Wanli
commited on
Commit
·
43ea797
1
Parent(s):
ac5c83c
remove text detection DB (#221)
Browse files- benchmark/README.md +0 -26
- benchmark/color_table.svg +0 -0
- benchmark/config/text_detection_db.yaml +0 -20
- benchmark/table_config.yaml +0 -14
- models/__init__.py +0 -2
- models/text_detection_db/CMakeLists.txt +0 -29
- models/text_detection_db/LICENSE +0 -202
- models/text_detection_db/README.md +0 -58
- models/text_detection_db/db.py +0 -55
- models/text_detection_db/demo.cpp +0 -179
- models/text_detection_db/demo.py +0 -154
- models/text_recognition_crnn/demo.cpp +10 -6
- models/text_recognition_crnn/demo.py +4 -4
benchmark/README.md
CHANGED
@@ -102,8 +102,6 @@ mean median min input size model
|
|
102 |
26.37 33.51 21.48 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
103 |
10.07 9.68 8.16 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
104 |
1.19 1.30 1.07 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
105 |
-
80.97 80.06 73.20 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
106 |
-
80.73 85.47 72.06 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
107 |
23.86 24.16 23.26 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
108 |
23.94 23.76 23.26 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
109 |
26.89 24.78 23.26 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -161,8 +159,6 @@ mean median min input size model
|
|
161 |
381.72 394.15 308.62 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
162 |
194.47 195.18 191.67 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
163 |
5.90 5.90 5.81 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
164 |
-
2033.55 2454.13 1769.20 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
165 |
-
1896.61 1977.38 1769.20 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
166 |
462.50 463.67 456.98 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
167 |
462.97 464.33 456.98 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
168 |
470.79 464.35 456.98 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -221,8 +217,6 @@ mean median min input size model
|
|
221 |
343.35 344.56 333.41 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
222 |
89.93 91.58 88.28 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
223 |
5.69 5.72 5.66 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
224 |
-
1070.55 1072.14 1055.67 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
225 |
-
1071.56 1071.38 1055.67 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
226 |
238.89 238.22 236.97 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
227 |
238.41 240.39 236.97 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
228 |
276.96 240.19 236.97 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -261,8 +255,6 @@ mean median min input size model
|
|
261 |
38.16 37.33 37.10 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
262 |
91.65 91.98 89.90 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
263 |
91.40 92.74 89.76 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
264 |
-
223.24 224.30 216.37 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
265 |
-
223.03 222.28 216.37 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
266 |
112.35 111.90 109.99 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
267 |
112.68 114.63 109.93 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
268 |
183.96 112.72 109.93 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -296,8 +288,6 @@ mean median min input size model
|
|
296 |
153.89 153.96 153.43 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
297 |
44.29 44.03 43.62 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
298 |
91.28 92.89 89.79 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
299 |
-
254.78 256.13 245.60 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
300 |
-
254.98 255.20 245.60 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
301 |
427.53 428.67 425.63 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
302 |
427.79 429.28 425.63 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
303 |
414.07 429.46 387.26 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -350,8 +340,6 @@ mean median min input size model
|
|
350 |
333.03 346.65 322.37 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
351 |
322.95 315.22 303.07 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
352 |
127.16 173.93 99.77 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
353 |
-
975.49 977.45 952.43 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
354 |
-
970.16 970.83 928.66 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
355 |
238.38 241.90 233.21 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
356 |
238.05 236.53 232.05 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
357 |
262.58 238.47 232.05 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -437,8 +425,6 @@ mean median min input size model
|
|
437 |
521.46 521.66 520.28 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
438 |
541.50 544.02 520.28 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
439 |
134.02 136.01 132.06 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
440 |
-
1441.73 1442.80 1440.26 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
441 |
-
1436.45 1437.89 1430.58 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
442 |
360.26 360.82 359.13 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
443 |
361.22 361.51 359.13 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
444 |
427.85 362.87 359.13 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -477,8 +463,6 @@ mean median min input size model
|
|
477 |
5.17 5.26 5.09 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
478 |
16.45 16.44 16.31 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
479 |
5.58 5.57 5.54 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
480 |
-
17.15 17.18 16.83 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
481 |
-
17.95 18.61 16.83 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
482 |
```
|
483 |
|
484 |
### Toybrick RV1126
|
@@ -524,8 +508,6 @@ mean median min input size model
|
|
524 |
11131.81 11141.37 11080.20 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
525 |
7065.00 7461.37 3748.85 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
526 |
790.98 823.19 755.99 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
527 |
-
49331.32 49285.30 49210.67 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
528 |
-
49327.34 49489.22 49210.67 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
529 |
4422.65 4432.92 4376.19 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
530 |
4407.88 4405.92 4353.22 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
531 |
3782.89 4404.01 2682.63 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -584,8 +566,6 @@ mean median min input size model
|
|
584 |
146.02 145.89 139.08 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
585 |
157.60 158.88 139.08 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
586 |
41.26 42.74 40.08 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
587 |
-
384.47 401.25 360.71 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
588 |
-
377.91 381.15 336.30 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
589 |
110.51 111.04 107.73 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
590 |
110.67 111.54 107.73 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
591 |
131.52 111.76 107.73 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -644,8 +624,6 @@ mean median min input size model
|
|
644 |
646.25 647.89 631.03 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
645 |
182.57 185.52 179.71 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
646 |
9.93 9.97 9.82 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
647 |
-
1914.15 1913.70 1902.25 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
648 |
-
1920.07 1929.80 1902.25 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
649 |
495.04 493.75 489.41 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
650 |
493.63 491.89 489.41 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
651 |
