Wanli
commited on
Commit
·
3cce3b2
1
Parent(s):
b3af529
add person detection model from MediaPipe (#147)
Browse files- README.md +1 -0
- benchmark/README.md +8 -0
- benchmark/config/person_detection_mediapipe.yaml +19 -0
- benchmark/download_data.py +4 -0
- models/__init__.py +2 -0
- models/person_detection_mediapipe/LICENSE +202 -0
- models/person_detection_mediapipe/README.md +35 -0
- models/person_detection_mediapipe/demo.py +139 -0
- models/person_detection_mediapipe/mp_persondet.py +0 -0
README.md
CHANGED
@@ -42,6 +42,7 @@ Guidelines:
|
|
42 |
| [YoutuReID](./models/person_reid_youtureid) | Person Re-Identification | 128x256 | 30.39 | 625.56 | 90.07 | 44.61 | 5.58 | --- |
|
43 |
| [MP-PalmDet](./models/palm_detection_mediapipe) | Palm Detection | 192x192 | 6.29 | 86.83 | 83.20 | 33.81 | 5.17 | --- |
|
44 |
| [MP-HandPose](./models/handpose_estimation_mediapipe) | Hand Pose Estimation | 224x224 | 4.68 | 43.57 | 40.10 | 19.47 | 6.27 | --- |
|
|
|
45 |
|
46 |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
|
47 |
|
|
|
42 |
| [YoutuReID](./models/person_reid_youtureid) | Person Re-Identification | 128x256 | 30.39 | 625.56 | 90.07 | 44.61 | 5.58 | --- |
|
43 |
| [MP-PalmDet](./models/palm_detection_mediapipe) | Palm Detection | 192x192 | 6.29 | 86.83 | 83.20 | 33.81 | 5.17 | --- |
|
44 |
| [MP-HandPose](./models/handpose_estimation_mediapipe) | Hand Pose Estimation | 224x224 | 4.68 | 43.57 | 40.10 | 19.47 | 6.27 | --- |
|
45 |
+
| [MP-PersonDet](./models/person_detection_mediapipe) | Person Detection | 224x224 | 13.88 | 98.52 | 56.69 | --- | 16.45 | --- |
|
46 |
|
47 |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
|
48 |
|
benchmark/README.md
CHANGED
@@ -95,6 +95,7 @@ mean median min input size model
|
|
95 |
29.46 42.21 25.82 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
96 |
6.14 6.02 5.91 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
97 |
8.51 9.89 5.91 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
|
|
98 |
30.87 30.69 29.85 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
99 |
30.77 30.02 27.97 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
100 |
1.35 1.37 1.30 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
@@ -147,6 +148,7 @@ mean median min input size model
|
|
147 |
762.56 738.04 654.25 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
148 |
91.48 91.28 91.15 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
149 |
115.58 135.17 91.15 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
|
|
150 |
676.15 655.20 636.06 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
151 |
548.93 582.29 443.32 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
152 |
8.18 8.15 8.13 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
@@ -200,6 +202,7 @@ mean median min input size model
|
|
200 |
466.19 457.89 442.88 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
201 |
69.60 69.69 69.13 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
202 |
81.65 82.20 69.13 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
|
|
203 |
411.49 417.53 402.57 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
204 |
372.94 370.17 335.95 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
205 |
5.62 5.64 5.55 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
@@ -236,6 +239,7 @@ mean median min input size model
|
|
236 |
1238.91 1244.87 1227.30 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
237 |
76.54 76.09 74.51 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
238 |
67.34 67.83 62.38 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
|
|
239 |
126.65 126.63 124.96 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
240 |
303.12 302.80 299.30 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
241 |
302.58 299.78 297.83 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
@@ -265,6 +269,7 @@ mean median min input size model
|
|
265 |
1223.32 1248.88 1213.25 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
266 |
52.91 52.96 50.17 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
267 |
212.86 213.21 210.03 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
|
|
268 |
96.68 94.21 89.24 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
269 |
343.38 344.17 337.62 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
270 |
344.29 345.07 337.62 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
@@ -310,6 +315,7 @@ mean median min input size model
|
|
310 |
428.66 524.98 391.33 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
311 |
66.91 67.09 64.90 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
312 |
79.42 81.44 64.90 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
|
|
313 |
439.53 431.92 406.03 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
314 |
358.63 379.93 296.32 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
315 |
5.29 5.30 5.21 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
