418 |
+
忧
|
2419 |
+
沫
|
2420 |
+
伟
|
2421 |
+
靠
|
2422 |
+
并
|
2423 |
+
互
|
2424 |
+
晓
|
2425 |
+
枫
|
2426 |
+
窑
|
2427 |
+
芭
|
2428 |
+
夯
|
2429 |
+
鸿
|
2430 |
+
無
|
2431 |
+
烦
|
2432 |
+
恼
|
2433 |
+
闖
|
2434 |
+
贞
|
2435 |
+
鳥
|
2436 |
+
厦
|
2437 |
+
抱
|
2438 |
+
歐
|
2439 |
+
藝
|
2440 |
+
廖
|
2441 |
+
振
|
2442 |
+
腦
|
2443 |
+
舖
|
2444 |
+
酪
|
2445 |
+
碎
|
2446 |
+
浪
|
2447 |
+
荔
|
2448 |
+
巫
|
2449 |
+
撈
|
2450 |
+
醬
|
2451 |
+
段
|
2452 |
+
昔
|
2453 |
+
潘
|
2454 |
+
Λ
|
2455 |
+
禧
|
2456 |
+
妻
|
2457 |
+
瓢
|
2458 |
+
柏
|
2459 |
+
郁
|
2460 |
+
暹
|
2461 |
+
兮
|
2462 |
+
娃
|
2463 |
+
敏
|
2464 |
+
進
|
2465 |
+
距
|
2466 |
+
离
|
2467 |
+
倪
|
2468 |
+
征
|
2469 |
+
咱
|
2470 |
+
继
|
2471 |
+
责
|
2472 |
+
任
|
2473 |
+
銅
|
2474 |
+
啖
|
2475 |
+
赞
|
2476 |
+
菲
|
2477 |
+
蛇
|
2478 |
+
焰
|
2479 |
+
娜
|
2480 |
+
芮
|
2481 |
+
坦
|
2482 |
+
磅
|
2483 |
+
薛
|
2484 |
+
緣
|
2485 |
+
乔
|
2486 |
+
拱
|
2487 |
+
骚
|
2488 |
+
扰
|
2489 |
+
約
|
2490 |
+
喷
|
2491 |
+
驢
|
2492 |
+
仨
|
2493 |
+
纬
|
2494 |
+
臘
|
2495 |
+
邳
|
2496 |
+
终
|
2497 |
+
喏
|
2498 |
+
扫
|
2499 |
+
除
|
2500 |
+
恶
|
2501 |
+
争
|
2502 |
+
率
|
2503 |
+
‘
|
2504 |
+
肃
|
2505 |
+
雀
|
2506 |
+
鈴
|
2507 |
+
贼
|
2508 |
+
绕
|
2509 |
+
笋
|
2510 |
+
钩
|
2511 |
+
勒
|
2512 |
+
翠
|
2513 |
+
黎
|
2514 |
+
董
|
2515 |
+
澄
|
2516 |
+
境
|
2517 |
+
采
|
2518 |
+
拳
|
2519 |
+
捆
|
2520 |
+
粄
|
2521 |
+
诸
|
2522 |
+
暨
|
2523 |
+
榧
|
2524 |
+
葛
|
2525 |
+
親
|
2526 |
+
戚
|
2527 |
+
访
|
2528 |
+
股
|
2529 |
+
融
|
2530 |
+
潤
|
2531 |
+
寄
|
2532 |
+
递
|
2533 |
+
藩
|
2534 |
+
滇
|
2535 |
+
湛
|
2536 |
+
他
|
2537 |
+
篓
|
2538 |
+
普
|
2539 |
+
撞
|
2540 |
+
莅
|
2541 |
+
但
|
2542 |
+
沟
|
2543 |
+
暑
|
2544 |
+
促
|
2545 |
+
玲
|
2546 |
+
腩
|
2547 |
+
碼
|
2548 |
+
偏
|
2549 |
+
楹
|
2550 |
+
嘎
|
2551 |
+
洒
|
2552 |
+
抛
|
2553 |
+
危
|
2554 |
+
险
|
2555 |
+
损
|
2556 |
+
负
|
2557 |
+
銘
|
2558 |
+
黃
|
2559 |
+
燜
|
2560 |
+
說
|
2561 |
+
杆
|
2562 |
+
称
|
2563 |
+
蹭
|
2564 |
+
聊
|
2565 |
+
妙
|
2566 |
+
滕
|
2567 |
+
曦
|
2568 |
+
肴
|
2569 |
+
萧
|
2570 |
+
颗
|
2571 |
+
剂
|
2572 |
+
義
|
2573 |
+
锋
|
2574 |
+
授
|
2575 |
+
权
|
2576 |
+
著
|
2577 |
+
茴
|
2578 |
+
蒝
|
2579 |
+
侬
|
2580 |
+
顏
|
2581 |
+
菁
|
2582 |
+
擦
|
2583 |
+
鞋
|
2584 |
+
庞
|
2585 |
+
毕
|
2586 |
+
谱
|
2587 |
+
樱
|
2588 |
+
→
|
2589 |
+
綦
|
2590 |
+
舞
|
2591 |
+
蹈
|
2592 |
+
躁
|
2593 |
+
渠
|
2594 |
+
俐
|
2595 |
+
涧
|
2596 |
+
馀
|
2597 |
+
潇
|
2598 |
+
邻
|
2599 |
+
须
|
2600 |
+
藻
|
2601 |
+
纺
|
2602 |
+
织
|
2603 |
+
军
|
2604 |
+
沅
|
2605 |
+
豐
|
2606 |
+
爐
|
2607 |
+
韭
|
2608 |
+
棚
|
2609 |
+
綿
|
2610 |
+
麯
|
2611 |
+
剑
|
2612 |
+
娱
|
2613 |
+
链
|
2614 |
+
锤
|
2615 |
+
炼
|
2616 |
+
献
|
2617 |
+
晟
|
2618 |
+
章
|
2619 |
+
謎
|
2620 |
+
数
|
2621 |
+
侯
|
2622 |
+
她
|
2623 |
+
疗
|
2624 |
+
途
|
2625 |
+
篇
|
2626 |
+
则
|
2627 |
+
邓
|
2628 |
+
赐
|
2629 |
+
閣
|
2630 |
+
對
|
2631 |
+
猩
|
2632 |
+
邑
|
2633 |
+
區
|
2634 |
+
鬼
|
2635 |
+
莫
|
2636 |
+
沪
|
2637 |
+
淼
|
2638 |
+
赤
|
2639 |
+
混
|
2640 |
+
沌
|
2641 |
+
需
|
2642 |
+
求
|
2643 |
+
痛
|
2644 |
+
绮
|
2645 |
+
琦
|
2646 |
+
荃
|
2647 |
+
熳
|
2648 |
+
佑
|
2649 |
+
Á
|
2650 |
+
ō
|
2651 |
+
現
|
2652 |
+
専
|
2653 |
+
卢
|
2654 |
+
譽
|
2655 |
+
缠
|
2656 |
+
曾
|
2657 |
+
鸣
|
2658 |
+
琴
|
2659 |
+
汊
|
2660 |
+
濮
|
2661 |
+
哇
|
2662 |
+
哩
|
2663 |
+
唝
|
2664 |
+
曲
|
2665 |
+
坂
|
2666 |
+
呼
|
2667 |
+
莴
|
2668 |
+
怕
|
2669 |
+
蒋
|
2670 |
+
伞
|
2671 |
+
炙
|
2672 |
+
燻
|
2673 |
+
瑧
|
2674 |
+
冈
|
2675 |
+
讲
|
2676 |
+
硬
|
2677 |
+
详
|
2678 |
+
鹵
|
2679 |
+
摇
|
2680 |
+
偃
|
2681 |
+
嵩
|
2682 |
+
严
|
2683 |
+
谨
|
2684 |
+
′
|
2685 |
+
剥
|
2686 |
+
穗
|
2687 |
+
榮
|
2688 |
+
禹
|
2689 |
+
颐
|
2690 |
+
局
|
2691 |
+
刚
|
2692 |
+
▕
|
2693 |
+
暖
|
2694 |
+
漠
|
2695 |
+
炎
|
2696 |
+
頤
|
2697 |
+
樟
|
2698 |
+
?