598.94 496.42 489.41 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -704,8 +682,6 @@ mean median min input size model
|
|
704 |
14925.56 14926.90 14912.28 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
705 |
10507.96 10944.15 6974.74 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
706 |
1113.51 1124.83 1106.81 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
707 |
-
66015.47 65997.60 65993.81 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
708 |
-
66023.14 66034.99 65993.81 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
709 |
6094.40 6093.77 6091.85 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
710 |
6073.33 6076.77 6055.13 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
711 |
5547.32 6057.15 4653.05 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
@@ -763,8 +739,6 @@ mean median min input size model
|
|
763 |
7594.21 7590.75 7589.16 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
764 |
4884.04 5154.38 2715.94 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
765 |
548.41 550.86 546.09 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
766 |
-
34074.19 34077.97 34058.43 [640, 480] DB with ['text_detection_DB_IC15_resnet18_2021sep.onnx']
|
767 |
-
34073.67 34069.82 34054.29 [640, 480] DB with ['text_detection_DB_TD500_resnet18_2021sep.onnx']
|
768 |
3031.81 3031.79 3030.41 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
769 |
3031.41 3031.17 3029.99 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
770 |
2638.47 3031.01 1969.10 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
102 |
26.37 33.51 21.48 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
103 |
10.07 9.68 8.16 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
104 |
1.19 1.30 1.07 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
|
|
|
|
105 |
23.86 24.16 23.26 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
106 |
23.94 23.76 23.26 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
107 |
26.89 24.78 23.26 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
159 |
381.72 394.15 308.62 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
160 |
194.47 195.18 191.67 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
161 |
5.90 5.90 5.81 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
|
|
|
|
162 |
462.50 463.67 456.98 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
163 |
462.97 464.33 456.98 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
164 |
470.79 464.35 456.98 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
217 |
343.35 344.56 333.41 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
218 |
89.93 91.58 88.28 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
219 |
5.69 5.72 5.66 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
|
|
|
|
220 |
238.89 238.22 236.97 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
221 |
238.41 240.39 236.97 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
222 |
276.96 240.19 236.97 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
255 |
38.16 37.33 37.10 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
256 |
91.65 91.98 89.90 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
257 |
91.40 92.74 89.76 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
|
|
|
|
258 |
112.35 111.90 109.99 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
259 |
112.68 114.63 109.93 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
260 |
183.96 112.72 109.93 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
288 |
153.89 153.96 153.43 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
289 |
44.29 44.03 43.62 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
290 |
91.28 92.89 89.79 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
|
|
|
|
291 |
427.53 428.67 425.63 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
292 |
427.79 429.28 425.63 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
293 |
414.07 429.46 387.26 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
340 |
333.03 346.65 322.37 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
341 |
322.95 315.22 303.07 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
342 |
127.16 173.93 99.77 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
|
|
|
|
343 |
238.38 241.90 233.21 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
344 |
238.05 236.53 232.05 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
345 |
262.58 238.47 232.05 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
425 |
521.46 521.66 520.28 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
426 |
541.50 544.02 520.28 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
427 |
134.02 136.01 132.06 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
|
|
|
|
428 |
360.26 360.82 359.13 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
429 |
361.22 361.51 359.13 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
430 |
427.85 362.87 359.13 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
463 |
5.17 5.26 5.09 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
464 |
16.45 16.44 16.31 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
465 |
5.58 5.57 5.54 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
|
|
|
|
466 |
```
|
467 |
|
468 |
### Toybrick RV1126
|
|
|
508 |
11131.81 11141.37 11080.20 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
509 |
7065.00 7461.37 3748.85 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
510 |
790.98 823.19 755.99 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
|
|
|
|
511 |
4422.65 4432.92 4376.19 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
512 |
4407.88 4405.92 4353.22 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
513 |
3782.89 4404.01 2682.63 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
566 |
146.02 145.89 139.08 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
567 |
157.60 158.88 139.08 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
568 |
41.26 42.74 40.08 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
|
|
|
|
569 |
110.51 111.04 107.73 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
570 |
110.67 111.54 107.73 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
571 |
131.52 111.76 107.73 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
624 |
646.25 647.89 631.03 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
625 |
182.57 185.52 179.71 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
626 |
9.93 9.97 9.82 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
|
|
|
|
627 |
495.04 493.75 489.41 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
628 |
493.63 491.89 489.41 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
629 |
598.94 496.42 489.41 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
682 |
14925.56 14926.90 14912.28 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
683 |
10507.96 10944.15 6974.74 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
684 |
1113.51 1124.83 1106.81 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
|
|
|
|
685 |
6094.40 6093.77 6091.85 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
686 |
6073.33 6076.77 6055.13 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
687 |
5547.32 6057.15 4653.05 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
|
|
739 |
7594.21 7590.75 7589.16 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
740 |
4884.04 5154.38 2715.94 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
741 |
548.41 550.86 546.09 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
|
|
|
|
742 |
3031.81 3031.79 3030.41 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
743 |
3031.41 3031.17 3029.99 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
744 |
2638.47 3031.01 1969.10 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
benchmark/color_table.svg
CHANGED
|
|
benchmark/config/text_detection_db.yaml
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
Benchmark:
|
2 |
-
name: "Text Detection Benchmark"
|
3 |
-
type: "Detection"
|
4 |
-
data:
|
5 |
-
path: "data/text"
|
6 |
-
files: ["1.jpg", "2.jpg", "3.jpg"]
|
7 |
-
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
-
- [640, 480]
|
9 |
-
metric:
|