@@ -387,6 +393,7 @@ mean median min input size model
|
|
387 |
701.08 708.52 685.49 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
388 |
105.23 105.14 105.00 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
389 |
123.41 125.65 105.00 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
|
|
390 |
631.70 631.81 630.61 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
391 |
595.32 599.48 565.32 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
392 |
1452.55 1453.75 1450.98 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
@@ -422,6 +429,7 @@ mean median min input size model
|
|
422 |
20.62 22.09 19.16 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
423 |
28.59 28.60 27.91 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
424 |
5.17 5.26 5.09 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
|
|
425 |
5.58 5.57 5.54 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
426 |
17.15 17.18 16.83 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
427 |
17.95 18.61 16.83 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
|
|
95 |
29.46 42.21 25.82 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
96 |
6.14 6.02 5.91 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
97 |
8.51 9.89 5.91 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
98 |
+
13.88 14.82 12.39 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
99 |
30.87 30.69 29.85 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
100 |
30.77 30.02 27.97 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
101 |
1.35 1.37 1.30 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
|
|
148 |
762.56 738.04 654.25 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
149 |
91.48 91.28 91.15 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
150 |
115.58 135.17 91.15 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
151 |
+
98.52 98.95 97.58 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
152 |
676.15 655.20 636.06 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
153 |
548.93 582.29 443.32 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
154 |
8.18 8.15 8.13 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
|
|
202 |
466.19 457.89 442.88 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
203 |
69.60 69.69 69.13 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
204 |
81.65 82.20 69.13 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
205 |
+
98.38 98.20 97.69 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
206 |
411.49 417.53 402.57 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
207 |
372.94 370.17 335.95 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
208 |
5.62 5.64 5.55 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
|
|
239 |
1238.91 1244.87 1227.30 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
240 |
76.54 76.09 74.51 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
241 |
67.34 67.83 62.38 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
242 |
+
56.69 55.54 48.96 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
243 |
126.65 126.63 124.96 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
244 |
303.12 302.80 299.30 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
245 |
302.58 299.78 297.83 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
|
|
269 |
1223.32 1248.88 1213.25 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
270 |
52.91 52.96 50.17 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
271 |
212.86 213.21 210.03 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
272 |
+
221.12 255.53 217.16 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
273 |
96.68 94.21 89.24 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
274 |
343.38 344.17 337.62 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
275 |
344.29 345.07 337.62 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
|
|
315 |
428.66 524.98 391.33 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
316 |
66.91 67.09 64.90 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
317 |
79.42 81.44 64.90 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
318 |
+
84.42 85.99 83.30 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
319 |
439.53 431.92 406.03 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
320 |
358.63 379.93 296.32 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
321 |
5.29 5.30 5.21 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
|
|
393 |
701.08 708.52 685.49 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
394 |
105.23 105.14 105.00 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
395 |
123.41 125.65 105.00 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
396 |
+
134.10 134.43 133.62 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
397 |
631.70 631.81 630.61 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
398 |
595.32 599.48 565.32 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
