fengyuentau
commited on
Commit
·
42310ef
1
Parent(s):
af1afb3
Benchmark framework implementation and 3 models added:
Browse files* benchmark framework: benchmarks based on configs
* added impl and benchmark for YuNet (face detection)
* added impl and benchmark for DB (text detection)
* added impl and benchmark for CRNN (text recognition)
- .gitignore +2 -3
- README.md +33 -1
- benchmark/README.md +32 -0
- benchmark/benchmark.py +182 -0
- benchmark/config/face_detection_yunet.yaml +28 -0
- benchmark/config/text_detection_db.yaml +27 -0
- benchmark/config/text_recognition_crnn.yaml +22 -0
- benchmark/data/.gitignore +2 -0
- benchmark/download.py +163 -0
- benchmark/requirements.txt +5 -0
- models/__init__.py +19 -0
- models/face_detection_yunet/LICENSE +21 -0
- models/face_detection_yunet/README.md +22 -0
- models/face_detection_yunet/demo.py +122 -0
- models/face_detection_yunet/yunet.py +149 -0
- models/text_detection_db/LICENSE +202 -0
- models/text_detection_db/README.md +25 -0
- models/text_detection_db/db.py +50 -0
- models/text_detection_db/demo.py +107 -0
- models/text_recognition_crnn/LICENSE +202 -0
- models/text_recognition_crnn/README.md +29 -0
- models/text_recognition_crnn/crnn.py +72 -0
- models/text_recognition_crnn/demo.py +124 -0
.gitignore
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
*.pyc
|
2 |
-
|
3 |
-
|
4 |
-
benchmark/data/**
|
5 |
|
6 |
.vscode
|
|
|
1 |
*.pyc
|
2 |
+
**/__pycache__
|
3 |
+
**/__pycache__/**
|
|
|
4 |
|
5 |
.vscode
|
README.md
CHANGED
@@ -2,6 +2,38 @@
|
|
2 |
|
3 |
A zoo for models tuned for OpenCV DNN with benchmarks on different platforms.
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
## License
|
6 |
|
7 |
-
OpenCV Zoo is licensed under the [Apache 2.0 license](./
|
|
|
2 |
|
3 |
A zoo for models tuned for OpenCV DNN with benchmarks on different platforms.
|
4 |
|
5 |
+
Guidelines:
|
6 |
+
- To clone this repo, please install [git-lfs](https://git-lfs.github.com/), run `git lfs install` and use `git lfs clone https://github.com/opencv/opencv_zoo`.
|
7 |
+
- To run benchmark on your hardware settings, please refer to [benchmark/README](./benchmark/README.md).
|
8 |
+
|
9 |
+
## Models & Benchmarks
|
10 |
+
|
11 |
+
Hardware Setup:
|
12 |
+
- `CPU x86_64`: INTEL CPU i7-5930K @ 3.50GHz, 6 cores, 12 threads.
|
13 |
+
- `CPU ARM`: Raspberry 4B, BCM2711B0 @ 1.5GHz (Cortex A-72), 4 cores, 4 threads.
|
14 |
+
<!--
|
15 |
+
- `GPU CUDA`: NVIDIA Jetson Nano B01, 128-core Maxwell, Quad-core ARM A57 @ 1.43 GHz.
|
16 |
+
-->
|
17 |
+
|
18 |
+
***Important Notes***:
|
19 |
+
- The time data that shown on the following tables presents the time elapsed from preprocess (resize is excluded), to a forward pass of a network, and postprocess to get final results.
|
20 |
+
- The time data that shown on the following tables is averaged from a 100-time run.
|
21 |
+
- View [benchmark/config](./benchmark/config) for more details on benchmarking different models.
|
22 |
+
|
23 |
+
<!--
|
24 |
+
| Model | Input Size | CPU x86_64 (ms) | CPU ARM (ms) | GPU CUDA (ms) |
|
25 |
+
|-------|------------|-----------------|--------------|---------------|
|
26 |
+
| [YuNet](./models/face_detection_yunet) | 160x120 | 2.17 | 8.87 | 14.95 |
|
27 |
+
| [DB](./models/text_detection_db) | 640x480 | 148.65 | 2759.88 | 218.25 |
|
28 |
+
| [CRNN](./models/text_recognition_crnn) | 100x32 | 23.23 | 235.87 | 195.20 |
|
29 |
+
-->
|
30 |
+
| Model | Input Size | CPU x86_64 (ms) | CPU ARM (ms) |
|
31 |
+
|-------|------------|-----------------|--------------|
|
32 |
+
| [YuNet](./models/face_detection_yunet) | 160x120 | 2.17 | 8.87 |
|
33 |
+
| [DB](./models/text_detection_db) | 640x480 | 148.65 | 2759.88 |
|
34 |
+
| [CRNN](./models/text_recognition_crnn) | 100x32 | 23.23 | 235.87 |
|
35 |
+
|
36 |
+
|
37 |
## License
|
38 |
|
39 |
+
OpenCV Zoo is licensed under the [Apache 2.0 license](./LICENSE). Please refer to licenses of different models.
|
benchmark/README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# OpenCV Zoo Benchmark
|
2 |
+
|
3 |
+
Benchmarking different models in the zoo.
|
4 |
+
|
5 |
+
Data for benchmarking will be downloaded and loaded in [data](./data) based on given config.
|
6 |
+
|
7 |
+
Time is measured from data preprocess (resize is excluded), to a forward pass of a network, and postprocess to get final results. The final time data presented is averaged from a 100-time run.
|
8 |
+
|
9 |
+
## Preparation
|
10 |
+
|
11 |
+
1. Install `python >= 3.6`.
|
12 |
+
2. Install dependencies: `pip install -r requirements.txt`.
|
13 |
+
|
14 |
+
## Benchmarking
|
15 |
+
|
16 |
+
Run the following command to benchmark on a given config:
|
17 |
+
|
18 |
+
```shell
|
19 |
+
PYTHONPATH=.. python benchmark.py --cfg ./config/face_detection_yunet.yaml
|
20 |
+
```
|
21 |
+
|
22 |
+
If you are a Windows user and wants to run in CMD/PowerShell, use this command instead:
|
23 |
+
```shell
|
24 |
+
set PYTHONPATH=..
|
25 |
+
python benchmark.py --cfg ./config/face_detection_yunet.yaml
|
26 |
+
```
|
27 |
+
<!--
|
28 |
+
Omit `--cfg` if you want to benchmark all included models:
|
29 |
+
```shell
|
30 |
+
PYTHONPATH=.. python benchmark.py
|
31 |
+
```
|
32 |
+
-->
|
benchmark/benchmark.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
import yaml
|
5 |
+
import tqdm
|
6 |
+
import numpy as np
|
7 |
+
import cv2 as cv
|
8 |
+
|
9 |
+
from models import MODELS
|
10 |
+
from download import Downloader
|
11 |
+
|
12 |
+
parser = argparse.ArgumentParser("Benchmarks for OpenCV Zoo.")
|
13 |
+
parser.add_argument('--cfg', '-c', type=str,
|
14 |
+
help='Benchmarking on the given config.')