|
2699 |
+
储
|
2700 |
+
移
|
2701 |
+
缕
|
2702 |
+
艰
|
2703 |
+
袍
|
2704 |
+
瑪
|
2705 |
+
麗
|
2706 |
+
参
|
2707 |
+
䬺
|
2708 |
+
趁
|
2709 |
+
呦
|
2710 |
+
霖
|
2711 |
+
饵
|
2712 |
+
溪
|
2713 |
+
孔
|
2714 |
+
澤
|
2715 |
+
袜
|
2716 |
+
蔓
|
2717 |
+
熠
|
2718 |
+
显
|
2719 |
+
屏
|
2720 |
+
缇
|
2721 |
+
寇
|
2722 |
+
亞
|
2723 |
+
坑
|
2724 |
+
槟
|
2725 |
+
榔
|
2726 |
+
絳
|
2727 |
+
驿
|
2728 |
+
歹
|
2729 |
+
匾
|
2730 |
+
猴
|
2731 |
+
旭
|
2732 |
+
竞
|
2733 |
+
|
2734 |
+
唛
|
2735 |
+
介
|
2736 |
+
习
|
2737 |
+
涡
|
2738 |
+
寓
|
2739 |
+
掉
|
2740 |
+
蘸
|
2741 |
+
愉
|
2742 |
+
佼
|
2743 |
+
ǒ
|
2744 |
+
納
|
2745 |
+
∶
|
2746 |
+
革
|
2747 |
+
嚸
|
2748 |
+
募
|
2749 |
+
螃
|
2750 |
+
鲢
|
2751 |
+
俤
|
2752 |
+
扁
|
2753 |
+
寳
|
2754 |
+
辽
|
2755 |
+
∧
|
2756 |
+
厚
|
2757 |
+
裤
|
2758 |
+
扯
|
2759 |
+
屯
|
2760 |
+
废
|
2761 |
+
挪
|
2762 |
+
辘
|
2763 |
+
碉
|
2764 |
+
歇
|
2765 |
+
漓
|
2766 |
+
腻
|
2767 |
+
捣
|
2768 |
+
孩
|
2769 |
+
烁
|
2770 |
+
整
|
2771 |
+
按
|
2772 |
+
Ⓡ
|
2773 |
+
眉
|
2774 |
+
脸
|
2775 |
+
痣
|
2776 |
+
粑
|
2777 |
+
序
|
2778 |
+
穿
|
2779 |
+
樊
|
2780 |
+
玮
|
2781 |
+
★
|
2782 |
+
扑
|
2783 |
+
渊
|
2784 |
+
醴
|
2785 |
+
瑶
|
2786 |
+
農
|
2787 |
+
檔
|
2788 |
+
憩
|
2789 |
+
霊
|
2790 |
+
赫
|
2791 |
+
呜
|
2792 |
+
~
|
2793 |
+
备
|
2794 |
+
説
|
2795 |
+
莓
|
2796 |
+
钻
|
2797 |
+
播
|
2798 |
+
冻
|
2799 |
+
紅
|
2800 |
+
菽
|
2801 |
+
喪
|
2802 |
+
埔
|
2803 |
+
壽
|
2804 |
+
❤
|
2805 |
+
籽
|
2806 |
+
咻
|
2807 |
+
籣
|
2808 |
+
尹
|
2809 |
+
潭
|
2810 |
+
穆
|
2811 |
+
壮
|
2812 |
+
使
|
2813 |
+
霄
|
2814 |
+
蔵
|
2815 |
+
浒
|
2816 |
+
岳
|
2817 |
+
熘
|
2818 |
+
臺
|
2819 |
+
殷
|
2820 |
+
孤
|
2821 |
+
邂
|
2822 |
+
逅
|
2823 |
+
厕
|
2824 |
+
郸
|
2825 |
+
铭
|
2826 |
+
莆
|
2827 |
+
抻
|
2828 |
+
虽
|
2829 |
+
倦
|
2830 |
+
怠
|
2831 |
+
矣
|
2832 |
+
茵
|
2833 |
+
垂
|
2834 |
+
殿
|
2835 |
+
鄂
|
2836 |
+
嗑
|
2837 |
+
续
|
2838 |
+
钦
|
2839 |
+
党
|
2840 |
+
鲫
|
2841 |
+
蔡
|
2842 |
+
侧
|
2843 |
+
割
|
2844 |
+
彰
|
2845 |
+
凝
|
2846 |
+
熬
|
2847 |
+
叕
|
2848 |
+
純
|
2849 |
+
谛
|
2850 |
+
籠
|
2851 |
+
宋
|
2852 |
+
峡
|
2853 |
+
俩
|
2854 |
+
雜
|
2855 |
+
跑
|
2856 |
+
⑧
|
2857 |
+
焼
|
2858 |
+
-
|
2859 |
+
逢
|
2860 |
+
澧
|
2861 |
+
舵
|
2862 |
+
异
|
2863 |
+
冯
|
2864 |
+
战
|
2865 |
+
决
|
2866 |
+
棍
|
2867 |
+
;
|
2868 |
+
﹣
|
2869 |
+
丑
|
2870 |
+
妇
|
2871 |
+
焉
|
2872 |
+
芷
|
2873 |
+
楂
|
2874 |
+
坞
|
2875 |
+
壳
|
2876 |
+
馐
|
2877 |
+
帜
|
2878 |
+
旅
|
2879 |
+
鳯
|
2880 |
+
簡
|
2881 |
+
凍
|
2882 |
+
秜
|
2883 |
+
结
|
2884 |
+
咩
|
2885 |
+
丫
|
2886 |
+
稠
|
2887 |
+
暗
|
2888 |
+
缔
|
2889 |
+
乎
|
2890 |
+
被
|
2891 |
+
狠
|
2892 |
+
皲
|
2893 |
+
豉
|
2894 |
+
崇
|
2895 |
+
渭
|
2896 |
+
担
|
2897 |
+
鹤
|
2898 |
+
製
|
2899 |
+
蛎
|
2900 |
+
笛
|
2901 |
+
奔
|
2902 |
+
赴
|
2903 |
+
盼
|
2904 |
+
鳌
|
2905 |
+
拜
|
2906 |
+
络
|
2907 |
+
灸
|
2908 |
+
膜
|
2909 |
+
刮
|
2910 |
+
痧
|
2911 |
+
毒
|
2912 |
+
萊
|
2913 |
+
陂
|
2914 |
+
濑
|
2915 |
+
唇
|
2916 |
+
抵
|
2917 |
+
押
|
2918 |
+
置
|
2919 |
+
馇
|
2920 |
+
泌
|
2921 |
+
尿
|
2922 |
+
傻
|
2923 |
+
像
|
2924 |
+
孃
|
2925 |
+
陣
|
2926 |
+
靓
|
2927 |
+
规
|
2928 |
+
企
|
2929 |
+
矮
|
2930 |
+
凳
|
2931 |
+
贰
|
2932 |
+
兎
|
2933 |
+
庵
|
2934 |
+
質
|
2935 |
+
阅
|
2936 |
+
读
|
2937 |
+
◆
|
2938 |
+
练
|
2939 |
+
墩
|
2940 |
+
曼
|
2941 |
+
呱
|
2942 |
+
泓
|
2943 |
+
耐
|
2944 |
+
磁
|
2945 |
+
枣
|
2946 |
+
罉
|
2947 |
+
浴
|
2948 |
+
氧
|
2949 |
+
洱
|
2950 |
+
鳅
|
2951 |
+
線
|
2952 |
+
炳
|
2953 |
+
顽
|