399 |
1452.55 1453.75 1450.98 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
|
|
429 |
20.62 22.09 19.16 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
430 |
28.59 28.60 27.91 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
431 |
5.17 5.26 5.09 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
432 |
+
16.45 16.44 16.31 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
433 |
5.58 5.57 5.54 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
434 |
17.15 17.18 16.83 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
435 |
17.95 18.61 16.83 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
benchmark/config/person_detection_mediapipe.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Benchmark:
|
2 |
+
name: "Person Detection Benchmark"
|
3 |
+
type: "Detection"
|
4 |
+
data:
|
5 |
+
path: "data/person_detection"
|
6 |
+
files: ["person1.jpg", "person2.jpg", "person3.jpg"]
|
7 |
+
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
+
- [224, 224]
|
9 |
+
metric:
|
10 |
+
warmup: 30
|
11 |
+
repeat: 10
|
12 |
+
backend: "default"
|
13 |
+
target: "cpu"
|
14 |
+
|
15 |
+
Model:
|
16 |
+
name: "MPPersonDet"
|
17 |
+
scoreThreshold: 0.5
|
18 |
+
nmsThreshold: 0.3
|
19 |
+
topK: 1
|
benchmark/download_data.py
CHANGED
@@ -213,6 +213,10 @@ data_downloaders = dict(
|
|
213 |
url='https://drive.google.com/u/0/uc?id=1LUUrQIWYYtiGoNAL_twZvdw5NkC39Swe&export=download',
|
214 |
sha='4161a5cd3b0be1f51484abacf19dc9a2231e9894',
|
215 |
filename='object_detection.zip'),
|
|
|
|
|
|
|
|
|
216 |
)
|
217 |
|
218 |
if __name__ == '__main__':
|
|
|
213 |
url='https://drive.google.com/u/0/uc?id=1LUUrQIWYYtiGoNAL_twZvdw5NkC39Swe&export=download',
|
214 |
sha='4161a5cd3b0be1f51484abacf19dc9a2231e9894',
|
215 |
filename='object_detection.zip'),
|
216 |
+
person_detection=Downloader(name='person_detection',
|
217 |
+
url='https://drive.google.com/u/0/uc?id=1RbLyetgqFUTt0IHaVmu6c_b7KeXJgKbc&export=download',
|
218 |
+
sha='fbae2fb0a47fe65e316bbd0ec57ba21461967550',
|
219 |
+
filename='person_detection.zip'),
|
220 |
)
|
221 |
|
222 |
if __name__ == '__main__':
|
models/__init__.py
CHANGED
@@ -8,6 +8,7 @@ from .text_recognition_crnn.crnn import CRNN
|
|
8 |
from .face_recognition_sface.sface import SFace
|
9 |
from .image_classification_ppresnet.ppresnet import PPResNet
|
10 |
from .human_segmentation_pphumanseg.pphumanseg import PPHumanSeg
|
|
|
11 |
from .qrcode_wechatqrcode.wechatqrcode import WeChatQRCode
|
12 |
from .object_tracking_dasiamrpn.dasiamrpn import DaSiamRPN
|
13 |
from .person_reid_youtureid.youtureid import YoutuReID
|
@@ -80,6 +81,7 @@ MODELS.register(CRNN)
|
|
80 |
MODELS.register(SFace)
|
81 |
MODELS.register(PPResNet)
|
82 |
MODELS.register(PPHumanSeg)
|
|
|
83 |
MODELS.register(WeChatQRCode)
|
84 |
MODELS.register(DaSiamRPN)
|
85 |
MODELS.register(YoutuReID)
|
|
|
8 |
from .face_recognition_sface.sface import SFace
|
9 |
from .image_classification_ppresnet.ppresnet import PPResNet
|
10 |
from .human_segmentation_pphumanseg.pphumanseg import PPHumanSeg
|
11 |
+
from .person_detection_mediapipe.mp_persondet import MPPersonDet
|
12 |
from .qrcode_wechatqrcode.wechatqrcode import WeChatQRCode
|
13 |
from .object_tracking_dasiamrpn.dasiamrpn import DaSiamRPN
|
14 |
from .person_reid_youtureid.youtureid import YoutuReID
|
|
|
81 |
MODELS.register(SFace)
|
82 |
MODELS.register(PPResNet)
|
83 |
MODELS.register(PPHumanSeg)
|
84 |
+
MODELS.register(MPPersonDet)
|
85 |
MODELS.register(WeChatQRCode)
|
86 |
MODELS.register(DaSiamRPN)
|
87 |
MODELS.register(YoutuReID)
|
models/person_detection_mediapipe/LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
models/person_detection_mediapipe/README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Person detector from MediaPipe Pose
|
2 |
+
|
3 |
+
This model detects upper body and full body keypoints of a person, and is downloaded from https://github.com/PINTO0309/PINTO_model_zoo/blob/main/053_BlazePose/20_densify_pose_detection/download.sh or converted from TFLite to ONNX using following tools:
|
4 |
+
|
5 |
+
- TFLite model to ONNX with MediaPipe custom `densify` op: https://github.com/PINTO0309/tflite2tensorflow
|
6 |
+
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
|
7 |
+
|
8 |
+
SSD Anchors are generated from [GenMediaPipePalmDectionSSDAnchors](https://github.com/VimalMollyn/GenMediaPipePalmDectionSSDAnchors)
|
9 |
+
|
10 |
+
## Demo
|
11 |
+
|
12 |
+
Run the following commands to try the demo:
|
13 |
+
|
14 |
+
```bash
|
15 |
+
# detect on camera input
|
16 |
+
python demo.py
|
17 |
+
# detect on an image
|
18 |
+
python demo.py -i /path/to/image
|
19 |
+
|
20 |
+
# get help regarding various parameters
|
21 |
+
python demo.py --help
|
22 |
+
```
|
23 |
+
|
24 |
+
### Example outputs
|
25 |
+
|
26 |
+

|
27 |
+
|
28 |
+
## License
|
29 |
+
|
30 |
+
All files in this directory are licensed under [Apache 2.0 License](LICENSE).