|
15 |
+
args = parser.parse_args()
|
16 |
+
|
17 |
+
class Timer:
|
18 |
+
def __init__(self):
|
19 |
+
self._tm = cv.TickMeter()
|
20 |
+
|
21 |
+
self._time_record = []
|
22 |
+
self._average_time = 0
|
23 |
+
self._calls = 0
|
24 |
+
|
25 |
+
def start(self):
|
26 |
+
self._tm.start()
|
27 |
+
|
28 |
+
def stop(self):
|
29 |
+
self._tm.stop()
|
30 |
+
self._calls += 1
|
31 |
+
self._time_record.append(self._tm.getTimeMilli())
|
32 |
+
self._average_time = sum(self._time_record) / self._calls
|
33 |
+
self._tm.reset()
|
34 |
+
|
35 |
+
def reset(self):
|
36 |
+
self._time_record = []
|
37 |
+
self._average_time = 0
|
38 |
+
self._calls = 0
|
39 |
+
|
40 |
+
def getAverageTime(self):
|
41 |
+
return self._average_time
|
42 |
+
|
43 |
+
|
44 |
+
class Benchmark:
|
45 |
+
def __init__(self, **kwargs):
|
46 |
+
self._fileList = kwargs.pop('fileList', None)
|
47 |
+
assert self._fileList, 'fileList cannot be empty'
|
48 |
+
|
49 |
+
backend_id = kwargs.pop('backend', 'default')
|
50 |
+
available_backends = dict(
|
51 |
+
default=cv.dnn.DNN_BACKEND_DEFAULT,
|
52 |
+
# halide=cv.dnn.DNN_BACKEND_HALIDE,
|
53 |
+
# inference_engine=cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
|
54 |
+
opencv=cv.dnn.DNN_BACKEND_OPENCV,
|
55 |
+
# vkcom=cv.dnn.DNN_BACKEND_VKCOM,
|
56 |
+
cuda=cv.dnn.DNN_BACKEND_CUDA
|
57 |
+
)
|
58 |
+
self._backend = available_backends[backend_id]
|
59 |
+
|
60 |
+
target_id = kwargs.pop('target', 'cpu')
|
61 |
+
available_targets = dict(
|
62 |
+
cpu=cv.dnn.DNN_TARGET_CPU,
|
63 |
+
# opencl=cv.dnn.DNN_TARGET_OPENCL,
|
64 |
+
# opencl_fp16=cv.dnn.DNN_TARGET_OPENCL_FP16,
|
65 |
+
# myriad=cv.dnn.DNN_TARGET_MYRIAD,
|
66 |
+
# vulkan=cv.dnn.DNN_TARGET_VULKAN,
|
67 |
+
# fpga=cv.dnn.DNN_TARGET_FPGA,
|
68 |
+
cuda=cv.dnn.DNN_TARGET_CUDA,
|
69 |
+
cuda_fp16=cv.dnn.DNN_TARGET_CUDA_FP16,
|
70 |
+
# hddl=cv.dnn.DNN_TARGET_HDDL
|
71 |
+
)
|
72 |
+
self._target = available_targets[target_id]
|
73 |
+
|
74 |
+
self._sizes = kwargs.pop('sizes', None)
|
75 |
+
self._repeat = kwargs.pop('repeat', 100)
|
76 |
+
self._parentPath = kwargs.pop('parentPath', 'benchmark/data')
|
77 |
+
self._useGroundTruth = kwargs.pop('useDetectionLabel', False) # If it is enable, 'sizes' will not work
|
78 |
+
assert (self._sizes and not self._useGroundTruth) or (not self._sizes and self._useGroundTruth), 'If \'useDetectionLabel\' is True, \'sizes\' should not exist.'
|
79 |
+
|
80 |
+
self._timer = Timer()
|
81 |
+
self._benchmark_results = dict.fromkeys(self._fileList, dict())
|
82 |
+
|
83 |
+
if self._useGroundTruth:
|
84 |
+
self.loadLabel()
|
85 |
+
|
86 |
+
def loadLabel(self):
|
87 |
+
self._labels = dict.fromkeys(self._fileList, None)
|
88 |
+
for imgName in self._fileList:
|
89 |
+
self._labels[imgName] = np.loadtxt(os.path.join(self._parentPath, '{}.txt'.format(imgName[:-4])))
|
90 |
+
|
91 |
+
def run(self, model):
|
92 |
+
model.setBackend(self._backend)
|
93 |
+
model.setTarget(self._target)
|
94 |
+
|
95 |
+
for imgName in self._fileList:
|
96 |
+
img = cv.imread(os.path.join(self._parentPath, imgName))
|
97 |
+
if self._useGroundTruth:
|
98 |
+
for idx, gt in enumerate(self._labels[imgName]):
|
99 |
+
self._benchmark_results[imgName]['gt{}'.format(idx)] = self._run(
|
100 |
+
model,
|
101 |
+
img,
|
102 |
+
gt,
|
103 |
+
pbar_msg=' {}, gt{}'.format(imgName, idx)
|
104 |
+
)
|
105 |
+
else:
|
106 |
+
if self._sizes is None:
|
107 |
+
h, w, _ = img.shape
|
108 |
+
model.setInputSize([w, h])
|
109 |
+
self._benchmark_results[imgName][str([w, h])] = self._run(
|
110 |
+
model,
|
111 |
+
img,
|
112 |
+
pbar_msg=' {}, original size {}'.format(imgName, str([w, h]))
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
for size in self._sizes:
|
116 |
+
imgResized = cv.resize(img, size)
|
117 |
+
model.setInputSize(size)
|
118 |
+
self._benchmark_results[imgName][str(size)] = self._run(
|
119 |
+
model,
|
120 |
+
imgResized,
|
121 |
+
pbar_msg=' {}, size {}'.format(imgName, str(size))
|
122 |
+
)
|
123 |
+
|
124 |
+
def printResults(self):
|
125 |
+
print(' Results:')
|
126 |
+
for imgName, results in self._benchmark_results.items():
|
127 |
+
print(' image: {}'.format(imgName))
|
128 |
+
total_latency = 0
|
129 |
+
for key, latency in results.items():
|
130 |
+
total_latency += latency
|
131 |
+
print(' {}, latency: {:.4f} ms'.format(key, latency))
|
132 |
+
print(' Average latency: {:.4f} ms'.format(total_latency / len(results)))
|
133 |
+
|
134 |
+
def _run(self, model, *args, **kwargs):
|
135 |
+
self._timer.reset()
|
136 |
+
pbar = tqdm.tqdm(range(self._repeat))
|
137 |
+
for _ in pbar:
|
138 |
+
pbar.set_description(kwargs.get('pbar_msg', None))
|
139 |
+
|
140 |
+
self._timer.start()
|
141 |
+
results = model.infer(*args)
|
142 |
+
self._timer.stop()
|
143 |
+
return self._timer.getAverageTime()
|
144 |
+
|
145 |
+
|
146 |
+
def build_from_cfg(cfg, registery):
|
147 |
+
obj_name = cfg.pop('name')
|
148 |
+
obj = registery.get(obj_name)
|
149 |
+
return obj(**cfg)
|
150 |
+
|
151 |
+
def prepend_pythonpath(cfg, key1, key2):
|
152 |
+
pythonpath = os.environ['PYTHONPATH']
|
153 |
+
if cfg[key1][key2].startswith('/'):
|
154 |
+
return
|
155 |
+
cfg[key1][key2] = os.path.join(pythonpath, cfg[key1][key2])
|
156 |
+
|
157 |
+
if __name__ == '__main__':
|
158 |
+
assert args.cfg.endswith('yaml'), 'Currently support configs of yaml format only.'