10 |
-
warmup: 30
|
11 |
-
repeat: 10
|
12 |
-
backend: "default"
|
13 |
-
target: "cpu"
|
14 |
-
|
15 |
-
Model:
|
16 |
-
name: "DB"
|
17 |
-
binaryThreshold: 0.3
|
18 |
-
polygonThreshold: 0.5
|
19 |
-
maxCandidates: 200
|
20 |
-
unclipRatio: 2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmark/table_config.yaml
CHANGED
@@ -59,20 +59,6 @@ Models:
|
|
59 |
acceptable_time: 2000
|
60 |
keyword: "object_detection_nanodet"
|
61 |
|
62 |
-
- name: "DB-IC15 (EN)"
|
63 |
-
task: "Text Detection"
|
64 |
-
input_size: "640x480"
|
65 |
-
folder: "text_detection_db"
|
66 |
-
acceptable_time: 2000
|
67 |
-
keyword: "text_detection_DB_IC15_resnet18"
|
68 |
-
|
69 |
-
- name: "DB-TD500 (EN&CN)"
|
70 |
-
task: "Text Detection"
|
71 |
-
input_size: "640x480"
|
72 |
-
folder: "text_detection_db"
|
73 |
-
acceptable_time: 2000
|
74 |
-
keyword: "text_detection_DB_TD500_resnet18"
|
75 |
-
|
76 |
- name: "PPOCRDet-CN"
|
77 |
task: "Text Detection"
|
78 |
input_size: "640x480"
|
|
|
59 |
acceptable_time: 2000
|
60 |
keyword: "object_detection_nanodet"
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
- name: "PPOCRDet-CN"
|
63 |
task: "Text Detection"
|
64 |
input_size: "640x480"
|
models/__init__.py
CHANGED
@@ -3,7 +3,6 @@ import glob
|
|
3 |
import os
|
4 |
|
5 |
from .face_detection_yunet.yunet import YuNet
|
6 |
-
from .text_detection_db.db import DB
|
7 |
from .text_recognition_crnn.crnn import CRNN
|
8 |
from .face_recognition_sface.sface import SFace
|
9 |
from .image_classification_ppresnet.ppresnet import PPResNet
|
@@ -78,7 +77,6 @@ class ModuleRegistery:
|
|
78 |
|
79 |
MODELS = ModuleRegistery('Models')
|
80 |
MODELS.register(YuNet)
|
81 |
-
MODELS.register(DB)
|
82 |
MODELS.register(CRNN)
|
83 |
MODELS.register(SFace)
|
84 |
MODELS.register(PPResNet)
|
|
|
3 |
import os
|
4 |
|
5 |
from .face_detection_yunet.yunet import YuNet
|
|
|
6 |
from .text_recognition_crnn.crnn import CRNN
|
7 |
from .face_recognition_sface.sface import SFace
|
8 |
from .image_classification_ppresnet.ppresnet import PPResNet
|
|
|
77 |
|
78 |
MODELS = ModuleRegistery('Models')
|
79 |
MODELS.register(YuNet)
|
|
|
80 |
MODELS.register(CRNN)
|
81 |
MODELS.register(SFace)
|
82 |
MODELS.register(PPResNet)
|
models/text_detection_db/CMakeLists.txt
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
cmake_minimum_required(VERSION 3.24)
|
2 |
-
set(project_name "opencv_zoo_text_detection_db")
|
3 |
-
|
4 |
-
PROJECT (${project_name})
|
5 |
-
|
6 |
-
set(OPENCV_VERSION "4.8.0")
|
7 |
-
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
8 |
-
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
9 |
-
# Find OpenCV, you may need to set OpenCV_DIR variable
|
10 |
-
# to the absolute path to the directory containing OpenCVConfig.cmake file
|
11 |
-
# via the command line or GUI
|
12 |
-
|
13 |
-
file(GLOB SourceFile
|
14 |
-
"demo.cpp")
|
15 |
-
# If the package has been found, several variables will
|
16 |
-
# be set, you can find the full list with descriptions
|
17 |
-
# in the OpenCVConfig.cmake file.
|
18 |
-
# Print some message showing some of them
|
19 |
-
message(STATUS "OpenCV library status:")
|
20 |
-
message(STATUS " config: ${OpenCV_DIR}")
|
21 |
-
message(STATUS " version: ${OpenCV_VERSION}")
|
22 |
-
message(STATUS " libraries: ${OpenCV_LIBS}")
|
23 |
-
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
|
24 |
-
|
25 |
-
# Declare the executable target built from your sources
|
26 |
-
add_executable(${project_name} ${SourceFile})
|
27 |
-
|
28 |
-
# Link your application with OpenCV libraries
|
29 |
-
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/text_detection_db/LICENSE
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
|
2 |
-
Apache License
|
3 |
-
Version 2.0, January 2004
|
4 |
-
http://www.apache.org/licenses/
|
5 |
-
|
6 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
-
|
8 |
-
1. Definitions.
|
9 |
-
|
10 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
-
|
13 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
-
the copyright owner that is granting the License.
|
15 |
-
|
16 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
-
other entities that control, are controlled by, or are under common
|
18 |
-
control with that entity. For the purposes of this definition,
|
19 |
-
"control" means (i) the power, direct or indirect, to cause the
|
20 |
-
direction or management of such entity, whether by contract or
|
21 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
-
|
24 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
-
exercising permissions granted by this License.
|
26 |
-
|
27 |
-
"Source" form shall mean the preferred form for making modifications,
|
28 |
-
including but not limited to software source code, documentation
|
29 |
-
source, and configuration files.
|
30 |
-
|
31 |
-
"Object" form shall mean any form resulting from mechanical
|
32 |
-
transformation or translation of a Source form, including but
|
33 |
-
not limited to compiled object code, generated documentation,
|
34 |
-
and conversions to other media types.
|
35 |
-
|
36 |
-
"Work" shall mean the work of authorship, whether in Source or
|
37 |
-
Object form, made available under the License, as indicated by a
|
38 |
-
copyright notice that is included in or attached to the work
|
39 |
-
(an example is provided in the Appendix below).
|
40 |
-
|
41 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
-
form, that is based on (or derived from) the Work and for which the
|
43 |
-
editorial revisions, annotations, elaborations, or other modifications
|
44 |
-
represent, as a whole, an original work of authorship. For the purposes
|
45 |
-
of this License, Derivative Works shall not include works that remain
|
46 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
-
the Work and Derivative Works thereof.
|
48 |
-
|
49 |
-
"Contribution" shall mean any work of authorship, including
|
50 |
-
the original version of the Work and any modifications or additions
|
51 |
-
to that Work or Derivative Works thereof, that is intentionally
|
52 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
-
means any form of electronic, verbal, or written communication sent
|
56 |
-
to the Licensor or its representatives, including but not limited to
|
57 |
-
communication on electronic mailing lists, source code control systems,
|
58 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
-
Licensor for the purpose of discussing and improving the Work, but
|
60 |
-
excluding communication that is conspicuously marked or otherwise
|
61 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
-
|
63 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
-
on behalf of whom a Contribution has been received by Licensor and
|
65 |
-
subsequently incorporated within the Work.
|
66 |
-
|
67 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
-
this License, each Contributor hereby grants to You a perpetual,
|
69 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
-
copyright license to reproduce, prepare Derivative Works of,
|
71 |
-
publicly display, publicly perform, sublicense, and distribute the
|
72 |
-
Work and such Derivative Works in Source or Object form.
|
73 |
-
|
74 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
-
this License, each Contributor hereby grants to You a perpetual,
|
76 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
-
(except as stated in this section) patent license to make, have made,
|
78 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
-
where such license applies only to those patent claims licensable
|
80 |
-
by such Contributor that are necessarily infringed by their
|
81 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
-
with the Work to which such Contribution(s) was submitted. If You
|
83 |
-
institute patent litigation against any entity (including a
|
84 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
-
or a Contribution incorporated within the Work constitutes direct
|
86 |
-
or contributory patent infringement, then any patent licenses
|
87 |
-
granted to You under this License for that Work shall terminate
|
88 |
-
as of the date such litigation is filed.