|
31 |
+
|
32 |
+
## Reference
|
33 |
+
- MediaPipe Pose: https://google.github.io/mediapipe/solutions/pose
|
34 |
+
- MediaPipe pose model and model card: https://google.github.io/mediapipe/solutions/models.html#pose
|
35 |
+
- BlazePose TFJS: https://github.com/tensorflow/tfjs-models/tree/master/pose-detection/src/blazepose_tfjs
|
models/person_detection_mediapipe/demo.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import cv2 as cv
|
5 |
+
|
6 |
+
from mp_persondet import MPPersonDet
|
7 |
+
|
8 |
+
# Check OpenCV version
|
9 |
+
assert cv.__version__ >= "4.7.0", \
|
10 |
+
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
11 |
+
|
12 |
+
# Valid combinations of backends and targets
|
13 |
+
backend_target_pairs = [
|
14 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
15 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
16 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
17 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
18 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
19 |
+
]
|
20 |
+
|
21 |
+
parser = argparse.ArgumentParser(description='Person Detector from MediaPipe')
|
22 |
+
parser.add_argument('--input', '-i', type=str,
|
23 |
+
help='Usage: Set path to the input image. Omit for using default camera.')
|
24 |
+
parser.add_argument('--model', '-m', type=str, default='./person_detection_mediapipe_2023mar.onnx',
|
25 |
+
help='Usage: Set model path, defaults to person_detection_mediapipe_2023mar.onnx')
|
26 |
+
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
27 |
+
help='''Choose one of the backend-target pair to run this demo:
|
28 |
+
{:d}: (default) OpenCV implementation + CPU,
|
29 |
+
{:d}: CUDA + GPU (CUDA),
|
30 |
+
{:d}: CUDA + GPU (CUDA FP16),
|
31 |
+
{:d}: TIM-VX + NPU,
|
32 |
+
{:d}: CANN + NPU
|
33 |
+
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
34 |
+
parser.add_argument('--score_threshold', type=float, default=0.5,
|
35 |
+
help='Usage: Set the minimum needed confidence for the model to identify a person, defaults to 0.5. Smaller values may result in faster detection, but will limit accuracy. Filter out persons of confidence < conf_threshold.')
|
36 |
+
parser.add_argument('--nms_threshold', type=float, default=0.3,
|
37 |
+
help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.')
|
38 |
+
parser.add_argument('--top_k', type=int, default=1,
|
39 |
+
help='Usage: Keep top_k bounding boxes before NMS.')