|
159 |
+
with open(args.cfg, 'r') as f:
|
160 |
+
cfg = yaml.safe_load(f)
|
161 |
+
|
162 |
+
# prepend PYTHONPATH to each path
|
163 |
+
prepend_pythonpath(cfg, key1='Data', key2='parentPath')
|
164 |
+
prepend_pythonpath(cfg, key1='Benchmark', key2='parentPath')
|
165 |
+
prepend_pythonpath(cfg, key1='Model', key2='modelPath')
|
166 |
+
|
167 |
+
|
168 |
+
# Download data if not exist
|
169 |
+
print('Loading data:')
|
170 |
+
downloader = Downloader(**cfg['Data'])
|
171 |
+
downloader.get()
|
172 |
+
|
173 |
+
# Instantiate benchmarking
|
174 |
+
benchmark = Benchmark(**cfg['Benchmark'])
|
175 |
+
|
176 |
+
# Instantiate model
|
177 |
+
model = build_from_cfg(cfg=cfg['Model'], registery=MODELS)
|
178 |
+
|
179 |
+
# Run benchmarking
|
180 |
+
print('Benchmarking {}:'.format(model.name))
|
181 |
+
benchmark.run(model)
|
182 |
+
benchmark.printResults()
|
benchmark/config/face_detection_yunet.yaml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Data:
|
2 |
+
name: "Images for Face Detection"
|
3 |
+
url: "https://drive.google.com/u/0/uc?id=1lOAliAIeOv4olM65YDzE55kn6XjiX2l6&export=download"
|
4 |
+
sha: "0ba67a9cfd60f7fdb65cdb7c55a1ce76c1193df1"
|
5 |
+
filename: "face_detection.zip"
|
6 |
+
parentPath: "benchmark/data"
|
7 |
+
|
8 |
+
Benchmark:
|
9 |
+
name: "Face Detection Benchmark"
|
10 |
+
parentPath: "benchmark/data/face_detection"
|
11 |
+
fileList:
|
12 |
+
- "group.jpg"
|
13 |
+
- "concerts.jpg"
|
14 |
+
- "dance.jpg"
|
15 |
+
backend: "default"
|
16 |
+
target: "cpu"
|
17 |
+
sizes: # [w, h], Omit to run at original scale
|
18 |
+
- [160, 120]
|
19 |
+
- [640, 480]
|
20 |
+
repeat: 100 # default 100
|
21 |
+
|
22 |
+
Model:
|
23 |
+
name: "YuNet"
|
24 |
+
modelPath: "models/face_detection_yunet/face_detection_yunet.onnx"
|
25 |
+
confThreshold: 0.6
|
26 |
+
nmsThreshold: 0.3
|
27 |
+
topK: 5000
|
28 |
+
keepTopK: 750
|
benchmark/config/text_detection_db.yaml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Data:
|
2 |
+
name: "Images for Text Detection"
|
3 |
+
url: "https://drive.google.com/u/0/uc?id=1lTQdZUau7ujHBqp0P6M1kccnnJgO-dRj&export=download"
|
4 |
+
sha: "a40cf095ceb77159ddd2a5902f3b4329696dd866"
|
5 |
+
filename: "text.zip"
|
6 |
+
parentPath: "benchmark/data"
|
7 |
+
|
8 |
+
Benchmark:
|
9 |
+
name: "Text Detection Benchmark"
|
10 |
+
parentPath: "benchmark/data/text"
|
11 |
+
fileList:
|
12 |
+
- "1.jpg"
|
13 |
+
- "2.jpg"
|
14 |
+
- "3.jpg"
|
15 |
+
backend: "default"
|
16 |
+
target: "cpu"
|
17 |
+
sizes: # [w, h], default original scale
|
18 |
+
- [640, 480]
|
19 |
+
repeat: 100
|
20 |
+
|
21 |
+
Model:
|
22 |
+
name: "DB"
|
23 |
+
modelPath: "models/text_detection_db/text_detection_db.onnx"
|
24 |
+
binaryThreshold: 0.3
|
25 |
+
polygonThreshold: 0.5
|
26 |
+
maxCandidates: 200
|
27 |
+
unclipRatio: 2.0
|
benchmark/config/text_recognition_crnn.yaml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Data:
|
2 |
+
name: "Images for Text Detection"
|
3 |
+
url: "https://drive.google.com/u/0/uc?id=1lTQdZUau7ujHBqp0P6M1kccnnJgO-dRj&export=download"
|
4 |
+
sha: "a40cf095ceb77159ddd2a5902f3b4329696dd866"
|
5 |
+
filename: "text.zip"
|
6 |
+
parentPath: "benchmark/data"
|
7 |
+
|
8 |
+
Benchmark:
|
9 |
+
name: "Text Recognition Benchmark"
|
10 |
+
parentPath: "benchmark/data/text"
|
11 |
+
fileList:
|
12 |
+
- "1.jpg"
|
13 |
+
- "2.jpg"
|
14 |
+
- "3.jpg"
|
15 |
+
backend: "default"
|
16 |
+
target: "cpu"
|
17 |
+
useDetectionLabel: True
|
18 |
+
repeat: 100
|
19 |
+
|
20 |
+
Model:
|
21 |
+
name: "CRNN"
|
22 |
+
modelPath: "models/text_recognition_crnn/text_recognition_crnn.onnx"
|
benchmark/data/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
benchmark/download.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import tarfile
|
5 |
+
import zipfile
|
6 |
+
import requests
|
7 |
+
import os.path as osp
|
8 |
+
|
9 |
+
from urllib.request import urlopen
|
10 |
+
from urllib.parse import urlparse
|
11 |
+
|
12 |
+
|
13 |
+
class Downloader:
|
14 |
+
MB = 1024*1024
|
15 |
+
BUFSIZE = 10*MB
|
16 |
+
|
17 |
+
def __init__(self, **kwargs):
|
18 |
+
self._name = kwargs.pop('name')
|
19 |
+
self._url = kwargs.pop('url', None)
|
20 |
+
self._filename = kwargs.pop('filename')
|
21 |
+
self._sha = kwargs.pop('sha', None)
|
22 |
+
self._saveTo = kwargs.pop('saveTo', './data')
|
23 |
+
self._extractTo = kwargs.pop('extractTo', './data')
|
24 |
+
|
25 |
+
def __str__(self):
|
26 |
+
return 'Downloader for <{}>'.format(self._name)
|
27 |
+
|
28 |
+
def printRequest(self, r):
|
29 |
+
def getMB(r):
|
30 |
+
d = dict(r.info())
|
31 |
+
for c in ['content-length', 'Content-Length']:
|
32 |
+
if c in d:
|
33 |
+
return int(d[c]) / self.MB
|
34 |
+
return '<unknown>'
|
35 |
+
print(' {} {} [{} Mb]'.format(r.getcode(), r.msg, getMB(r)))
|
36 |
+
|
37 |
+
def verifyHash(self):
|
38 |
+
if not self._sha:
|
39 |
+
return False
|
40 |
+
sha = hashlib.sha1()
|
41 |
+
try:
|
42 |
+
with open(osp.join(self._saveTo, self._filename), 'rb') as f:
|
43 |
+
while True:
|
44 |
+
buf = f.read(self.BUFSIZE)
|
45 |
+
if not buf:
|
46 |
+
break
|
47 |
+
sha.update(buf)
|
48 |
+
if self._sha != sha.hexdigest():
|
49 |
+
print(' actual {}'.format(sha.hexdigest()))
|
50 |
+
print(' expect {}'.format(self._sha))
|
51 |
+
return self._sha == sha.hexdigest()
|
52 |
+
except Exception as e:
|
53 |
+
print(' catch {}'.format(e))
|
54 |
+
|
55 |
+
def get(self):
|
56 |
+
if self.verifyHash():
|
57 |
+
print(' hash match - skipping download')
|
58 |
+
else:
|
59 |
+
basedir = os.path.dirname(self._saveTo)
|
60 |
+
if basedir and not os.path.exists(basedir):
|
61 |
+
print(' creating directory: ' + basedir)
|
62 |
+
os.makedirs(basedir, exist_ok=True)
|
63 |
+
|
64 |
+
print(' hash check failed - downloading')
|
65 |
+
if 'drive.google.com' in self._url:
|
66 |
+