|
89 |
-
|
90 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
-
Work or Derivative Works thereof in any medium, with or without
|
92 |
-
modifications, and in Source or Object form, provided that You
|
93 |
-
meet the following conditions:
|
94 |
-
|
95 |
-
(a) You must give any other recipients of the Work or
|
96 |
-
Derivative Works a copy of this License; and
|
97 |
-
|
98 |
-
(b) You must cause any modified files to carry prominent notices
|
99 |
-
stating that You changed the files; and
|
100 |
-
|
101 |
-
(c) You must retain, in the Source form of any Derivative Works
|
102 |
-
that You distribute, all copyright, patent, trademark, and
|
103 |
-
attribution notices from the Source form of the Work,
|
104 |
-
excluding those notices that do not pertain to any part of
|
105 |
-
the Derivative Works; and
|
106 |
-
|
107 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
-
distribution, then any Derivative Works that You distribute must
|
109 |
-
include a readable copy of the attribution notices contained
|
110 |
-
within such NOTICE file, excluding those notices that do not
|
111 |
-
pertain to any part of the Derivative Works, in at least one
|
112 |
-
of the following places: within a NOTICE text file distributed
|
113 |
-
as part of the Derivative Works; within the Source form or
|
114 |
-
documentation, if provided along with the Derivative Works; or,
|
115 |
-
within a display generated by the Derivative Works, if and
|
116 |
-
wherever such third-party notices normally appear. The contents
|
117 |
-
of the NOTICE file are for informational purposes only and
|
118 |
-
do not modify the License. You may add Your own attribution
|
119 |
-
notices within Derivative Works that You distribute, alongside
|
120 |
-
or as an addendum to the NOTICE text from the Work, provided
|
121 |
-
that such additional attribution notices cannot be construed
|
122 |
-
as modifying the License.
|
123 |
-
|
124 |
-
You may add Your own copyright statement to Your modifications and
|
125 |
-
may provide additional or different license terms and conditions
|
126 |
-
for use, reproduction, or distribution of Your modifications, or
|
127 |
-
for any such Derivative Works as a whole, provided Your use,
|
128 |
-
reproduction, and distribution of the Work otherwise complies with
|
129 |
-
the conditions stated in this License.
|
130 |
-
|
131 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
-
any Contribution intentionally submitted for inclusion in the Work
|
133 |
-
by You to the Licensor shall be under the terms and conditions of
|
134 |
-
this License, without any additional terms or conditions.
|
135 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
-
the terms of any separate license agreement you may have executed
|
137 |
-
with Licensor regarding such Contributions.
|
138 |
-
|
139 |
-
6. Trademarks. This License does not grant permission to use the trade
|
140 |
-
names, trademarks, service marks, or product names of the Licensor,
|
141 |
-
except as required for reasonable and customary use in describing the
|
142 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
-
|
144 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
-
agreed to in writing, Licensor provides the Work (and each
|
146 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
-
implied, including, without limitation, any warranties or conditions
|
149 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
-
appropriateness of using or redistributing the Work and assume any
|
152 |
-
risks associated with Your exercise of permissions under this License.
|
153 |
-
|
154 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
-
whether in tort (including negligence), contract, or otherwise,
|
156 |
-
unless required by applicable law (such as deliberate and grossly
|
157 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
-
liable to You for damages, including any direct, indirect, special,
|
159 |
-
incidental, or consequential damages of any character arising as a
|
160 |
-
result of this License or out of the use or inability to use the
|
161 |
-
Work (including but not limited to damages for loss of goodwill,
|
162 |
-
work stoppage, computer failure or malfunction, or any and all
|
163 |
-
other commercial damages or losses), even if such Contributor
|
164 |
-
has been advised of the possibility of such damages.
|
165 |
-
|
166 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
-
or other liability obligations and/or rights consistent with this
|
170 |
-
License. However, in accepting such obligations, You may act only
|
171 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
-
of any other Contributor, and only if You agree to indemnify,
|
173 |
-
defend, and hold each Contributor harmless for any liability
|
174 |
-
incurred by, or claims asserted against, such Contributor by reason
|
175 |
-
of your accepting any such warranty or additional liability.
|
176 |
-
|
177 |
-
END OF TERMS AND CONDITIONS
|
178 |
-
|
179 |
-
APPENDIX: How to apply the Apache License to your work.
|
180 |
-
|
181 |
-
To apply the Apache License to your work, attach the following
|
182 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
-
replaced with your own identifying information. (Don't include
|
184 |
-
the brackets!) The text should be enclosed in the appropriate
|
185 |
-
comment syntax for the file format. We also recommend that a
|
186 |
-
file or class name and description of purpose be included on the
|
187 |
-
same "printed page" as the copyright notice for easier
|
188 |
-
identification within third-party archives.
|
189 |
-
|
190 |
-
Copyright [yyyy] [name of copyright owner]
|
191 |
-
|
192 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
-
you may not use this file except in compliance with the License.
|
194 |
-
You may obtain a copy of the License at
|
195 |
-
|
196 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
-
|
198 |
-
Unless required by applicable law or agreed to in writing, software
|
199 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
-
See the License for the specific language governing permissions and
|
202 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/text_detection_db/README.md
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
# DB
|
2 |
-
|
3 |
-
Real-time Scene Text Detection with Differentiable Binarization
|
4 |
-
|
5 |
-
Note:
|
6 |
-
|
7 |
-
- Models source: [here](https://drive.google.com/drive/folders/1qzNCHfUJOS0NEUOIKn69eCtxdlNPpWbq).
|
8 |
-
- `IC15` in the filename means the model is trained on [IC15 dataset](https://rrc.cvc.uab.es/?ch=4&com=introduction), which can detect English text instances only.
|
9 |
-
- `TD500` in the filename means the model is trained on [TD500 dataset](http://www.iapr-tc11.org/mediawiki/index.php/MSRA_Text_Detection_500_Database_(MSRA-TD500)), which can detect both English & Chinese instances.
|
10 |
-
- Visit https://docs.opencv.org/master/d4/d43/tutorial_dnn_text_spotting.html for more information.