2954 |
+
符
|
2955 |
+
倌
|
2956 |
+
泥
|
2957 |
+
郊
|
2958 |
+
柯
|
2959 |
+
餘
|
2960 |
+
巍
|
2961 |
+
论
|
2962 |
+
沽
|
2963 |
+
荘
|
2964 |
+
奕
|
2965 |
+
啃
|
2966 |
+
髙
|
2967 |
+
○
|
2968 |
+
芬
|
2969 |
+
苟
|
2970 |
+
且
|
2971 |
+
阆
|
2972 |
+
確
|
2973 |
+
獅
|
2974 |
+
匣
|
2975 |
+
睫
|
2976 |
+
牙
|
2977 |
+
戒
|
2978 |
+
俊
|
2979 |
+
阜
|
2980 |
+
遵
|
2981 |
+
爵
|
2982 |
+
遗
|
2983 |
+
捧
|
2984 |
+
仑
|
2985 |
+
构
|
2986 |
+
豬
|
2987 |
+
挡
|
2988 |
+
弓
|
2989 |
+
蠔
|
2990 |
+
旬
|
2991 |
+
鱻
|
2992 |
+
镖
|
2993 |
+
燚
|
2994 |
+
歌
|
2995 |
+
壁
|
2996 |
+
啫
|
2997 |
+
饷
|
2998 |
+
仰
|
2999 |
+
韶
|
3000 |
+
勞
|
3001 |
+
軒
|
3002 |
+
菒
|
3003 |
+
炫
|
3004 |
+
廊
|
3005 |
+
塞
|
3006 |
+
脏
|
3007 |
+
堤
|
3008 |
+
浅
|
3009 |
+
辈
|
3010 |
+
靡
|
3011 |
+
裙
|
3012 |
+
尺
|
3013 |
+
廚
|
3014 |
+
向
|
3015 |
+
磊
|
3016 |
+
咬
|
3017 |
+
皓
|
3018 |
+
卿
|
3019 |
+
懂
|
3020 |
+
葉
|
3021 |
+
廿
|
3022 |
+
芸
|
3023 |
+
賴
|
3024 |
+
埠
|
3025 |
+
應
|
3026 |
+
碟
|
3027 |
+
溧
|
3028 |
+
訂
|
3029 |
+
選
|
3030 |
+
睦
|
3031 |
+
举
|
3032 |
+
钳
|
3033 |
+
哟
|
3034 |
+
霍
|
3035 |
+
扞
|
3036 |
+
侣
|
3037 |
+
營
|
3038 |
+
龟
|
3039 |
+
钜
|
3040 |
+
埭
|
3041 |
+
が
|
3042 |
+
搽
|
3043 |
+
螞
|
3044 |
+
蟻
|
3045 |
+
娚
|
3046 |
+
蒜
|
3047 |
+
厝
|
3048 |
+
垵
|
3049 |
+
☎
|
3050 |
+
捌
|
3051 |
+
倒
|
3052 |
+
骑
|
3053 |
+
Ξ
|
3054 |
+
谋
|
3055 |
+
黍
|
3056 |
+
侍
|
3057 |
+
赏
|
3058 |
+
扮
|
3059 |
+
忱
|
3060 |
+
蘑
|
3061 |
+
洁
|
3062 |
+
嘆
|
3063 |
+
闹
|
3064 |
+
谭
|
3065 |
+
鶏
|
3066 |
+
種
|
3067 |
+
φ
|
3068 |
+
坤
|
3069 |
+
麓
|
3070 |
+
麒
|
3071 |
+
麟
|
3072 |
+
喂
|
3073 |
+
琳
|
3074 |
+
Ⓑ
|
3075 |
+
趙
|
3076 |
+
總
|
3077 |
+
這
|
3078 |
+
奖
|
3079 |
+
取
|
3080 |
+
拔
|
3081 |
+
錯
|
3082 |
+
仉
|
3083 |
+
缸
|
3084 |
+
廟
|
3085 |
+
暢
|
3086 |
+
腔
|
3087 |
+
卓
|
3088 |
+
腱
|
3089 |
+
朙
|
3090 |
+
紹
|
3091 |
+
莹
|
3092 |
+
缺
|
3093 |
+
抺
|
3094 |
+
睿
|
3095 |
+
氣
|
3096 |
+
该
|
3097 |
+
貼
|
3098 |
+
妍
|
3099 |
+
拆
|
3100 |
+
穇
|
3101 |
+
箩
|
3102 |
+
希
|
3103 |
+
廰
|
3104 |
+
祗
|
3105 |
+
盲
|
3106 |
+
坝
|
3107 |
+
骆
|
3108 |
+
熄
|
3109 |
+
蛮
|
3110 |
+
賓
|
3111 |
+
馮
|
3112 |
+
尋
|
3113 |
+
泊
|
3114 |
+
孫
|
3115 |
+
槁
|
3116 |
+
亖
|
3117 |
+
俯
|
3118 |
+
浣
|
3119 |
+
婴
|
3120 |
+
锨
|
3121 |
+
馥
|
3122 |
+
闷
|
3123 |
+
梆
|
3124 |
+
▫
|
3125 |
+
姥
|
3126 |
+
哲
|
3127 |
+
录
|
3128 |
+
甫
|
3129 |
+
床
|
3130 |
+
嬌
|
3131 |
+
烎
|
3132 |
+
梵
|
3133 |
+
枪
|
3134 |
+
乍
|
3135 |
+
璜
|
3136 |
+
羌
|
3137 |
+
崂
|
3138 |
+
穷
|
3139 |
+
榕
|
3140 |
+
聲
|
3141 |
+
喚
|
3142 |
+
駕
|
3143 |
+
晕
|
3144 |
+
嬷
|
3145 |
+
箕
|
3146 |
+
婧
|
3147 |
+
盧
|
3148 |
+
楓
|
3149 |
+
柃
|
3150 |
+
差
|
3151 |
+
「
|
3152 |
+
」
|
3153 |
+
佶
|
3154 |
+
唔
|
3155 |
+
壕
|
3156 |
+
歆
|
3157 |
+
盏
|
3158 |
+
擂
|
3159 |
+
睇
|
3160 |
+
巾
|
3161 |
+
查
|
3162 |
+
淖
|
3163 |
+
哪
|
3164 |
+
沣
|
3165 |
+
赣
|
3166 |
+
優
|
3167 |
+
諾
|
3168 |
+
礁
|
3169 |
+
努
|
3170 |
+
畔
|
3171 |
+
疙
|
3172 |
+
瘩
|
3173 |
+
握
|
3174 |
+
叮
|
3175 |
+
栙
|
3176 |
+
甑
|
3177 |
+
嶺
|
3178 |
+
涌
|
3179 |
+
透
|
3180 |
+
钓
|
3181 |
+
斜
|
3182 |
+
搬
|
3183 |
+
迁
|
3184 |
+
妨
|
3185 |
+
借
|
3186 |
+
仍
|
3187 |
+
鳕
|
3188 |
+
瓷
|
3189 |
+
绘
|
3190 |
+
餠
|
3191 |
+
á
|
3192 |
+
ǎ
|
3193 |
+
祈
|
3194 |
+
邨
|
3195 |
+
醒
|
3196 |
+
闵
|
3197 |
+
砖
|
3198 |
+
锹
|
3199 |
+
咀
|
3200 |
+
綠
|
3201 |
+
幕
|
3202 |
+
忠
|
3203 |
+
雾
|
3204 |
+
覓
|
3205 |
+
靜
|
3206 |
+
擔
|
3207 |
+
篮
|
3208 |
+
杉
|