urlquery = urlparse(self._url).query.split('&')
|
67 |
+
for q in urlquery:
|
68 |
+
if 'id=' in q:
|
69 |
+
gid = q[3:]
|
70 |
+
sz = GDrive(gid)(osp.join(self._saveTo, self._filename))
|
71 |
+
print(' size = %.2f Mb' % (sz / (1024.0 * 1024)))
|
72 |
+
else:
|
73 |
+
print(' get {}'.format(self._url))
|
74 |
+
self.download()
|
75 |
+
|
76 |
+
# Verify hash after download
|
77 |
+
print(' done')
|
78 |
+
print(' file {}'.format(self._filename))
|
79 |
+
if self.verifyHash():
|
80 |
+
print(' hash match - extracting')
|
81 |
+
else:
|
82 |
+
print(' hash check failed - exiting')
|
83 |
+
|
84 |
+
# Extract
|
85 |
+
if '.zip' in self._filename:
|
86 |
+
print(' extracting - ', end='')
|
87 |
+
self.extract()
|
88 |
+
print('done')
|
89 |
+
|
90 |
+
return True
|
91 |
+
|
92 |
+
def download(self):
|
93 |
+
try:
|
94 |
+
r = urlopen(self._url, timeout=60)
|
95 |
+
self.printRequest(r)
|
96 |
+
self.save(r)
|
97 |
+
except Exception as e:
|
98 |
+
print(' catch {}'.format(e))
|
99 |
+
|
100 |
+
def extract(self):
|
101 |
+
fileLocation = os.path.join(self._saveTo, self._filename)
|
102 |
+
try:
|
103 |
+
if self._filename.endswith('.zip'):
|
104 |
+
with zipfile.ZipFile(fileLocation) as f:
|
105 |
+
for member in f.namelist():
|
106 |
+
path = osp.join(self._extractTo, member)
|
107 |
+
if osp.exists(path) or osp.isfile(path):
|
108 |
+
continue
|
109 |
+
else:
|
110 |
+
f.extract(member, self._extractTo)
|
111 |
+
except Exception as e:
|
112 |
+
print((' catch {}'.format(e)))
|
113 |
+
|
114 |
+
def save(self, r):
|
115 |
+
with open(self._filename, 'wb') as f:
|
116 |
+
print(' progress ', end='')
|
117 |
+
sys.stdout.flush()
|
118 |
+
while True:
|
119 |
+
buf = r.read(self.BUFSIZE)
|
120 |
+
if not buf:
|
121 |
+
break
|
122 |
+
f.write(buf)
|
123 |
+
print('>', end='')
|
124 |
+
sys.stdout.flush()
|
125 |
+
|
126 |
+
|
127 |
+
def GDrive(gid):
|
128 |
+
def download_gdrive(dst):
|
129 |
+
session = requests.Session() # re-use cookies
|
130 |
+
|
131 |
+
URL = "https://docs.google.com/uc?export=download"
|
132 |
+
response = session.get(URL, params = { 'id' : gid }, stream = True)
|
133 |
+
|
134 |
+
def get_confirm_token(response): # in case of large files
|
135 |
+
for key, value in response.cookies.items():
|
136 |
+
if key.startswith('download_warning'):
|
137 |
+
return value
|
138 |
+
return None
|
139 |
+
token = get_confirm_token(response)
|
140 |
+
|
141 |
+
if token:
|
142 |
+
params = { 'id' : gid, 'confirm' : token }
|
143 |
+
response = session.get(URL, params = params, stream = True)
|
144 |
+
|
145 |
+
BUFSIZE = 1024 * 1024
|
146 |
+
PROGRESS_SIZE = 10 * 1024 * 1024
|
147 |
+
|
148 |
+
sz = 0
|
149 |
+
progress_sz = PROGRESS_SIZE
|
150 |
+
with open(dst, "wb") as f:
|
151 |
+
for chunk in response.iter_content(BUFSIZE):
|
152 |
+
if not chunk:
|
153 |
+
continue # keep-alive
|
154 |
+
|
155 |
+
f.write(chunk)
|
156 |
+
sz += len(chunk)
|
157 |
+
if sz >= progress_sz:
|
158 |
+
progress_sz += PROGRESS_SIZE
|
159 |
+
print('>', end='')
|
160 |
+
sys.stdout.flush()
|
161 |
+
print('')
|
162 |
+
return sz
|
163 |
+
return download_gdrive
|
benchmark/requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.21.2
|
2 |
+
opencv-python==4.5.3.56
|
3 |
+
tqdm
|
4 |
+
pyyaml
|
5 |
+
requests
|
models/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .face_detection_yunet.yunet import YuNet
|
2 |
+
from .text_detection_db.db import DB
|
3 |
+
from .text_recognition_crnn.crnn import CRNN
|
4 |
+
|
5 |
+
class Registery:
|
6 |
+
def __init__(self, name):
|
7 |
+
self._name = name
|
8 |
+
self._dict = dict()
|
9 |
+
|
10 |
+
def get(self, key):
|
11 |
+
return self._dict[key]
|
12 |
+
|
13 |
+
def register(self, item):
|
14 |
+
self._dict[item.__name__] = item
|
15 |
+
|
16 |
+
MODELS = Registery('Models')
|
17 |
+
MODELS.register(YuNet)
|
18 |
+
MODELS.register(DB)
|
19 |
+
MODELS.register(CRNN)
|
models/face_detection_yunet/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Shiqi Yu <[email protected]>
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
models/face_detection_yunet/README.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YuNet
|
2 |
+
|
3 |
+
YuNet is a light-weight, fast and accurate face detection model, which achieves 0.834(AP_easy), 0.824(AP_medium), 0.708(AP_hard) on the WIDER Face validation set.
|
4 |
+
|
5 |
+
## Demo
|
6 |
+
|
7 |
+
Run the following command to try the demo:
|
8 |
+
```shell
|
9 |
+
# detect on camera input
|
10 |
+
python demo.py
|
11 |
+
# detect on an image
|
12 |
+
python demo.py --input /path/to/image
|
13 |
+
```
|
14 |
+
|
15 |
+
## License
|
16 |
+
|
17 |
+
All files in this directory are licensed under [MIT License](./LICENSE).
|
18 |
+
|
19 |
+
## Reference
|
20 |
+
|
21 |
+
- https://github.com/ShiqiYu/libfacedetection
|
22 |
+
- https://github.com/ShiqiYu/libfacedetection.train
|
models/face_detection_yunet/demo.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import cv2 as cv
|
11 |
+
|
12 |
+
from yunet import YuNet
|
13 |
+
|
14 |
+
def str2bool(v):
|
15 |
+
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
16 |
+
return True
|
17 |
+
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
18 |
+
return False
|
19 |
+
else:
|
20 |
+
raise NotImplementedError
|
21 |
+
|
22 |
+
parser = argparse.ArgumentParser(description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).')
|
23 |
+
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
|
24 |
+
parser.add_argument('--model', '-m', type=str, default='face_detection_yunet.onnx', help='Path to the model.')
|
25 |
+
parser.add_argument('--conf_threshold', type=float, default=0.9, help='Filter out faces of confidence < conf_threshold.')
|
26 |
+
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
|
27 |
+
parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.')