|
11 |
-
|
12 |
-
## Demo
|
13 |
-
|
14 |
-
### Python
|
15 |
-
|
16 |
-
Run the following command to try the demo:
|
17 |
-
|
18 |
-
```shell
|
19 |
-
# detect on camera input
|
20 |
-
python demo.py
|
21 |
-
# detect on an image
|
22 |
-
python demo.py --input /path/to/image -v
|
23 |
-
|
24 |
-
# get help regarding various parameters
|
25 |
-
python demo.py --help
|
26 |
-
```
|
27 |
-
|
28 |
-
### C++
|
29 |
-
|
30 |
-
Install latest OpenCV and CMake >= 3.24.0 to get started with:
|
31 |
-
|
32 |
-
```shell
|
33 |
-
# A typical and default installation path of OpenCV is /usr/local
|
34 |
-
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
35 |
-
cmake --build build
|
36 |
-
# detect on camera input
|
37 |
-
./build/opencv_zoo_text_detection_db -m=/path/to/model
|
38 |
-
# detect on an image
|
39 |
-
./build/opencv_zoo_text_detection_db -m=/path/to/model -i=/path/to/image -v
|
40 |
-
# get help messages
|
41 |
-
./build/opencv_zoo_text_detection_db -h
|
42 |
-
```
|
43 |
-
|
44 |
-
### Example outputs
|
45 |
-
|
46 |
-

|
47 |
-
|
48 |
-

|
49 |
-
|
50 |
-
## License
|
51 |
-
|
52 |
-
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
53 |
-
|
54 |
-
## Reference
|
55 |
-
|
56 |
-
- https://arxiv.org/abs/1911.08947
|
57 |
-
- https://github.com/MhLiao/DB
|
58 |
-
- https://docs.opencv.org/master/d4/d43/tutorial_dnn_text_spotting.html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/text_detection_db/db.py
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
# This file is part of OpenCV Zoo project.
|
2 |
-
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
-
#
|
4 |
-
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
-
# Third party copyrights are property of their respective owners.
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import cv2 as cv
|
9 |
-
|
10 |
-
class DB:
|
11 |
-
def __init__(self, modelPath, inputSize=[736, 736], binaryThreshold=0.3, polygonThreshold=0.5, maxCandidates=200, unclipRatio=2.0, backendId=0, targetId=0):
|
12 |
-
self._modelPath = modelPath
|
13 |
-
self._model = cv.dnn_TextDetectionModel_DB(
|
14 |
-
cv.dnn.readNet(self._modelPath)
|
15 |
-
)
|
16 |
-
|
17 |
-
self._inputSize = tuple(inputSize) # (w, h)
|
18 |
-
self._inputHeight = inputSize[0]
|
19 |
-
self._inputWidth = inputSize[1]
|
20 |
-
self._binaryThreshold = binaryThreshold
|
21 |
-
self._polygonThreshold = polygonThreshold
|
22 |
-
self._maxCandidates = maxCandidates
|
23 |
-
self._unclipRatio = unclipRatio
|
24 |
-
self._backendId = backendId
|
25 |
-
self._targetId = targetId
|
26 |
-
|
27 |
-
self._model.setPreferableBackend(self._backendId)
|
28 |
-
self._model.setPreferableTarget(self._targetId)
|
29 |
-
|
30 |
-
self._model.setBinaryThreshold(self._binaryThreshold)
|
31 |
-
self._model.setPolygonThreshold(self._polygonThreshold)
|
32 |
-
self._model.setUnclipRatio(self._unclipRatio)
|
33 |
-
self._model.setMaxCandidates(self._maxCandidates)
|
34 |
-
|
35 |
-
self._model.setInputParams(1.0/255.0, self._inputSize, (122.67891434, 116.66876762, 104.00698793))
|
36 |
-
|
37 |
-
@property
|
38 |
-
def name(self):
|
39 |
-
return self.__class__.__name__
|
40 |
-
|
41 |
-
def setBackendAndTarget(self, backendId, targetId):
|
42 |
-
self._backendId = backendId
|
43 |
-
self._targetId = targetId
|
44 |
-
self._model.setPreferableBackend(self._backendId)
|
45 |
-
self._model.setPreferableTarget(self._targetId)
|
46 |
-
|
47 |
-
def setInputSize(self, input_size):
|
48 |
-
self._inputSize = tuple(input_size)
|
49 |
-
self._model.setInputParams(1.0/255.0, self._inputSize, (122.67891434, 116.66876762, 104.00698793))
|
50 |
-
|
51 |
-
def infer(self, image):
|
52 |
-
assert image.shape[0] == self._inputSize[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self._inputSize[1])
|
53 |
-
assert image.shape[1] == self._inputSize[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self._inputSize[0])
|
54 |
-
|
55 |
-
return self._model.detect(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/text_detection_db/demo.cpp
DELETED
@@ -1,179 +0,0 @@
|
|
1 |
-
#include <iostream>
|
2 |
-
|
3 |
-
#include <opencv2/dnn.hpp>
|
4 |
-
#include <opencv2/imgproc.hpp>
|
5 |
-
#include <opencv2/highgui.hpp>
|
6 |
-
|
7 |
-
using namespace std;
|
8 |
-
using namespace cv;
|
9 |
-
using namespace dnn;
|
10 |
-
|
11 |
-
vector< pair<cv::dnn::Backend, cv::dnn::Target> > backendTargetPairs = {
|
12 |
-
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_OPENCV, dnn::DNN_TARGET_CPU),
|
13 |
-
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA),
|
14 |
-
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA_FP16),
|
15 |
-
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_TIMVX, dnn::DNN_TARGET_NPU),
|
16 |
-
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CANN, dnn::DNN_TARGET_NPU)};
|
17 |
-
|
18 |
-
|
19 |
-
std::string keys =
|
20 |
-
"{ help h | | Print help message. }"
|
21 |
-
"{ model m | text_detection_DB_IC15_resnet18_2021sep.onnx | Usage: Set model type, defaults to text_detection_DB_IC15_resnet18_2021sep.onnx }"
|
22 |
-
"{ input i | | Usage: Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
23 |
-
"{ width | 736 | Usage: Resize input image to certain width, default = 736. It should be multiple by 32.}"
|
24 |
-
"{ height | 736 | Usage: Resize input image to certain height, default = 736. It should be multiple by 32.}"
|
25 |
-
"{ binary_threshold | 0.3 | Usage: Threshold of the binary map, default = 0.3.}"
|
26 |
-
"{ polygon_threshold | 0.5 | Usage: Threshold of polygons, default = 0.5.}"
|
27 |
-
"{ max_candidates | 200 | Usage: Set maximum number of polygon candidates, default = 200.}"
|
28 |
-
"{ unclip_ratio | 2.0 | Usage: The unclip ratio of the detected text region, which determines the output size, default = 2.0.}"
|
29 |
-
"{ save s | true | Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.}"
|
30 |
-
"{ viz v | true | Usage: Specify to open a new window to show results. Invalid in case of camera input.}"
