Wwupup commited on
Commit
41c69c8
·
1 Parent(s): af3dd88

update yunet to v2 (#151)

Browse files
models/face_detection_yunet/README.md CHANGED
@@ -13,8 +13,8 @@ Results of accuracy evaluation with [tools/eval](../../tools/eval).
13
 
14
  | Models | Easy AP | Medium AP | Hard AP |
15
  | ----------- | ------- | --------- | ------- |
16
- | YuNet | 0.8498 | 0.8384 | 0.7357 |
17
- | YuNet quant | 0.7751 | 0.8145 | 0.7312 |
18
 
19
  \*: 'quant' stands for 'quantized'.
20
 
 
13
 
14
  | Models | Easy AP | Medium AP | Hard AP |
15
  | ----------- | ------- | --------- | ------- |
16
+ | YuNet | 0.8871 | 0.8710 | 0.7681 |
17
+ | YuNet quant | 0.8838 | 0.8683 | 0.7676 |
18
 
19
  \*: 'quant' stands for 'quantized'.
20
 
models/face_detection_yunet/demo.cpp CHANGED
@@ -112,7 +112,7 @@ int main(int argc, char** argv)
112
  cv::CommandLineParser parser(argc, argv,
113
  "{help h | | Print this message}"
114
  "{input i | | Set input to a certain image, omit if using camera}"
115
- "{model m | face_detection_yunet_2022mar.onnx | Set path to the model}"
116
  "{backend b | opencv | Set DNN backend}"
117
  "{target t | cpu | Set DNN target}"
118
  "{save s | false | Whether to save result image or not}"
 
112
  cv::CommandLineParser parser(argc, argv,
113
  "{help h | | Print this message}"
114
  "{input i | | Set input to a certain image, omit if using camera}"
115
+ "{model m | face_detection_yunet_2023mar.onnx | Set path to the model}"
116
  "{backend b | opencv | Set DNN backend}"
117
  "{target t | cpu | Set DNN target}"
118
  "{save s | false | Whether to save result image or not}"
models/face_detection_yunet/demo.py CHANGED
@@ -27,8 +27,8 @@ backend_target_pairs = [
27
  parser = argparse.ArgumentParser(description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).')
28
  parser.add_argument('--input', '-i', type=str,
29
  help='Usage: Set input to a certain image, omit if using camera.')
30
- parser.add_argument('--model', '-m', type=str, default='face_detection_yunet_2022mar.onnx',
31
- help="Usage: Set model type, defaults to 'face_detection_yunet_2022mar.onnx'.")
32
  parser.add_argument('--backend_target', '-bt', type=int, default=0,
33
  help='''Choose one of the backend-target pair to run this demo:
34
  {:d}: (default) OpenCV implementation + CPU,
 
27
  parser = argparse.ArgumentParser(description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).')
28
  parser.add_argument('--input', '-i', type=str,
29
  help='Usage: Set input to a certain image, omit if using camera.')
30
+ parser.add_argument('--model', '-m', type=str, default='face_detection_yunet_2023mar.onnx',
31
+ help="Usage: Set model type, defaults to 'face_detection_yunet_2023mar.onnx'.")
32
  parser.add_argument('--backend_target', '-bt', type=int, default=0,
33
  help='''Choose one of the backend-target pair to run this demo:
34
  {:d}: (default) OpenCV implementation + CPU,
models/face_recognition_sface/demo.py CHANGED
@@ -57,7 +57,7 @@ if __name__ == '__main__':
57
  backendId=backend_id,
58
  targetId=target_id)
59
  # Instantiate YuNet for face detection
60
- detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2022mar.onnx',
61
  inputSize=[320, 320],
62
  confThreshold=0.9,
63
  nmsThreshold=0.3,
 
57
  backendId=backend_id,
58
  targetId=target_id)
59
  # Instantiate YuNet for face detection
60
+ detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2023mar.onnx',
61
  inputSize=[320, 320],
62
  confThreshold=0.9,
63
  nmsThreshold=0.3,
models/facial_expression_recognition/demo.py CHANGED
@@ -86,7 +86,7 @@ if __name__ == '__main__':
86
  backend_id = backend_target_pairs[args.backend_target][0]
87
  target_id = backend_target_pairs[args.backend_target][1]
88
 
89
- detect_model = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2022mar.onnx')
90
 
91
  fer_model = FacialExpressionRecog(modelPath=args.model,
92
  backendId=backend_id,
 
86
  backend_id = backend_target_pairs[args.backend_target][0]
87
  target_id = backend_target_pairs[args.backend_target][1]
88
 
89
+ detect_model = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2023mar.onnx')
90
 
91
  fer_model = FacialExpressionRecog(modelPath=args.model,
92
  backendId=backend_id,
tools/eval/eval.py CHANGED
@@ -54,14 +54,14 @@ models = dict(
54
  yunet=dict(
55
  name="YuNet",
56
  topic="face_detection",
57
- modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar.onnx"),
58
  topK=5000,
59
  confThreshold=0.3,
60
  nmsThreshold=0.45),
61
  yunet_q=dict(
62
  name="YuNet",
63
  topic="face_detection",
64
- modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar-act_int8-wt_int8-quantized.onnx"),
65
  topK=5000,
66
  confThreshold=0.3,
67
  nmsThreshold=0.45),
 
54
  yunet=dict(
55
  name="YuNet",
56
  topic="face_detection",
57
+ modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2023mar.onnx"),
58
  topK=5000,
59
  confThreshold=0.3,
60
  nmsThreshold=0.45),
61
  yunet_q=dict(
62
  name="YuNet",
63
  topic="face_detection",
64
+ modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2023mar_int8.onnx"),
65
  topK=5000,
66
  confThreshold=0.3,
67
  nmsThreshold=0.45),