|
28 |
+
parser.add_argument('--keep_top_k', type=int, default=750, help='Keep keep_top_k bounding boxes after NMS.')
|
29 |
+
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
|
30 |
+
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None):
|
34 |
+
output = image.copy()
|
35 |
+
landmark_color = [
|
36 |
+
(255, 0, 0), # right eye
|
37 |
+
( 0, 0, 255), # left eye
|
38 |
+
( 0, 255, 0), # nose tip
|
39 |
+
(255, 0, 255), # right mouth corner
|
40 |
+
( 0, 255, 255) # left mouth corner
|
41 |
+
]
|
42 |
+
|
43 |
+
if fps is not None:
|
44 |
+
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)
|
45 |
+
|
46 |
+
for det in results:
|
47 |
+
bbox = det[0:4].astype(np.int32)
|
48 |
+
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2)
|
49 |
+
|
50 |
+
conf = det[-1]
|
51 |
+
cv.putText(output, '{:.4f}'.format(conf), (bbox[0], bbox[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, text_color)
|
52 |
+
|
53 |
+
landmarks = det[4:14].astype(np.int32).reshape((5,2))
|
54 |
+
for idx, landmark in enumerate(landmarks):
|
55 |
+
cv.circle(output, landmark, 2, landmark_color[idx], 2)
|
56 |
+
|
57 |
+
return output
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
# Instantiate YuNet
|
61 |
+
model = YuNet(modelPath=args.model,
|
62 |
+
inputSize=[320, 320],
|
63 |
+
confThreshold=args.conf_threshold,
|
64 |
+
nmsThreshold=args.nms_threshold,
|
65 |
+
topK=args.top_k,
|
66 |
+
keepTopK=args.keep_top_k)
|
67 |
+
|
68 |
+
# If input is an image
|
69 |
+
if args.input is not None:
|
70 |
+
image = cv.imread(args.input)
|
71 |
+
h, w, _ = image.shape
|
72 |
+
|
73 |
+
# Inference
|
74 |
+
model.setInputSize([w, h])
|
75 |
+
results = model.infer(image)
|
76 |
+
|
77 |
+
# Print results
|
78 |
+
print('{} faces detected.'.format(results.shape[0]))
|
79 |
+
for idx, det in enumerate(results):
|
80 |
+
print('{}: [{:.0f}, {:.0f}] [{:.0f}, {:.0f}], {:.2f}'.format(
|
81 |
+
idx, det[0], det[1], det[2], det[3], det[-1])
|
82 |
+
)
|
83 |
+
|
84 |
+
# Draw results on the input image
|
85 |
+
image = visualize(image, results)
|
86 |
+
|
87 |
+
# Save results if save is true
|
88 |
+
if args.save:
|
89 |
+
print('Resutls saved to result.jpg\n')
|
90 |
+
cv.imwrite('result.jpg', image)
|
91 |
+
|
92 |
+
# Visualize results in a new window
|
93 |
+
if args.vis:
|
94 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
95 |
+
cv.imshow(args.input, image)
|
96 |
+
cv.waitKey(0)
|
97 |
+
else: # Omit input to call default camera
|
98 |
+
deviceId = 0
|
99 |
+
cap = cv.VideoCapture(deviceId)
|
100 |
+
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
101 |
+
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
102 |
+
model.setInputSize([w, h])
|
103 |
+
|
104 |
+
tm = cv.TickMeter()
|
105 |
+
while cv.waitKey(1) < 0:
|
106 |
+
hasFrame, frame = cap.read()
|
107 |
+
if not hasFrame:
|
108 |
+
print('No frames grabbed!')
|
109 |
+
break
|
110 |
+
|
111 |
+
# Inference
|
112 |
+
tm.start()
|
113 |
+
results = model.infer(frame) # results is a tuple
|
114 |
+
tm.stop()
|
115 |
+
|
116 |
+
# Draw results on the input image
|
117 |
+
frame = visualize(frame, results, fps=tm.getFPS())
|
118 |
+
|
119 |
+
# Visualize results in a new Window
|
120 |
+
cv.imshow('YuNet Demo', frame)
|
121 |
+
|
122 |
+
tm.reset()
|
models/face_detection_yunet/yunet.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
from itertools import product
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import cv2 as cv
|
11 |
+
|
12 |
+
class YuNet:
|
13 |
+
def __init__(self, modelPath, inputSize=[320, 320], confThreshold=0.6, nmsThreshold=0.3, topK=5000, keepTopK=750):
|
14 |
+
self._modelPath = modelPath
|
15 |
+
self._model = cv.dnn.readNet(self._modelPath)
|
16 |
+
|
17 |
+
self._inputNames = ''
|
18 |
+
self._outputNames = ['loc', 'conf', 'iou']
|
19 |
+
self._inputSize = inputSize # [w, h]
|
20 |
+
self._confThreshold = confThreshold
|
21 |
+
self._nmsThreshold = nmsThreshold
|
22 |
+
self._topK = topK
|
23 |
+
self._keepTopK = keepTopK
|
24 |
+
|
25 |
+
self._min_sizes = [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]]
|
26 |
+
self._steps = [8, 16, 32, 64]
|
27 |
+
self._variance = [0.1, 0.2]
|
28 |
+
|
29 |
+
# Generate priors
|
30 |
+
self._priorGen()
|
31 |
+
|
32 |
+
@property
|
33 |
+
def name(self):
|
34 |
+
return self.__class__.__name__
|
35 |
+
|
36 |
+
def setBackend(self, backend):
|
37 |
+
self._model.setPreferableBackend(backend)
|
38 |
+
|
39 |
+
def setTarget(self, target):
|
40 |
+
self._model.setPreferableTarget(target)
|
41 |
+
|
42 |
+
def setInputSize(self, input_size):
|
43 |
+
self._inputSize = input_size # [w, h]
|
44 |
+
|
45 |
+
# Regenerate priors
|
46 |
+
self._priorGen()
|
47 |
+
|
48 |
+
def _preprocess(self, image):
|
49 |
+
return cv.dnn.blobFromImage(image)
|
50 |
+
|
51 |
+
def infer(self, image):
|
52 |
+
assert image.shape[0] == self._inputSize[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self._inputSize[1])
|
53 |
+
assert image.shape[1] == self._inputSize[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self._inputSize[0])
|
54 |
+
|
55 |
+
# Preprocess
|
56 |
+
inputBlob = self._preprocess(image)
|
57 |
+
|
58 |
+
# Forward
|
59 |
+
self._model.setInput(inputBlob, self._inputNames)
|
60 |
+
outputBlob = self._model.forward(self._outputNames)
|
61 |
+
|
62 |
+
# Postprocess
|
63 |
+
results = self._postprocess(outputBlob)
|
64 |
+
|
65 |
+
return results
|
66 |
+
|
67 |
+
def _postprocess(self, outputBlob):
|
68 |
+
# Decode
|
69 |
+
dets = self._decode(outputBlob)
|
70 |
+
|
71 |
+
# NMS
|
72 |
+
keepIdx = cv.dnn.NMSBoxes(
|
73 |
+
bboxes=dets[:, 0:4].tolist(),
|
74 |
+
scores=dets[:, -1].tolist(),
|
75 |
+
score_threshold=self._confThreshold,
|
76 |
+
nms_threshold=self._nmsThreshold,
|
77 |
+
top_k=self._topK
|
78 |
+
) # box_num x class_num
|
79 |
+
if len(keepIdx) > 0:
|
80 |
+
dets = dets[keepIdx]
|
81 |
+
dets = np.squeeze(dets, axis=1)
|
82 |
+
return dets[:self._keepTopK]
|
83 |
+
else:
|
84 |
+
return np.empty(shape=(0, 15))
|
85 |
+
|
86 |
+
def _priorGen(self):
|
87 |
+
w, h = self._inputSize
|
88 |
+
feature_map_2th = [int(int((h + 1) / 2) / 2),
|
89 |
+
int(int((w + 1) / 2) / 2)]
|
90 |
+
feature_map_3th = [int(feature_map_2th[0] / 2),
|
91 |
+
int(feature_map_2th[1] / 2)]
|
92 |
+
feature_map_4th = [int(feature_map_3th[0] / 2),
|
93 |
+
int(feature_map_3th[1] / 2)]
|
94 |
+
feature_map_5th = [int(feature_map_4th[0] / 2),
|
95 |
+
int(feature_map_4th[1] / 2)]
|
96 |
+
feature_map_6th = [int(feature_map_5th[0] / 2),
|
97 |
+
int(feature_map_5th[1] / 2)]
|
98 |
+
|
99 |
+
feature_maps = [feature_map_3th, feature_map_4th,
|
100 |
+
feature_map_5th, feature_map_6th]
|
101 |
+
|
102 |
+
priors = []
|
103 |
+
for k, f in enumerate(feature_maps):
|
104 |
+
min_sizes = self._min_sizes[k]
|
105 |
+
for i, j in product(range(f[0]), range(f[1])): # i->h, j->w
|
106 |
+
for min_size in min_sizes:
|
107 |
+
s_kx = min_size / w
|
108 |
+
s_ky = min_size / h
|
109 |
+
|
110 |
+
cx = (j + 0.5) * self._steps[k] / w
|
111 |
+
cy = (i + 0.5) * self._steps[k] / h
|
112 |
+
|
113 |
+
priors.append([cx, cy, s_kx, s_ky])
|
114 |
+
self.priors = np.array(priors, dtype=np.float32)
|
115 |
+
|
116 |
+
def _decode(self, outputBlob):
|
117 |
+
loc, conf, iou = outputBlob
|
118 |
+
# get score
|
119 |
+
cls_scores = conf[:, 1]
|
120 |
+
iou_scores = iou[:, 0]
|
121 |
+
# clamp
|
122 |
+
_idx = np.where(iou_scores < 0.)