|
31 |
-
"{ backend bt | 0 | Choose one of computation backends: "
|
32 |
-
"0: (default) OpenCV implementation + CPU, "
|
33 |
-
"1: CUDA + GPU (CUDA), "
|
34 |
-
"2: CUDA + GPU (CUDA FP16), "
|
35 |
-
"3: TIM-VX + NPU, "
|
36 |
-
"4: CANN + NPU}";
|
37 |
-
|
38 |
-
|
39 |
-
class DB {
|
40 |
-
public:
|
41 |
-
|
42 |
-
DB(string modPath, Size inSize = Size(736, 736), float binThresh = 0.3,
|
43 |
-
float polyThresh = 0.5, int maxCand = 200, double unRatio = 2.0,
|
44 |
-
dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) : modelPath(modPath), inputSize(inSize), binaryThreshold(binThresh),
|
45 |
-
polygonThreshold(polyThresh), maxCandidates(maxCand), unclipRatio(unRatio),
|
46 |
-
backendId(bId), targetId(tId)
|
47 |
-
{
|
48 |
-
this->model = TextDetectionModel_DB(readNet(modelPath));
|
49 |
-
this->model.setPreferableBackend(backendId);
|
50 |
-
this->model.setPreferableTarget(targetId);
|
51 |
-
|
52 |
-
this->model.setBinaryThreshold(binaryThreshold);
|
53 |
-
this->model.setPolygonThreshold(polygonThreshold);
|
54 |
-
this->model.setUnclipRatio(unclipRatio);
|
55 |
-
this->model.setMaxCandidates(maxCandidates);
|
56 |
-
|
57 |
-
this->model.setInputParams(1.0 / 255.0, inputSize, Scalar(122.67891434, 116.66876762, 104.00698793));
|
58 |
-
}
|
59 |
-
pair< vector<vector<Point>>, vector<float> > infer(Mat image) {
|
60 |
-
CV_Assert(image.rows == this->inputSize.height && "height of input image != net input size ");
|
61 |
-
CV_Assert(image.cols == this->inputSize.width && "width of input image != net input size ");
|
62 |
-
vector<vector<Point>> pt;
|
63 |
-
vector<float> confidence;
|
64 |
-
this->model.detect(image, pt, confidence);
|
65 |
-
return make_pair< vector<vector<Point>> &, vector< float > &>(pt, confidence);
|
66 |
-
}
|
67 |
-
|
68 |
-
private:
|
69 |
-
string modelPath;
|
70 |
-
TextDetectionModel_DB model;
|
71 |
-
Size inputSize;
|
72 |
-
float binaryThreshold;
|
73 |
-
float polygonThreshold;
|
74 |
-
int maxCandidates;
|
75 |
-
double unclipRatio;
|
76 |
-
dnn::Backend backendId;
|
77 |
-
dnn::Target targetId;
|
78 |
-
|
79 |
-
};
|
80 |
-
|
81 |
-
Mat visualize(Mat image, pair< vector<vector<Point>>, vector<float> >&results, double fps=-1, Scalar boxColor=Scalar(0, 255, 0), Scalar textColor=Scalar(0, 0, 255), bool isClosed=true, int thickness=2)
|
82 |
-
{
|
83 |
-
Mat output;
|
84 |
-
image.copyTo(output);
|
85 |
-
if (fps > 0)
|
86 |
-
putText(output, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, textColor);
|
87 |
-
polylines(output, results.first, isClosed, boxColor, thickness);
|
88 |
-
return output;
|
89 |
-
}
|
90 |
-
|
91 |
-
int main(int argc, char** argv)
|
92 |
-
{
|
93 |
-
CommandLineParser parser(argc, argv, keys);
|
94 |
-
|
95 |
-
parser.about("Use this program to run Real-time Scene Text Detection with Differentiable Binarization in opencv Zoo using OpenCV.");
|
96 |
-
if (parser.has("help"))
|
97 |
-
{
|
98 |
-
parser.printMessage();
|
99 |
-
return 0;
|
100 |
-
}
|
101 |
-
|
102 |
-
int backendTargetid = parser.get<int>("backend");
|
103 |
-
String modelName = parser.get<String>("model");
|
104 |
-
|
105 |
-
if (modelName.empty())
|
106 |
-
{
|
107 |
-
CV_Error(Error::StsError, "Model file " + modelName + " not found");
|
108 |
-
}
|
109 |
-
|
110 |
-
Size inpSize(parser.get<int>("width"), parser.get<int>("height"));
|
111 |
-
float binThresh = parser.get<float>("binary_threshold");
|
112 |
-
float polyThresh = parser.get<float>("polygon_threshold");
|
113 |
-
int maxCand = parser.get<int>("max_candidates");
|
114 |
-
double unRatio = parser.get<float>("unclip_ratio");
|
115 |
-
bool save = parser.get<bool>("save");
|
116 |
-
bool viz = parser.get<float>("viz");
|
117 |
-
|
118 |
-
DB model(modelName, inpSize, binThresh, polyThresh, maxCand, unRatio, backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
|
119 |
-
|
120 |
-
//! [Open a video file or an image file or a camera stream]
|
121 |
-
VideoCapture cap;
|
122 |
-
if (parser.has("input"))
|
123 |
-
cap.open(parser.get<String>("input"));
|
124 |
-
else
|
125 |
-
cap.open(0);
|
126 |
-
if (!cap.isOpened())
|
127 |
-
CV_Error(Error::StsError, "Cannot opend video or file");
|
128 |
-
Mat originalImage;
|
129 |
-
static const std::string kWinName = modelName;
|
130 |
-
while (waitKey(1) < 0)
|
131 |
-
{
|
132 |
-
cap >> originalImage;
|
133 |
-
if (originalImage.empty())
|
134 |
-
{
|
135 |
-
cout << "Frame is empty" << endl;
|
136 |
-
waitKey();
|
137 |
-
break;
|
138 |
-
}
|
139 |
-
int originalW = originalImage.cols;
|
140 |
-
int originalH = originalImage.rows;
|
141 |
-
double scaleHeight = originalH / double(inpSize.height);
|
142 |
-
double scaleWidth = originalW / double(inpSize.width);
|
143 |
-
Mat image;
|
144 |
-
resize(originalImage, image, inpSize);
|
145 |
-
|
146 |
-
// inference
|
147 |
-
TickMeter tm;
|
148 |
-
tm.start();
|
149 |
-
pair< vector<vector<Point>>, vector<float> > results = model.infer(image);
|
150 |
-
tm.stop();
|
151 |
-
auto x = results.first;
|
152 |
-
// Scale the results bounding box
|
153 |
-
for (auto &pts : results.first)
|
154 |
-
{
|
155 |
-
for (int i = 0; i < 4; i++)
|
156 |
-
{
|
157 |
-
pts[i].x = int(pts[i].x * scaleWidth);
|
158 |
-
pts[i].y = int(pts[i].y * scaleHeight);
|
159 |
-
}
|
160 |
-
}
|
161 |
-
originalImage = visualize(originalImage, results, tm.getFPS());
|
162 |
-
tm.reset();
|
163 |
-
if (parser.has("input"))
|
164 |
-
{
|
165 |
-
if (save)
|
166 |
-
{
|
167 |
-
cout << "Result image saved to result.jpg\n";
|
168 |
-
imwrite("result.jpg", originalImage);
|
169 |
-
}
|
170 |
-
if (viz)
|
171 |
-
imshow(kWinName, originalImage);
|
172 |
-
}
|
173 |
-
else
|
174 |
-
imshow(kWinName, originalImage);
|
175 |
-
}
|
176 |
-
return 0;
|
177 |
-
}
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/text_detection_db/demo.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