|
40 |
+
parser.add_argument('--save', '-s', action='store_true',
|
41 |
+
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
|
42 |
+
parser.add_argument('--vis', '-v', action='store_true',
|
43 |
+
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
|
44 |
+
args = parser.parse_args()
|
45 |
+
|
46 |
+
def visualize(image, results, fps=None):
|
47 |
+
output = image.copy()
|
48 |
+
|
49 |
+
if fps is not None:
|
50 |
+
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
51 |
+
|
52 |
+
for idx, person in enumerate(results):
|
53 |
+
score = person[-1]
|
54 |
+
person_landmarks = person[4:-1].reshape(4, 2).astype(np.int32)
|
55 |
+
|
56 |
+
hip_point = person_landmarks[0]
|
57 |
+
full_body = person_landmarks[1]
|
58 |
+
shoulder_point = person_landmarks[2]
|
59 |
+
upper_body = person_landmarks[3]
|
60 |
+
|
61 |
+
# draw circle for full body
|
62 |
+
radius = np.linalg.norm(hip_point - full_body).astype(np.int32)
|
63 |
+
cv.circle(output, hip_point, radius, (255, 0, 0), 2)
|
64 |
+
|
65 |
+
# draw circle for upper body
|
66 |
+
radius = np.linalg.norm(shoulder_point - upper_body).astype(np.int32)
|
67 |
+
cv.circle(output, shoulder_point, radius, (0, 255, 255), 2)
|
68 |
+
|
69 |
+
# draw points for each keypoint
|
70 |
+
for p in person_landmarks:
|
71 |
+
cv.circle(output, p, 2, (0, 0, 255), 2)
|
72 |
+
|
73 |
+
# put score
|
74 |
+
cv.putText(output, 'Score: {:.4f}'.format(score), (0, output.shape[0] - 48), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 255, 0))
|
75 |
+
|
76 |
+
cv.putText(output, 'Yellow: upper body circle', (0, output.shape[0] - 36), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 255, 255))
|
77 |
+
cv.putText(output, 'Blue: full body circle', (0, output.shape[0] - 24), cv.FONT_HERSHEY_DUPLEX, 0.5, (255, 0, 0))
|
78 |
+
cv.putText(output, 'Red: keypoint', (0, output.shape[0] - 12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 0, 255))
|
79 |
+
|
80 |
+
return output
|
81 |
+
|
82 |
+
if __name__ == '__main__':
|
83 |
+
backend_id = backend_target_pairs[args.backend_target][0]
|
84 |
+
target_id = backend_target_pairs[args.backend_target][1]
|
85 |
+
|
86 |
+
# Instantiate MPPersonDet
|
87 |
+
model = MPPersonDet(modelPath=args.model,
|
88 |
+
nmsThreshold=args.nms_threshold,
|
89 |
+
scoreThreshold=args.score_threshold,
|
90 |
+
topK=args.top_k,
|
91 |
+
backendId=backend_id,
|
92 |
+
targetId=target_id)
|
93 |
+
|
94 |
+
# If input is an image
|
95 |
+
if args.input is not None:
|
96 |
+
image = cv.imread(args.input)
|
97 |
+
|
98 |
+
# Inference
|
99 |
+
results = model.infer(image)
|
100 |
+
if len(results) == 0:
|
101 |
+
print('Person not detected')
|
102 |
+
|
103 |
+
# Draw results on the input image
|
104 |
+
image = visualize(image, results)
|
105 |
+
|
106 |
+
# Save results if save is true
|
107 |
+
if args.save:
|
108 |
+
print('Resutls saved to result.jpg\n')
|
109 |
+
cv.imwrite('result.jpg', image)
|
110 |
+
|
111 |
+
# Visualize results in a new window
|
112 |
+
if args.vis:
|
113 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
114 |
+
cv.imshow(args.input, image)
|
115 |
+
cv.waitKey(0)
|
116 |
+
else: # Omit input to call default camera
|
117 |
+
deviceId = 0
|
118 |
+
cap = cv.VideoCapture(deviceId)
|
119 |
+
|
120 |
+
tm = cv.TickMeter()
|
121 |
+
while cv.waitKey(1) < 0:
|
122 |
+
hasFrame, frame = cap.read()
|
123 |
+
if not hasFrame:
|
124 |
+
print('No frames grabbed!')
|
125 |
+
break
|
126 |
+
|
127 |
+
# Inference
|
128 |
+
tm.start()
|
129 |
+
results = model.infer(frame)
|
130 |
+
tm.stop()
|
131 |
+
|
132 |
+
# Draw results on the input image
|
133 |
+
frame = visualize(frame, results, fps=tm.getFPS())
|
134 |
+
|
135 |
+
# Visualize results in a new Window
|
136 |
+
cv.imshow('MPPersonDet Demo', frame)
|
137 |
+
|
138 |
+
tm.reset()
|
139 |
+
|
models/person_detection_mediapipe/mp_persondet.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|