3209 |
+
势
|
3210 |
+
薇
|
3211 |
+
甬
|
3212 |
+
频
|
3213 |
+
般
|
3214 |
+
仲
|
3215 |
+
蘇
|
3216 |
+
鸟
|
3217 |
+
卞
|
3218 |
+
憾
|
3219 |
+
資
|
3220 |
+
駱
|
3221 |
+
蝶
|
3222 |
+
為
|
3223 |
+
仟
|
3224 |
+
耗
|
3225 |
+
莘
|
3226 |
+
涉
|
3227 |
+
昕
|
3228 |
+
盈
|
3229 |
+
熹
|
3230 |
+
觀
|
3231 |
+
瑭
|
3232 |
+
湃
|
3233 |
+
兢
|
3234 |
+
淞
|
3235 |
+
䒩
|
3236 |
+
結
|
3237 |
+
柗
|
3238 |
+
鲤
|
3239 |
+
糟
|
3240 |
+
粕
|
3241 |
+
塗
|
3242 |
+
簽
|
3243 |
+
怎
|
3244 |
+
桐
|
3245 |
+
皆
|
3246 |
+
羽
|
3247 |
+
盯
|
3248 |
+
氽
|
3249 |
+
晏
|
3250 |
+
液
|
3251 |
+
镀
|
3252 |
+
珂
|
3253 |
+
悸
|
3254 |
+
∙
|
3255 |
+
桑
|
3256 |
+
夢
|
3257 |
+
楽
|
3258 |
+
剩
|
3259 |
+
纵
|
3260 |
+
逝
|
3261 |
+
欺
|
3262 |
+
統
|
3263 |
+
飛
|
3264 |
+
姣
|
3265 |
+
俄
|
3266 |
+
揪
|
3267 |
+
薡
|
3268 |
+
幅
|
3269 |
+
蓋
|
3270 |
+
︳
|
3271 |
+
屉
|
3272 |
+
㕔
|
3273 |
+
а
|
3274 |
+
铸
|
3275 |
+
韦
|
3276 |
+
銀
|
3277 |
+
檀
|
3278 |
+
击
|
3279 |
+
伿
|
3280 |
+
隍
|
3281 |
+
『
|
3282 |
+
』
|
3283 |
+
芥
|
3284 |
+
☆
|
3285 |
+
声
|
3286 |
+
跆
|
3287 |
+
肋
|
3288 |
+
榭
|
3289 |
+
牵
|
3290 |
+
棧
|
3291 |
+
網
|
3292 |
+
愁
|
3293 |
+
嗏
|
3294 |
+
嵗
|
3295 |
+
巡
|
3296 |
+
稚
|
3297 |
+
貴
|
3298 |
+
買
|
3299 |
+
恰
|
3300 |
+
㸆
|
3301 |
+
捻
|
3302 |
+
玫
|
3303 |
+
瑰
|
3304 |
+
炕
|
3305 |
+
梧
|
3306 |
+
餡
|
3307 |
+
锌
|
3308 |
+
焱
|
3309 |
+
驰
|
3310 |
+
堽
|
3311 |
+
邯
|
3312 |
+
珑
|
3313 |
+
尕
|
3314 |
+
宰
|
3315 |
+
栓
|
3316 |
+
喃
|
3317 |
+
殊
|
3318 |
+
燊
|
3319 |
+
慈
|
3320 |
+
羴
|
3321 |
+
逃
|
3322 |
+
脱
|
3323 |
+
邹
|
3324 |
+
檐
|
3325 |
+
碌
|
3326 |
+
页
|
3327 |
+
荠
|
3328 |
+
券
|
3329 |
+
題
|
3330 |
+
龚
|
3331 |
+
肌
|
3332 |
+
蕉
|
3333 |
+
囬
|
3334 |
+
肫
|
3335 |
+
坪
|
3336 |
+
沉
|
3337 |
+
淀
|
3338 |
+
斌
|
3339 |
+
鳝
|
3340 |
+
核
|
3341 |
+
喳
|
3342 |
+
剃
|
3343 |
+
昭
|
3344 |
+
{
|
3345 |
+
}
|
3346 |
+
坏
|
3347 |
+
烜
|
3348 |
+
媛
|
3349 |
+
猛
|
3350 |
+
桓
|
3351 |
+
欣
|
3352 |
+
碁
|
3353 |
+
竭
|
3354 |
+
堇
|
3355 |
+
↑
|
3356 |
+
扛
|
3357 |
+
罄
|
3358 |
+
栾
|
3359 |
+
鲶
|
3360 |
+
鍕
|
3361 |
+
崔
|
3362 |
+
橘
|
3363 |
+
携
|
3364 |
+
丈
|
3365 |
+
射
|
3366 |
+
梗
|
3367 |
+
檸
|
3368 |
+
疼
|
3369 |
+
卑
|
3370 |
+
捉
|
3371 |
+
障
|
3372 |
+
裏
|
3373 |
+
遍
|
3374 |
+
蓓
|
3375 |
+
析
|
3376 |
+
許
|
3377 |
+
虫
|
3378 |
+
坨
|
3379 |
+
馔
|
3380 |
+
窄
|
3381 |
+
姫
|
3382 |
+
噤
|
3383 |
+
係
|
3384 |
+
湿
|
3385 |
+
汐
|
3386 |
+
鳜
|
3387 |
+
船
|
3388 |
+
崽
|
3389 |
+
+
|
3390 |
+
例
|
3391 |
+
灼
|
3392 |
+
祿
|
3393 |
+
腥
|
3394 |
+
峭
|
3395 |
+
酌
|
3396 |
+
喽
|
3397 |
+
件
|
3398 |
+
郏
|
3399 |
+
栀
|
3400 |
+
鲨
|
3401 |
+
寫
|
3402 |
+
與
|
3403 |
+
诈
|
3404 |
+
斥
|
3405 |
+
炮
|
3406 |
+
稿
|
3407 |
+
懿
|
3408 |
+
掂
|
3409 |
+
鹭
|
3410 |
+
乱
|
3411 |
+
恬
|
3412 |
+
婷
|
3413 |
+
苦
|
3414 |
+
埃
|
3415 |
+
珊
|
3416 |
+
禅
|
3417 |
+
裹
|
3418 |
+
圃
|
3419 |
+
鹌
|
3420 |
+
鹑
|
3421 |
+
û
|
3422 |
+
澡
|
3423 |
+
囧
|
3424 |
+
阡
|
3425 |
+
靑
|
3426 |
+
警
|
3427 |
+
牢
|
3428 |
+
嘱
|
3429 |
+
鳞
|
3430 |
+
浃
|
3431 |
+
贷
|
3432 |
+
慧
|
3433 |
+
翊
|
3434 |
+
讨
|
3435 |
+
碧
|
3436 |
+
剪
|
3437 |
+
陌
|
3438 |
+
冀
|
3439 |
+
砵
|
3440 |
+
迅
|
3441 |
+
鹰
|
3442 |
+
竟
|
3443 |
+
召
|
3444 |
+
敌
|
3445 |
+
鯡
|
3446 |
+
蒌
|
3447 |
+
蒿
|
3448 |
+
扶
|
3449 |
+
③
|
3450 |
+
誘
|
3451 |
+
嘻
|
3452 |
+
輪
|
3453 |
+
嬢
|
3454 |
+
瓮
|
3455 |
+
絲
|
3456 |
+
嚣
|
3457 |
+
荀
|
3458 |
+
莽
|
3459 |
+
鄧
|
3460 |
+
咋
|
3461 |
+
勿
|
3462 |
+
佈
|
3463 |
+
洽
|