|
123 |
+
iou_scores[_idx] = 0.
|
124 |
+
_idx = np.where(iou_scores > 1.)
|
125 |
+
iou_scores[_idx] = 1.
|
126 |
+
scores = np.sqrt(cls_scores * iou_scores)
|
127 |
+
scores = scores[:, np.newaxis]
|
128 |
+
|
129 |
+
scale = np.array(self._inputSize)
|
130 |
+
|
131 |
+
# get bboxes
|
132 |
+
bboxes = np.hstack((
|
133 |
+
(self.priors[:, 0:2] + loc[:, 0:2] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
134 |
+
(self.priors[:, 2:4] * np.exp(loc[:, 2:4] * self._variance)) * scale
|
135 |
+
))
|
136 |
+
# (x_c, y_c, w, h) -> (x1, y1, w, h)
|
137 |
+
bboxes[:, 0:2] -= bboxes[:, 2:4] / 2
|
138 |
+
|
139 |
+
# get landmarks
|
140 |
+
landmarks = np.hstack((
|
141 |
+
(self.priors[:, 0:2] + loc[:, 4: 6] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
142 |
+
(self.priors[:, 0:2] + loc[:, 6: 8] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
143 |
+
(self.priors[:, 0:2] + loc[:, 8:10] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
144 |
+
(self.priors[:, 0:2] + loc[:, 10:12] * self._variance[0] * self.priors[:, 2:4]) * scale,
|
145 |
+
(self.priors[:, 0:2] + loc[:, 12:14] * self._variance[0] * self.priors[:, 2:4]) * scale
|
146 |
+
))
|
147 |
+
|
148 |
+
dets = np.hstack((bboxes, landmarks, scores))
|
149 |
+
return dets
|
models/text_detection_db/LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
models/text_detection_db/README.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DB
|
2 |
+
|
3 |
+
Real-time Scene Text Detection with Differentiable Binarization
|
4 |
+
|
5 |
+
`text_detection_db.onnx` is trained on [TD500 dataset](http://www.iapr-tc11.org/mediawiki/index.php/MSRA_Text_Detection_500_Database_(MSRA-TD500)), which can detect both English & Chinese instances. It is obtained from [here](https://docs.opencv.org/master/d4/d43/tutorial_dnn_text_spotting.html) and renamed from `DB_TD500_resnet18.onnx`.
|
6 |
+
|
7 |
+
## Demo
|
8 |
+
|
9 |
+
Run the following command to try the demo:
|
10 |
+
```shell
|
11 |
+
# detect on camera input
|
12 |
+
python demo.py
|
13 |
+
# detect on an image
|
14 |
+
python demo.py --input /path/to/image
|
15 |
+
```
|
16 |
+
|
17 |
+
## License
|
18 |
+
|
19 |
+
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
20 |
+
|
21 |
+
## Reference
|
22 |
+
|
23 |
+
- https://arxiv.org/abs/1911.08947
|
24 |
+
- https://github.com/MhLiao/DB
|
25 |
+
- https://docs.opencv.org/master/d4/d43/tutorial_dnn_text_spotting.html
|
models/text_detection_db/db.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import cv2 as cv
|
9 |
+
|
10 |
+
class DB:
|
11 |
+
def __init__(self, modelPath, inputSize=[736, 736], binaryThreshold=0.3, polygonThreshold=0.5, maxCandidates=200, unclipRatio=2.0):
|
12 |
+
self._modelPath = modelPath
|
13 |
+
self._model = cv.dnn_TextDetectionModel_DB(
|
14 |
+
cv.dnn.readNet(self._modelPath)
|
15 |
+
)
|
16 |
+
|
17 |
+
self._inputSize = tuple(inputSize) # (w, h)
|
18 |
+
self._inputHeight = inputSize[0]
|
19 |
+
self._inputWidth = inputSize[1]
|
20 |
+
self._binaryThreshold = binaryThreshold
|
21 |
+
self._polygonThreshold = polygonThreshold
|
22 |
+
self._maxCandidates = maxCandidates
|
23 |
+
self._unclipRatio = unclipRatio
|
24 |
+
|
25 |
+
self._model.setBinaryThreshold(self._binaryThreshold)
|
26 |
+
self._model.setPolygonThreshold(self._polygonThreshold)
|
27 |
+
self._model.setUnclipRatio(self._unclipRatio)
|
28 |
+
self._model.setMaxCandidates(self._maxCandidates)
|
29 |
+
|
30 |
+
self._model.setInputParams(1.0/255.0, self._inputSize, (122.67891434, 116.66876762, 104.00698793))
|
31 |
+
|
32 |
+
@property
|
33 |
+
def name(self):
|
34 |
+
return self.__class__.__name__
|
35 |
+
|
36 |
+
def setBackend(self, backend):
|
37 |
+
self._model.setPreferableBackend(backend)
|
38 |
+
|
39 |
+
def setTarget(self, target):
|
40 |
+
self._model.setPreferableTarget(target)
|
41 |
+
|
42 |
+
def setInputSize(self, input_size):
|
43 |
+
self._inputSize = tuple(input_size)
|
44 |
+
self._model.setInputParams(1.0/255.0, self._inputSize, (122.67891434, 116.66876762, 104.00698793))
|
45 |
+
|
46 |
+
def infer(self, image):
|
47 |
+
assert image.shape[0] == self._inputSize[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self._inputSize[1])
|
48 |
+
assert image.shape[1] == self._inputSize[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self._inputSize[0])
|
49 |
+
|
50 |
+
return self._model.detect(image)
|
models/text_detection_db/demo.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import cv2 as cv
|
11 |
+
|
12 |
+
from db import DB
|
13 |
+
|
14 |
+
def str2bool(v):
|
15 |
+
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
16 |
+
return True
|
17 |
+
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
18 |
+
return False
|
19 |
+
else:
|
20 |
+
raise NotImplementedError
|
21 |
+
|
22 |
+
parser = argparse.ArgumentParser(description='Real-time Scene Text Detection with Differentiable Binarization (https://arxiv.org/abs/1911.08947).')