# This file is part of OpenCV Zoo project.
|
2 |
-
# It is subject to the license terms in the LICENSE file found in the same directory.
|
3 |
-
#
|
4 |
-
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
-
# Third party copyrights are property of their respective owners.
|
6 |
-
|
7 |
-
import argparse
|
8 |
-
|
9 |
-
import numpy as np
|
10 |
-
import cv2 as cv
|
11 |
-
|
12 |
-
from db import DB
|
13 |
-
|
14 |
-
# Check OpenCV version
|
15 |
-
assert cv.__version__ >= "4.8.0", \
|
16 |
-
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
17 |
-
|
18 |
-
# Valid combinations of backends and targets
|
19 |
-
backend_target_pairs = [
|
20 |
-
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
21 |
-
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
22 |
-
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
23 |
-
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
24 |
-
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
25 |
-
]
|
26 |
-
|
27 |
-
parser = argparse.ArgumentParser(description='Real-time Scene Text Detection with Differentiable Binarization (https://arxiv.org/abs/1911.08947).')
|
28 |
-
parser.add_argument('--input', '-i', type=str,
|
29 |
-
help='Usage: Set path to the input image. Omit for using default camera.')
|
30 |
-
parser.add_argument('--model', '-m', type=str, default='text_detection_DB_TD500_resnet18_2021sep.onnx',
|
31 |
-
help='Usage: Set model path, defaults to text_detection_DB_TD500_resnet18_2021sep.onnx.')
|
32 |
-
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
33 |
-
help='''Choose one of the backend-target pair to run this demo:
|
34 |
-
{:d}: (default) OpenCV implementation + CPU,
|
35 |
-
{:d}: CUDA + GPU (CUDA),
|
36 |
-
{:d}: CUDA + GPU (CUDA FP16),
|
37 |
-
{:d}: TIM-VX + NPU,
|
38 |
-
{:d}: CANN + NPU
|
39 |
-
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
40 |
-
parser.add_argument('--width', type=int, default=736,
|
41 |
-
help='Usage: Resize input image to certain width, default = 736. It should be multiple by 32.')
|
42 |
-
parser.add_argument('--height', type=int, default=736,
|
43 |
-
help='Usage: Resize input image to certain height, default = 736. It should be multiple by 32.')
|
44 |
-
parser.add_argument('--binary_threshold', type=float, default=0.3,
|
45 |
-
help='Usage: Threshold of the binary map, default = 0.3.')
|
46 |
-
parser.add_argument('--polygon_threshold', type=float, default=0.5,
|
47 |
-
help='Usage: Threshold of polygons, default = 0.5.')
|
48 |
-
parser.add_argument('--max_candidates', type=int, default=200,
|
49 |
-
help='Usage: Set maximum number of polygon candidates, default = 200.')
|
50 |
-
parser.add_argument('--unclip_ratio', type=np.float64, default=2.0,
|
51 |
-
help=' Usage: The unclip ratio of the detected text region, which determines the output size, default = 2.0.')
|
52 |
-
parser.add_argument('--save', '-s', action='store_true',
|
53 |
-
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
|
54 |
-
parser.add_argument('--vis', '-v', action='store_true',
|
55 |
-
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
|
56 |
-
args = parser.parse_args()
|
57 |
-
|
58 |
-
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), isClosed=True, thickness=2, fps=None):
|
59 |
-
output = image.copy()
|
60 |
-
|
61 |
-
if fps is not None:
|
62 |
-
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)
|
63 |
-
|
64 |
-
pts = np.array(results[0])
|
65 |
-
output = cv.polylines(output, pts, isClosed, box_color, thickness)
|
66 |
-
|
67 |
-
return output
|
68 |
-
|
69 |
-
if __name__ == '__main__':
|
70 |
-
backend_id = backend_target_pairs[args.backend_target][0]
|
71 |
-
target_id = backend_target_pairs[args.backend_target][1]
|
72 |
-
|
73 |
-
# Instantiate DB
|
74 |
-
model = DB(modelPath=args.model,
|
75 |
-
inputSize=[args.width, args.height],
|
76 |
-
binaryThreshold=args.binary_threshold,
|
77 |
-
polygonThreshold=args.polygon_threshold,
|
78 |
-
maxCandidates=args.max_candidates,
|
79 |
-
unclipRatio=args.unclip_ratio,
|
80 |
-
backendId=backend_id,
|
81 |
-
targetId=target_id)
|
82 |
-
|
83 |
-
# If input is an image
|
84 |
-
if args.input is not None:
|
85 |
-
original_image = cv.imread(args.input)
|
86 |
-
original_w = original_image.shape[1]
|
87 |
-
original_h = original_image.shape[0]
|
88 |
-
scaleHeight = original_h / args.height
|
89 |
-
scaleWidth = original_w / args.width
|
90 |
-
image = cv.resize(original_image, [args.width, args.height])
|
91 |
-
|
92 |
-
# Inference
|
93 |
-
results = model.infer(image)
|
94 |
-
|
95 |
-
# Scale the results bounding box
|
96 |
-
for i in range(len(results[0])):
|
97 |
-
for j in range(4):
|
98 |
-
box = results[0][i][j]
|
99 |
-
results[0][i][j][0] = box[0] * scaleWidth
|
100 |
-
results[0][i][j][1] = box[1] * scaleHeight
|
101 |
-
|
102 |
-
# Print results
|
103 |
-
print('{} texts detected.'.format(len(results[0])))
|
104 |
-
for idx, (bbox, score) in enumerate(zip(results[0], results[1])):
|
105 |
-
print('{}: {} {} {} {}, {:.2f}'.format(idx, bbox[0], bbox[1], bbox[2], bbox[3], score))
|
106 |
-
|
107 |
-
# Draw results on the input image
|
108 |
-
original_image = visualize(original_image, results)
|
109 |
-
|
110 |
-
# Save results if save is true
|
111 |
-
if args.save:
|
112 |
-
print('Resutls saved to result.jpg\n')
|
113 |
-
cv.imwrite('result.jpg', original_image)
|
114 |
-
|
115 |
-
# Visualize results in a new window
|
116 |
-
if args.vis:
|
117 |
-
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
118 |
-
cv.imshow(args.input, original_image)
|
119 |
-
cv.waitKey(0)
|
120 |
-
else: # Omit input to call default camera
|
121 |
-
deviceId = 0
|
122 |
-
cap = cv.VideoCapture(deviceId)
|
123 |
-
|
124 |
-
tm = cv.TickMeter()
|
125 |
-
while cv.waitKey(1) < 0:
|
126 |
-
hasFrame, original_image = cap.read()
|
127 |
-
if not hasFrame:
|
128 |
-
print('No frames grabbed!')