3464 |
+
羹
|
3465 |
+
模
|
3466 |
+
貨
|
3467 |
+
粱
|
3468 |
+
凈
|
3469 |
+
腹
|
3470 |
+
鄭
|
3471 |
+
署
|
3472 |
+
儒
|
3473 |
+
隧
|
3474 |
+
鉢
|
3475 |
+
茫
|
3476 |
+
蔻
|
3477 |
+
í
|
3478 |
+
ó
|
3479 |
+
裴
|
3480 |
+
偉
|
3481 |
+
Θ
|
3482 |
+
祎
|
3483 |
+
褥
|
3484 |
+
殖
|
3485 |
+
湫
|
3486 |
+
瀚
|
3487 |
+
貓
|
3488 |
+
汪
|
3489 |
+
紙
|
3490 |
+
極
|
3491 |
+
伤
|
3492 |
+
灰
|
3493 |
+
團
|
3494 |
+
橄
|
3495 |
+
榄
|
3496 |
+
拽
|
3497 |
+
响
|
3498 |
+
貌
|
3499 |
+
傣
|
3500 |
+
舂
|
3501 |
+
斩
|
3502 |
+
飨
|
3503 |
+
执
|
3504 |
+
諸
|
3505 |
+
蒂
|
3506 |
+
嘣
|
3507 |
+
葡
|
3508 |
+
渤
|
3509 |
+
惺
|
3510 |
+
驛
|
3511 |
+
戰
|
3512 |
+
箬
|
3513 |
+
俭
|
3514 |
+
瀏
|
3515 |
+
嫦
|
3516 |
+
琵
|
3517 |
+
琶
|
3518 |
+
咿
|
3519 |
+
吖
|
3520 |
+
舱
|
3521 |
+
韵
|
3522 |
+
揭
|
3523 |
+
祁
|
3524 |
+
將
|
3525 |
+
軍
|
3526 |
+
吟
|
3527 |
+
彼
|
3528 |
+
岚
|
3529 |
+
绒
|
3530 |
+
煤
|
3531 |
+
淝
|
3532 |
+
歸
|
3533 |
+
锐
|
3534 |
+
嗯
|
3535 |
+
傾
|
3536 |
+
甩
|
3537 |
+
瞳
|
3538 |
+
睁
|
3539 |
+
鳗
|
3540 |
+
遜
|
3541 |
+
嗲
|
3542 |
+
虚
|
3543 |
+
娴
|
3544 |
+
碱
|
3545 |
+
呷
|
3546 |
+
{
|
3547 |
+
哚
|
3548 |
+
兜
|
3549 |
+
喇
|
3550 |
+
叭
|
3551 |
+
燦
|
3552 |
+
逻
|
3553 |
+
匪
|
3554 |
+
槐
|
3555 |
+
撒
|
3556 |
+
写
|
3557 |
+
踩
|
3558 |
+
踏
|
3559 |
+
霞
|
3560 |
+
喫
|
3561 |
+
返
|
3562 |
+
赚
|
3563 |
+
拓
|
3564 |
+
動
|
3565 |
+
觞
|
3566 |
+
鲽
|
3567 |
+
鐘
|
3568 |
+
闰
|
3569 |
+
扳
|
3570 |
+
沖
|
3571 |
+
賈
|
3572 |
+
璐
|
3573 |
+
煸
|
3574 |
+
棵
|
3575 |
+
峪
|
3576 |
+
π
|
3577 |
+
憶
|
3578 |
+
齋
|
3579 |
+
娇
|
3580 |
+
穎
|
3581 |
+
嫁
|
3582 |
+
玥
|
3583 |
+
胚
|
3584 |
+
喊
|
3585 |
+
阻
|
3586 |
+
餓
|
3587 |
+
截
|
3588 |
+
孵
|
3589 |
+
屎
|
3590 |
+
爾
|
3591 |
+
莳
|
3592 |
+
倔
|
3593 |
+
娄
|
3594 |
+
祸
|
3595 |
+
`
|
3596 |
+
姿
|
3597 |
+
稽
|
3598 |
+
戌
|
3599 |
+
缪
|
3600 |
+
ī
|
3601 |
+
糠
|
3602 |
+
痴
|
3603 |
+
猎
|
3604 |
+
嬉
|
3605 |
+
柑
|
3606 |
+
鞍
|
3607 |
+
兹
|
3608 |
+
凼
|
3609 |
+
舅
|
3610 |
+
褐
|
3611 |
+
醪
|
3612 |
+
仪
|
3613 |
+
氷
|
3614 |
+
單
|
3615 |
+
丞
|
3616 |
+
碛
|
3617 |
+
绽
|
3618 |
+
袂
|
3619 |
+
檢
|
3620 |
+
瀾
|
3621 |
+
饃
|
3622 |
+
孖
|
3623 |
+
雍
|
3624 |
+
ò
|
3625 |
+
螄
|
3626 |
+
涤
|
3627 |
+
茨
|
3628 |
+
寮
|
3629 |
+
近
|
3630 |
+
辜
|
3631 |
+
茅
|
3632 |
+
孟
|
3633 |
+
累
|
3634 |
+
宣
|
3635 |
+
樹
|
3636 |
+
鷹
|
3637 |
+
膝
|
3638 |
+
臉
|
3639 |
+
襪
|
3640 |
+
嘢
|
3641 |
+
嵐
|
3642 |
+
▲
|
3643 |
+
璇
|
3644 |
+
竺
|
3645 |
+
気
|
3646 |
+
迈
|
3647 |
+
糐
|
3648 |
+
挥
|
3649 |
+
瑜
|
3650 |
+
伽
|
3651 |
+
"
|
3652 |
+
裳
|
3653 |
+
纹
|
3654 |
+
潯
|
3655 |
+
幾
|
3656 |
+
朔
|
3657 |
+
枊
|
3658 |
+
釀
|
3659 |
+
劝
|
3660 |
+
俺
|
3661 |
+
粢
|
3662 |
+
馓
|
3663 |
+
胥
|
3664 |
+
拥
|
3665 |
+
嘶
|
3666 |
+
達
|
3667 |
+
蝴
|
3668 |
+
昱
|
3669 |
+
ホ
|
3670 |
+
ル
|
3671 |
+
モ
|
3672 |
+
ニ
|
3673 |
+
颂
|
3674 |
+
噫
|
3675 |
+
否
|
3676 |
+
笙
|
3677 |
+
绎
|
3678 |
+
俞
|
3679 |
+
泵
|
3680 |
+
测
|
3681 |
+
耿
|
3682 |
+
揚
|
3683 |
+
犇
|
3684 |
+
锄
|
3685 |
+
卧
|
3686 |
+
炯
|
3687 |
+
烽
|
3688 |
+
橡
|
3689 |
+
操
|
3690 |
+
齊
|
3691 |
+
隴
|
3692 |
+
宀
|
3693 |
+
荥
|
3694 |
+
滙
|
3695 |
+
贪
|
3696 |
+
関
|
3697 |
+
垦
|
3698 |
+
↓
|
3699 |
+
麽
|
3700 |
+
暧
|
3701 |
+
匯
|
3702 |
+
恨
|
3703 |
+
叽
|
3704 |
+
断
|
3705 |
+
鮪
|
3706 |
+
椎
|
3707 |
+
病
|
3708 |
+
迹
|
3709 |
+
禺
|
3710 |
+
搓
|
3711 |
+
瀛
|
3712 |
+
唤
|
3713 |
+
埕
|
3714 |
+
愤
|
3715 |
+
怒
|
3716 |
+
拐
|
3717 |
+
狱
|
3718 |
+
垅
|