|
23 |
+
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
|
24 |
+
parser.add_argument('--model', '-m', type=str, default='text_detection_db.onnx', help='Path to the model.')
|
25 |
+
parser.add_argument('--width', type=int, default=736,
|
26 |
+
help='Preprocess input image by resizing to a specific width. It should be multiple by 32.')
|
27 |
+
parser.add_argument('--height', type=int, default=736,
|
28 |
+
help='Preprocess input image by resizing to a specific height. It should be multiple by 32.')
|
29 |
+
parser.add_argument('--binary_threshold', type=float, default=0.3, help='Threshold of the binary map.')
|
30 |
+
parser.add_argument('--polygon_threshold', type=float, default=0.5, help='Threshold of polygons.')
|
31 |
+
parser.add_argument('--max_candidates', type=int, default=200, help='Max candidates of polygons.')
|
32 |
+
parser.add_argument('--unclip_ratio', type=np.float64, default=2.0, help=' The unclip ratio of the detected text region, which determines the output size.')
|
33 |
+
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
|
34 |
+
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
|
35 |
+
args = parser.parse_args()
|
36 |
+
|
37 |
+
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), isClosed=True, thickness=2, fps=None):
|
38 |
+
output = image.copy()
|
39 |
+
|
40 |
+
if fps is not None:
|
41 |
+
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)
|
42 |
+
|
43 |
+
pts = np.array(results[0])
|
44 |
+
output = cv.polylines(output, pts, isClosed, box_color, thickness)
|
45 |
+
|
46 |
+
return output
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
# Instantiate DB
|
50 |
+
model = DB(modelPath=args.model,
|
51 |
+
inputSize=[args.width, args.height],
|
52 |
+
binaryThreshold=args.binary_threshold,
|
53 |
+
polygonThreshold=args.polygon_threshold,
|
54 |
+
maxCandidates=args.max_candidates,
|
55 |
+
unclipRatio=args.unclip_ratio
|
56 |
+
)
|
57 |
+
|
58 |
+
# If input is an image
|
59 |
+
if args.input is not None:
|
60 |
+
image = cv.imread(args.input)
|
61 |
+
image = cv.resize(image, [args.width, args.height])
|
62 |
+
|
63 |
+
# Inference
|
64 |
+
results = model.infer(image)
|
65 |
+
|
66 |
+
# Print results
|
67 |
+
print('{} texts detected.'.format(len(results[0])))
|
68 |
+
for idx, (bbox, score) in enumerate(zip(results[0], results[1])):
|
69 |
+
print('{}: {} {} {} {}, {:.2f}'.format(idx, bbox[0], bbox[1], bbox[2], bbox[3], score[0]))
|
70 |
+
|
71 |
+
# Draw results on the input image
|
72 |
+
image = visualize(image, results)
|
73 |
+
|
74 |
+
# Save results if save is true
|
75 |
+
if args.save:
|
76 |
+
print('Resutls saved to result.jpg\n')
|
77 |
+
cv.imwrite('result.jpg', image)
|
78 |
+
|
79 |
+
# Visualize results in a new window
|
80 |
+
if args.vis:
|
81 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
82 |
+
cv.imshow(args.input, image)
|
83 |
+
cv.waitKey(0)
|
84 |
+
else: # Omit input to call default camera
|
85 |
+
deviceId = 0
|
86 |
+
cap = cv.VideoCapture(deviceId)
|
87 |
+
|
88 |
+
tm = cv.TickMeter()
|
89 |
+
while cv.waitKey(1) < 0:
|
90 |
+
hasFrame, frame = cap.read()
|
91 |
+
if not hasFrame:
|
92 |
+
print('No frames grabbed!')
|
93 |
+
break
|
94 |
+
|
95 |
+
frame = cv.resize(frame, [args.width, args.height])
|
96 |
+
# Inference
|
97 |
+
tm.start()
|
98 |
+
results = model.infer(frame) # results is a tuple
|
99 |
+
tm.stop()
|
100 |
+
|
101 |
+
# Draw results on the input image
|
102 |
+
frame = visualize(frame, results, fps=tm.getFPS())
|
103 |
+
|
104 |
+
# Visualize results in a new Window
|
105 |
+
cv.imshow('{} Demo'.format(model.name), frame)
|
106 |
+
|
107 |
+
tm.reset()
|
models/text_recognition_crnn/LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
models/text_recognition_crnn/README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CRNN
|
2 |
+
|
3 |
+
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
|
4 |
+
|
5 |
+
`text_recognition_crnn.onnx` is trained using the code from https://github.com/zihaomu/deep-text-recognition-benchmark, which can only recognize english words. It is obtained from https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr and renamed from `CRNN_VGG_BiLSTM_CTC.onnx`. Visit https://docs.opencv.org/4.5.2/d9/d1e/tutorial_dnn_OCR.html for more information.