|
129 |
-
break
|
130 |
-
|
131 |
-
original_w = original_image.shape[1]
|
132 |
-
original_h = original_image.shape[0]
|
133 |
-
scaleHeight = original_h / args.height
|
134 |
-
scaleWidth = original_w / args.width
|
135 |
-
frame = cv.resize(original_image, [args.width, args.height])
|
136 |
-
# Inference
|
137 |
-
tm.start()
|
138 |
-
results = model.infer(frame) # results is a tuple
|
139 |
-
tm.stop()
|
140 |
-
|
141 |
-
# Scale the results bounding box
|
142 |
-
for i in range(len(results[0])):
|
143 |
-
for j in range(4):
|
144 |
-
box = results[0][i][j]
|
145 |
-
results[0][i][j][0] = box[0] * scaleWidth
|
146 |
-
results[0][i][j][1] = box[1] * scaleHeight
|
147 |
-
|
148 |
-
# Draw results on the input image
|
149 |
-
original_image = visualize(original_image, results, fps=tm.getFPS())
|
150 |
-
|
151 |
-
# Visualize results in a new Window
|
152 |
-
cv.imshow('{} Demo'.format(model.name), original_image)
|
153 |
-
|
154 |
-
tm.reset()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/text_recognition_crnn/demo.cpp
CHANGED
@@ -41,10 +41,10 @@ std::string keys =
|
|
41 |
"4: CANN + NPU}";
|
42 |
|
43 |
|
44 |
-
class
|
45 |
public:
|
46 |
|
47 |
-
|
48 |
float polyThresh = 0.5, int maxCand = 200, double unRatio = 2.0,
|
49 |
dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) : modelPath(modPath), inputSize(inSize), binaryThreshold(binThresh),
|
50 |
polygonThreshold(polyThresh), maxCandidates(maxCand), unclipRatio(unRatio),
|
@@ -215,7 +215,7 @@ int main(int argc, char** argv)
|
|
215 |
bool save = parser.get<bool>("save");
|
216 |
bool viz = parser.get<float>("viz");
|
217 |
|
218 |
-
|
219 |
CRNN recognizer(modelPath, backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
|
220 |
//! [Open a video file or an image file or a camera stream]
|
221 |
VideoCapture cap;
|
@@ -232,9 +232,13 @@ int main(int argc, char** argv)
|
|
232 |
cap >> originalImage;
|
233 |
if (originalImage.empty())
|
234 |
{
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
238 |
}
|
239 |
int originalW = originalImage.cols;
|
240 |
int originalH = originalImage.rows;
|
|
|
41 |
"4: CANN + NPU}";
|
42 |
|
43 |
|
44 |
+
class PPOCRDet {
|
45 |
public:
|
46 |
|
47 |
+
PPOCRDet(string modPath, Size inSize = Size(736, 736), float binThresh = 0.3,
|
48 |
float polyThresh = 0.5, int maxCand = 200, double unRatio = 2.0,
|
49 |
dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) : modelPath(modPath), inputSize(inSize), binaryThreshold(binThresh),
|
50 |
polygonThreshold(polyThresh), maxCandidates(maxCand), unclipRatio(unRatio),
|
|
|
215 |
bool save = parser.get<bool>("save");
|
216 |
bool viz = parser.get<float>("viz");
|
217 |
|
218 |
+
PPOCRDet detector("../text_detection_ppocr/text_detection_en_ppocrv3_2023may.onnx", inpSize, binThresh, polyThresh, maxCand, unRatio, backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
|
219 |
CRNN recognizer(modelPath, backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
|
220 |
//! [Open a video file or an image file or a camera stream]
|
221 |
VideoCapture cap;
|
|
|
232 |
cap >> originalImage;
|
233 |
if (originalImage.empty())
|
234 |
{
|
235 |
+
if (parser.has("input"))
|
236 |
+
{
|
237 |
+
cout << "Frame is empty" << endl;
|
238 |
+
break;
|
239 |
+
}
|
240 |
+
else
|
241 |
+
continue;
|
242 |
}
|
243 |
int originalW = originalImage.cols;
|
244 |
int originalH = originalImage.rows;
|
models/text_recognition_crnn/demo.py
CHANGED
@@ -12,8 +12,8 @@ import cv2 as cv
|
|
12 |
|
13 |
from crnn import CRNN
|
14 |
|
15 |
-
sys.path.append('../
|
16 |
-
from
|
17 |
|
18 |
# Check OpenCV version
|
19 |
assert cv.__version__ >= "4.8.0", \
|
@@ -65,8 +65,8 @@ if __name__ == '__main__':
|
|
65 |
backend_id = backend_target_pairs[args.backend_target][0]
|
66 |
target_id = backend_target_pairs[args.backend_target][1]
|
67 |
|
68 |
-
# Instantiate
|
69 |
-
detector =
|
70 |
inputSize=[args.width, args.height],
|
71 |
binaryThreshold=0.3,
|
72 |
polygonThreshold=0.5,
|
|
|
12 |
|
13 |
from crnn import CRNN
|
14 |
|
15 |
+
sys.path.append('../text_detection_ppocr')
|
16 |
+
from ppocr_det import PPOCRDet
|
17 |
|
18 |
# Check OpenCV version
|
19 |
assert cv.__version__ >= "4.8.0", \
|
|
|
65 |
backend_id = backend_target_pairs[args.backend_target][0]
|
66 |
target_id = backend_target_pairs[args.backend_target][1]
|
67 |
|
68 |
+
# Instantiate PPOCRDet for text detection
|
69 |
+
detector = PPOCRDet(modelPath='../text_detection_ppocr/text_detection_en_ppocrv3_2023may.onnx',
|
70 |
inputSize=[args.width, args.height],
|
71 |
binaryThreshold=0.3,
|
72 |
polygonThreshold=0.5,
|