3719 |
+
绅
|
3720 |
+
設
|
3721 |
+
計
|
3722 |
+
書
|
3723 |
+
楷
|
3724 |
+
鮨
|
3725 |
+
邪
|
3726 |
+
郴
|
3727 |
+
盞
|
3728 |
+
榆
|
3729 |
+
恺
|
3730 |
+
樵
|
3731 |
+
煙
|
3732 |
+
舫
|
3733 |
+
翡
|
3734 |
+
砸
|
3735 |
+
叹
|
3736 |
+
縣
|
3737 |
+
璞
|
3738 |
+
禮
|
3739 |
+
獻
|
3740 |
+
似
|
3741 |
+
吆
|
3742 |
+
嘛
|
3743 |
+
灭
|
3744 |
+
擇
|
3745 |
+
夥
|
3746 |
+
ē
|
3747 |
+
曰
|
3748 |
+
蜗
|
3749 |
+
櫻
|
3750 |
+
▏
|
3751 |
+
鑪
|
3752 |
+
鯊
|
3753 |
+
視
|
3754 |
+
淄
|
3755 |
+
钰
|
3756 |
+
〝
|
3757 |
+
〞
|
3758 |
+
報
|
3759 |
+
退
|
3760 |
+
壶
|
3761 |
+
鳴
|
3762 |
+
拒
|
3763 |
+
旱
|
3764 |
+
鼠
|
3765 |
+
蕴
|
3766 |
+
峧
|
3767 |
+
赶
|
3768 |
+
咏
|
3769 |
+
寬
|
3770 |
+
渎
|
3771 |
+
靣
|
3772 |
+
卟
|
3773 |
+
宙
|
3774 |
+
趟
|
3775 |
+
負
|
3776 |
+
镫
|
3777 |
+
讷
|
3778 |
+
迭
|
3779 |
+
彝
|
3780 |
+
樣
|
3781 |
+
輕
|
3782 |
+
却
|
3783 |
+
覆
|
3784 |
+
庖
|
3785 |
+
扉
|
3786 |
+
聖
|
3787 |
+
喬
|
3788 |
+
瞻
|
3789 |
+
瞿
|
3790 |
+
箭
|
3791 |
+
胆
|
3792 |
+
ε
|
3793 |
+
韧
|
3794 |
+
誌
|
3795 |
+
既
|
3796 |
+
淳
|
3797 |
+
饞
|
3798 |
+
ě
|
3799 |
+
圍
|
3800 |
+
墟
|
3801 |
+
俚
|
3802 |
+
翕
|
3803 |
+
貂
|
3804 |
+
畜
|
3805 |
+
緹
|
3806 |
+
搄
|
3807 |
+
旮
|
3808 |
+
旯
|
3809 |
+
寂
|
3810 |
+
寞
|
3811 |
+
詹
|
3812 |
+
茜
|
3813 |
+
鉄
|
3814 |
+
絕
|
3815 |
+
泸
|
3816 |
+
嬤
|
3817 |
+
允
|
3818 |
+
炘
|
3819 |
+
骏
|
3820 |
+
侑
|
3821 |
+
晒
|
3822 |
+
玄
|
3823 |
+
粧
|
3824 |
+
糘
|
3825 |
+
毫
|
3826 |
+
幽
|
3827 |
+
攸
|
3828 |
+
愧
|
3829 |
+
侨
|
3830 |
+
衰
|
3831 |
+
ぉ
|
3832 |
+
に
|
3833 |
+
き
|
3834 |
+
ぃ
|
3835 |
+
炽
|
3836 |
+
倉
|
3837 |
+
斛
|
3838 |
+
領
|
3839 |
+
盾
|
3840 |
+
窜
|
3841 |
+
鲷
|
3842 |
+
瓏
|
3843 |
+
媚
|
3844 |
+
爲
|
3845 |
+
裸
|
3846 |
+
窦
|
3847 |
+
虞
|
3848 |
+
處
|
3849 |
+
魷
|
3850 |
+
}
|
3851 |
+
羡
|
3852 |
+
冕
|
3853 |
+
祺
|
3854 |
+
裁
|
3855 |
+
粶
|
3856 |
+
䬴
|
3857 |
+
嚟
|
3858 |
+
辆
|
3859 |
+
撮
|
3860 |
+
隋
|
3861 |
+
'
|
3862 |
+
勝
|
3863 |
+
梭
|
3864 |
+
茸
|
3865 |
+
咭
|
3866 |
+
崟
|
3867 |
+
滷
|
3868 |
+
緻
|
3869 |
+
沩
|
3870 |
+
颠
|
3871 |
+
诠
|
3872 |
+
珺
|
3873 |
+
拙
|
3874 |
+
察
|
3875 |
+
≡
|
3876 |
+
辅
|
3877 |
+
父
|
3878 |
+
雁
|
3879 |
+
裱
|
3880 |
+
瞄
|
3881 |
+
漖
|
3882 |
+
鯨
|
3883 |
+
略
|
3884 |
+
橱
|
3885 |
+
帼
|
3886 |
+
棉
|
3887 |
+
濠
|
3888 |
+
蕃
|
3889 |
+
ǔ
|
3890 |
+
崮
|
3891 |
+
阮
|
3892 |
+
勋
|
3893 |
+
苍
|
3894 |
+
喔
|
3895 |
+
猜
|
3896 |
+
箔
|
3897 |
+
è
|
3898 |
+
雏
|
3899 |
+
睐
|
3900 |
+
袭
|
3901 |
+
皋
|
3902 |
+
彻
|
3903 |
+
売
|
3904 |
+
垚
|
3905 |
+
咯
|
3906 |
+
凑
|
3907 |
+
汴
|
3908 |
+
纽
|
3909 |
+
巩
|
3910 |
+
宸
|
3911 |
+
墅
|
3912 |
+
茏
|
3913 |
+
裡
|
3914 |
+
昧
|
3915 |
+
飽
|
3916 |
+
坯
|
3917 |
+
濟
|
3918 |
+
└
|
3919 |
+
┐
|
3920 |
+
懷
|
3921 |
+
霾
|
3922 |
+
´
|
3923 |
+
閑
|
3924 |
+
茹
|
3925 |
+
���
|
3926 |
+
湶
|
3927 |
+
鈣
|
3928 |
+
圓
|
3929 |
+
昊
|
3930 |
+
眞
|
3931 |
+
標
|
3932 |
+
凖
|
3933 |
+
皱
|
3934 |
+
箍
|
3935 |
+
筹
|
3936 |
+
孬
|
3937 |
+
唠
|
3938 |
+
輝
|
3939 |
+
输
|
3940 |
+
綺
|
3941 |
+
驭
|
3942 |
+
哼
|
3943 |
+
匡
|
3944 |
+
偵
|
3945 |
+
蝇
|
3946 |
+
運
|
3947 |
+
漟
|
3948 |
+
乘
|
3949 |
+
Ē
|
3950 |
+
卉
|
3951 |
+
邴
|
3952 |
+
謠
|
3953 |
+
怿
|
3954 |
+
亁
|
3955 |
+
棱
|
3956 |
+
呐
|
3957 |
+
湄
|
3958 |
+
莜
|
3959 |
+
阶
|
3960 |
+
堔
|
3961 |
+
炜
|
3962 |
+
邀
|
3963 |
+
笠
|
3964 |
+
遏
|
3965 |
+
犯
|
3966 |
+
罪
|
3967 |
+
栢
|
3968 |
+
餛
|
3969 |
+
亀
|
3970 |
+
苓
|
3971 |
+
膏
|
3972 |
+
伸
|
3973 |
+
?