|
6 |
+
|
7 |
+
## Demo
|
8 |
+
|
9 |
+
***NOTE**: This demo use [text_detection_db](../text_detection_db) as text detector.
|
10 |
+
|
11 |
+
Run the following command to try the demo:
|
12 |
+
```shell
|
13 |
+
# detect on camera input
|
14 |
+
python demo.py
|
15 |
+
# detect on an image
|
16 |
+
python demo.py --input /path/to/image
|
17 |
+
```
|
18 |
+
|
19 |
+
## License
|
20 |
+
|
21 |
+
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
22 |
+
|
23 |
+
## Reference
|
24 |
+
|
25 |
+
- https://arxiv.org/abs/1507.05717
|
26 |
+
- https://github.com/bgshih/crnn
|
27 |
+
- https://github.com/meijieru/crnn.pytorch
|
28 |
+
- https://github.com/zihaomu/deep-text-recognition-benchmark
|
29 |
+
- https://docs.opencv.org/4.5.2/d9/d1e/tutorial_dnn_OCR.html
|
models/text_recognition_crnn/crnn.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import cv2 as cv
|
9 |
+
|
10 |
+
class CRNN:
|
11 |
+
def __init__(self, modelPath):
|
12 |
+
self._model = cv.dnn.readNet(modelPath)
|
13 |
+
self._inputSize = [100, 32] # Fixed
|
14 |
+
self._targetVertices = np.array([
|
15 |
+
[0, self._inputSize[1] - 1],
|
16 |
+
[0, 0],
|
17 |
+
[self._inputSize[0] - 1, 0],
|
18 |
+
[self._inputSize[0] - 1, self._inputSize[1] - 1]
|
19 |
+
], dtype=np.float32)
|
20 |
+
|
21 |
+
@property
|
22 |
+
def name(self):
|
23 |
+
return self.__class__.__name__
|
24 |
+
|
25 |
+
def setBackend(self, backend_id):
|
26 |
+
self._model.setPreferableBackend(backend_id)
|
27 |
+
|
28 |
+
def setTarget(self, target_id):
|
29 |
+
self._model.setPreferableTarget(target_id)
|
30 |
+
|
31 |
+
def _preprocess(self, image, rbbox):
|
32 |
+
# Remove conf, reshape and ensure all is np.float32
|
33 |
+
vertices = rbbox.reshape((4, 2)).astype(np.float32)
|
34 |
+
|
35 |
+
rotationMatrix = cv.getPerspectiveTransform(vertices, self._targetVertices)
|
36 |
+
cropped = cv.warpPerspective(image, rotationMatrix, self._inputSize)
|
37 |
+
|
38 |
+
cropped = cv.cvtColor(cropped, cv.COLOR_BGR2GRAY)
|
39 |
+
|
40 |
+
return cv.dnn.blobFromImage(cropped, size=self._inputSize, mean=127.5, scalefactor=1 / 127.5)
|
41 |
+
|
42 |
+
def infer(self, image, rbbox):
|
43 |
+
# Preprocess
|
44 |
+
inputBlob = self._preprocess(image, rbbox)
|
45 |
+
|
46 |
+
# Forward
|
47 |
+
self._model.setInput(inputBlob)
|
48 |
+
outputBlob = self._model.forward()
|
49 |
+
|
50 |
+
# Postprocess
|
51 |
+
results = self._postprocess(outputBlob)
|
52 |
+
|
53 |
+
return results
|
54 |
+
|
55 |
+
def _postprocess(self, outputBlob):
|
56 |
+
'''Decode charaters from outputBlob
|
57 |
+
'''
|
58 |
+
text = ""
|
59 |
+
alphabet = "0123456789abcdefghijklmnopqrstuvwxyz"
|
60 |
+
for i in range(outputBlob.shape[0]):
|
61 |
+
c = np.argmax(outputBlob[i][0])
|
62 |
+
if c != 0:
|
63 |
+
text += alphabet[c - 1]
|
64 |
+
else:
|
65 |
+
text += '-'
|
66 |
+
|
67 |
+
# adjacent same letters as well as background text must be removed to get the final output
|
68 |
+
char_list = []
|
69 |
+
for i in range(len(text)):
|
70 |
+
if text[i] != '-' and (not (i > 0 and text[i] == text[i - 1])):
|
71 |
+
char_list.append(text[i])
|
72 |
+
return ''.join(char_list)
|
models/text_recognition_crnn/demo.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is part of OpenCV Zoo project.
|
2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
+
#
|
4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
+
# Third party copyrights are property of their respective owners.
|
6 |
+
|
7 |
+
import sys
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import cv2 as cv
|
12 |
+
|
13 |
+
from crnn import CRNN
|
14 |
+
|
15 |
+
sys.path.append('../text_detection_db')
|
16 |
+
from db import DB
|
17 |
+
|
18 |
+
def str2bool(v):
|
19 |
+
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
20 |
+
return True
|
21 |
+
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
22 |
+
return False
|
23 |
+
else:
|
24 |
+
raise NotImplementedError
|
25 |
+
|
26 |
+
parser = argparse.ArgumentParser(
|
27 |
+
description="An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)")
|
28 |
+
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
|
29 |
+
parser.add_argument('--model', '-m', type=str, default='text_recognition_crnn.onnx', help='Path to the model.')
|
30 |
+
parser.add_argument('--width', type=int, default=736,
|
31 |
+
help='The width of input image being sent to the text detector.')
|
32 |
+
parser.add_argument('--height', type=int, default=736,
|
33 |
+
help='The height of input image being sent to the text detector.')
|
34 |
+
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
|
35 |
+
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
|
36 |
+
args = parser.parse_args()
|
37 |
+
|
38 |
+
def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2):
|
39 |
+
output = image.copy()
|
40 |
+
|
41 |
+
pts = np.array(boxes[0])
|
42 |
+
output = cv.polylines(output, pts, isClosed, color, thickness)
|
43 |
+
for box, text in zip(boxes[0], texts):
|
44 |
+
cv.putText(output, text, (box[1].astype(np.int32)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
45 |
+
return output
|
46 |
+
|
47 |
+
if __name__ == '__main__':
|
48 |
+
# Instantiate CRNN for text recognition
|
49 |
+
recognizer = CRNN(modelPath=args.model)
|
50 |
+
# Instantiate DB for text detection
|
51 |
+
detector = DB(modelPath='../text_detection_db/text_detection_db.onnx',
|
52 |
+
inputSize=[args.width, args.height],
|
53 |
+
binaryThreshold=0.3,
|
54 |
+
polygonThreshold=0.5,
|
55 |
+
maxCandidates=200,
|
56 |
+
unclipRatio=2.0
|
57 |
+
)
|
58 |
+
|
59 |
+
# If input is an image
|
60 |
+
if args.input is not None:
|
61 |
+
image = cv.imread(args.input)
|
62 |
+
image = cv.resize(image, [args.width, args.height])
|
63 |
+
|
64 |
+
# Inference
|
65 |
+
results = detector.infer(image)
|
66 |
+
texts = []
|
67 |
+
for box, score in zip(results[0], results[1]):
|
68 |
+
texts.append(
|
69 |
+
recognizer.infer(image, box.reshape(8))
|
70 |
+
)
|
71 |
+
|
72 |
+
# Draw results on the input image
|
73 |
+
image = visualize(image, results, texts)
|
74 |
+
|
75 |
+
# Save results if save is true
|
76 |
+
if args.save:
|
77 |
+
print('Resutls saved to result.jpg\n')
|
78 |
+
cv.imwrite('result.jpg', image)
|
79 |
+
|
80 |
+
# Visualize results in a new window
|
81 |
+
if args.vis:
|
82 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
83 |
+
cv.imshow(args.input, image)
|
84 |
+
cv.waitKey(0)
|
85 |
+
else: # Omit input to call default camera
|
86 |
+
deviceId = 0
|
87 |
+
cap = cv.VideoCapture(deviceId)
|
88 |
+
|
89 |
+
tm = cv.TickMeter()
|
90 |
+
while cv.waitKey(1) < 0:
|
91 |
+
hasFrame, frame = cap.read()
|
92 |
+
if not hasFrame:
|
93 |
+
print('No frames grabbed!')
|
94 |
+
break
|
95 |
+
|
96 |
+
frame = cv.resize(frame, [args.width, args.height])
|
97 |
+
# Inference of text detector
|
98 |
+
tm.start()
|
99 |
+
results = detector.infer(frame)
|
100 |
+
tm.stop()
|
101 |
+
latency_detector = tm.getFPS()
|
102 |
+
tm.reset()
|
103 |
+
# Inference of text recognizer
|
104 |
+
texts = []
|
105 |
+
tm.start()
|
106 |
+
for box, score in zip(results[0], results[1]):
|
107 |
+
result = np.hstack(
|
108 |
+
(box.reshape(8), score)
|
109 |
+
)
|
110 |
+
texts.append(
|
111 |
+
recognizer.infer(frame, result)
|
112 |
+
)
|
113 |
+
tm.stop()
|
114 |
+
latency_recognizer = tm.getFPS()
|
115 |
+
tm.reset()
|
116 |
+
|
117 |
+
# Draw results on the input image
|
118 |
+
frame = visualize(frame, results, texts)
|
119 |
+
|
120 |
+
cv.putText(frame, 'Latency - {}: {}'.format(detector.name, latency_detector), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
121 |
+
cv.putText(frame, 'Latency - {}: {}'.format(recognizer.name, latency_recognizer), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
122 |
+
|
123 |
+
# Visualize results in a new Window
|
124 |
+
cv.imshow('{} Demo'.format(recognizer.name), frame)
|