|
3974 |
+
阪
|
3975 |
+
委
|
3976 |
+
妯
|
3977 |
+
娌
|
3978 |
+
仝
|
3979 |
+
咧
|
3980 |
+
鍚
|
3981 |
+
▼
|
3982 |
+
遠
|
3983 |
+
摑
|
3984 |
+
滘
|
3985 |
+
颁
|
3986 |
+
ʌ
|
3987 |
+
锈
|
3988 |
+
佤
|
3989 |
+
佗
|
3990 |
+
卌
|
3991 |
+
É
|
3992 |
+
↙
|
3993 |
+
蔺
|
3994 |
+
汰
|
3995 |
+
塍
|
3996 |
+
認
|
3997 |
+
鳟
|
3998 |
+
畿
|
3999 |
+
耦
|
4000 |
+
吨
|
4001 |
+
䒕
|
4002 |
+
茬
|
4003 |
+
枼
|
4004 |
+
饕
|
4005 |
+
涼
|
4006 |
+
烀
|
4007 |
+
汶
|
4008 |
+
齿
|
4009 |
+
貳
|
4010 |
+
沱
|
4011 |
+
楞
|
4012 |
+
屹
|
4013 |
+
掺
|
4014 |
+
挢
|
4015 |
+
荻
|
4016 |
+
偷
|
4017 |
+
辶
|
4018 |
+
饌
|
4019 |
+
泮
|
4020 |
+
喧
|
4021 |
+
某
|
4022 |
+
聂
|
4023 |
+
夾
|
4024 |
+
吁
|
4025 |
+
鎬
|
4026 |
+
谅
|
4027 |
+
鞘
|
4028 |
+
泪
|
4029 |
+
佩
|
4030 |
+
㎡
|
4031 |
+
鐡
|
4032 |
+
犊
|
4033 |
+
漳
|
4034 |
+
睢
|
4035 |
+
粘
|
4036 |
+
輔
|
4037 |
+
爬
|
4038 |
+
濃
|
4039 |
+
し
|
4040 |
+
ん
|
4041 |
+
い
|
4042 |
+
ち
|
4043 |
+
ょ
|
4044 |
+
く
|
4045 |
+
ど
|
4046 |
+
ぅ
|
4047 |
+
戍
|
4048 |
+
咚
|
4049 |
+
蒡
|
4050 |
+
惯
|
4051 |
+
隣
|
4052 |
+
沭
|
4053 |
+
撇
|
4054 |
+
妞
|
4055 |
+
筛
|
4056 |
+
昵
|
4057 |
+
赁
|
4058 |
+
震
|
4059 |
+
欠
|
4060 |
+
涞
|
4061 |
+
從
|
4062 |
+
靚
|
4063 |
+
绥
|
4064 |
+
俑
|
4065 |
+
熔
|
4066 |
+
曙
|
4067 |
+
侗
|
4068 |
+
√
|
4069 |
+
仗
|
4070 |
+
袖
|
4071 |
+
饶
|
4072 |
+
辫
|
4073 |
+
琉
|
4074 |
+
鴿
|
4075 |
+
裂
|
4076 |
+
缝
|
4077 |
+
灞
|
4078 |
+
崖
|
4079 |
+
炑
|
4080 |
+
昝
|
4081 |
+
┌
|
4082 |
+
┘
|
4083 |
+
邕
|
4084 |
+
趴
|
4085 |
+
踢
|
4086 |
+
迩
|
4087 |
+
浈
|
4088 |
+
挚
|
4089 |
+
聆
|
4090 |
+
犁
|
4091 |
+
陝
|
4092 |
+
滾
|
4093 |
+
彎
|
4094 |
+
問
|
4095 |
+
癮
|
4096 |
+
砚
|
4097 |
+
ú
|
4098 |
+
瀧
|
4099 |
+
吮
|
4100 |
+
毓
|
4101 |
+
劵
|
4102 |
+
槽
|
4103 |
+
黒
|
4104 |
+
忍
|
4105 |
+
畈
|
4106 |
+
姊
|
4107 |
+
沛
|
4108 |
+
忽
|
4109 |
+
摘
|
4110 |
+
燍
|
4111 |
+
♡
|
4112 |
+
汝
|
4113 |
+
贛
|
4114 |
+
叻
|
4115 |
+
甸
|
4116 |
+
乞
|
4117 |
+
丐
|
4118 |
+
践
|
4119 |
+
嗞
|
4120 |
+
㥁
|
4121 |
+
斐
|
4122 |
+
圖
|
4123 |
+
祯
|
4124 |
+
牤
|
4125 |
+
攻
|
4126 |
+
弯
|
4127 |
+
幹
|
4128 |
+
杠
|
4129 |
+
苞
|
4130 |
+
滤
|
4131 |
+
筆
|
4132 |
+
練
|
4133 |
+
鞑
|
4134 |
+
ˊ
|
4135 |
+
萤
|
4136 |
+
榶
|
4137 |
+
叨
|
4138 |
+
轨
|
4139 |
+
耒
|
4140 |
+
嚮
|
4141 |
+
┃
|
4142 |
+
漪
|
4143 |
+
剛
|
4144 |
+
键
|
4145 |
+
弋
|
4146 |
+
彦
|
4147 |
+
瘋
|
4148 |
+
词
|
4149 |
+
敖
|
4150 |
+
鸦
|
4151 |
+
秧
|
4152 |
+
囚
|
4153 |
+
绾
|
4154 |
+
镶
|
4155 |
+
濂
|
4156 |
+
↘
|
4157 |
+
豁
|
4158 |
+
煒
|
4159 |
+
萄
|
4160 |
+
珲
|
4161 |
+
緋
|
4162 |
+
昂
|
4163 |
+
瀨
|
4164 |
+
缓
|
4165 |
+
疲
|
4166 |
+
替
|
4167 |
+
汥
|
4168 |
+
殡
|
4169 |
+
葬
|
4170 |
+
靳
|
4171 |
+
揉
|
4172 |
+
闭
|
4173 |
+
睛
|
4174 |
+
偘
|
4175 |
+
佚
|
4176 |
+
$
|
4177 |
+
;
|
4178 |
+
^'''
|
models/text_recognition_crnn/demo.py
CHANGED
@@ -41,7 +41,6 @@ parser.add_argument('--input', '-i', type=str, help='Usage: Set path to the inpu
|
|
41 |
parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx', help='Usage: Set model path, defaults to text_recognition_CRNN_EN_2021sep.onnx.')
|
42 |
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
|
43 |
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
|
44 |
-
parser.add_argument('--charset', '-c', type=str, default='charset_36_EN.txt', help='Usage: Set the path to the charset file corresponding to the selected model.')
|
45 |
parser.add_argument('--save', '-s', type=str, default=False, help='Usage: Set “True” to save a file with results. Invalid in case of camera input. Default will be set to “False”.')
|
46 |
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Usage: Default will be set to “True” and will open a new window to show results. Set to “False” to stop visualizations from being shown. Invalid in case of camera input.')
|
47 |
parser.add_argument('--width', type=int, default=736,
|
@@ -61,7 +60,7 @@ def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2
|
|
61 |
|
62 |
if __name__ == '__main__':
|
63 |
# Instantiate CRNN for text recognition
|
64 |
-
recognizer = CRNN(modelPath=args.model
|
65 |
# Instantiate DB for text detection
|
66 |
detector = DB(modelPath='../text_detection_db/text_detection_DB_IC15_resnet18_2021sep.onnx',
|
67 |
inputSize=[args.width, args.height],
|
|
|
41 |
parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx', help='Usage: Set model path, defaults to text_recognition_CRNN_EN_2021sep.onnx.')
|
42 |
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
|
43 |
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
|
|
|
44 |
parser.add_argument('--save', '-s', type=str, default=False, help='Usage: Set “True” to save a file with results. Invalid in case of camera input. Default will be set to “False”.')
|
45 |
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Usage: Default will be set to “True” and will open a new window to show results. Set to “False” to stop visualizations from being shown. Invalid in case of camera input.')
|
46 |
parser.add_argument('--width', type=int, default=736,
|
|
|
60 |
|
61 |
if __name__ == '__main__':
|
62 |
# Instantiate CRNN for text recognition
|
63 |
+
recognizer = CRNN(modelPath=args.model)
|
64 |
# Instantiate DB for text detection
|
65 |
detector = DB(modelPath='../text_detection_db/text_detection_DB_IC15_resnet18_2021sep.onnx',
|
66 |
inputSize=[args.width, args.height],
|
tools/eval/eval.py
CHANGED
@@ -21,63 +21,63 @@ parser.add_argument("--dataset_root", "-dr", type=str, required=True, help="Root
|
|
21 |
args = parser.parse_args()
|
22 |
|
23 |
models = dict(
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
)
|
82 |
|
83 |
datasets = dict(
|
@@ -107,7 +107,8 @@ def main(args):
|
|
107 |
|
108 |
model_name = models[model_key].pop("name")
|
109 |
model_topic = models[model_key].pop("topic")
|
110 |
-
|
|
|
111 |
|
112 |
# Instantiate dataset
|
113 |
dataset_key = args.dataset.lower()
|
@@ -124,6 +125,5 @@ def main(args):
|
|
124 |
dataset.eval(model)
|
125 |
dataset.print_result()
|
126 |
|
127 |
-
|
128 |
if __name__ == "__main__":
|
129 |
main(args)
|
|
|
21 |
args = parser.parse_args()
|
22 |
|
23 |
models = dict(
|
24 |
+
mobilenetv1=dict(
|
25 |
+
name="MobileNetV1",
|
26 |
+
topic="image_classification",
|
27 |
+
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx"),
|
28 |
+
topK=5),
|
29 |
+
mobilenetv1_q=dict(
|
30 |
+
name="MobileNetV1",
|
31 |
+
topic="image_classification",
|
32 |
+
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr-int8-quantized.onnx"),
|
33 |
+
topK=5),
|
34 |
+
mobilenetv2=dict(
|
35 |
+
name="MobileNetV2",
|
36 |
+
topic="image_classification",
|
37 |
+
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx"),
|
38 |
+
topK=5),
|
39 |
+
mobilenetv2_q=dict(
|
40 |
+
name="MobileNetV2",
|
41 |
+
topic="image_classification",
|
42 |
+
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr-int8-quantized.onnx"),
|
43 |
+
topK=5),
|
44 |
+
ppresnet=dict(
|
45 |
+
name="PPResNet",
|
46 |
+
topic="image_classification",
|
47 |
+
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx"),
|
48 |
+
topK=5),
|
49 |
+
ppresnet_q=dict(
|
50 |
+
name="PPResNet",
|
51 |
+
topic="image_classification",
|
52 |
+
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan-act_int8-wt_int8-quantized.onnx"),
|
53 |
+
topK=5),
|
54 |
+
yunet=dict(
|
55 |
+
name="YuNet",
|
56 |
+
topic="face_detection",
|
57 |
+
modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar.onnx"),
|
58 |
+
topK=5000,
|
59 |
+
confThreshold=0.3,
|
60 |
+
nmsThreshold=0.45),
|
61 |
+
yunet_q=dict(
|
62 |
+
name="YuNet",
|
63 |
+
topic="face_detection",
|
64 |
+
modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar-act_int8-wt_int8-quantized.onnx"),
|
65 |
+
topK=5000,
|
66 |
+
confThreshold=0.3,
|
67 |
+
nmsThreshold=0.45),
|
68 |
+
sface=dict(
|
69 |
+
name="SFace",
|
70 |
+
topic="face_recognition",
|
71 |
+
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec.onnx")),
|
72 |
+
sface_q=dict(
|
73 |
+
name="SFace",
|
74 |
+
topic="face_recognition",
|
75 |
+
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec-act_int8-wt_int8-quantized.onnx")),
|
76 |
+
crnn=dict(
|
77 |
+
name="CRNN",
|
78 |
+
topic="text_recognition",
|
79 |
+
modelPath=os.path.join(root_dir, "models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx"),
|
80 |
+
charsetPath=os.path.join(root_dir, "models/text_recognition_crnn/charset_36_EN.txt")),
|
81 |
)
|
82 |
|
83 |
datasets = dict(
|
|
|
107 |
|
108 |
model_name = models[model_key].pop("name")
|
109 |
model_topic = models[model_key].pop("topic")
|
110 |
+
model_handler, _ = MODELS.get(model_name)
|
111 |
+
model = model_handler(**models[model_key])
|
112 |
|
113 |
# Instantiate dataset
|
114 |
dataset_key = args.dataset.lower()
|
|
|
125 |
dataset.eval(model)
|
126 |
dataset.print_result()
|
127 |
|
|
|
128 |
if __name__ == "__main__":
|
129 |
main(args)
|