add benchmark results on Jetson Nano Orin (#224)
Browse files- benchmark/README.md +107 -7
- benchmark/color_table.svg +0 -0
- benchmark/table_config.yaml +8 -0
benchmark/README.md
CHANGED
|
@@ -813,28 +813,128 @@ mean median min input size model
|
|
| 813 |
126.64 125.09 110.45 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
|
| 814 |
```
|
| 815 |
|
| 816 |
-
|
| 817 |
|
| 818 |
-
|
|
|
|
|
|
|
| 819 |
|
| 820 |
CPU:
|
| 821 |
|
| 822 |
```
|
| 823 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 824 |
```
|
| 825 |
|
| 826 |
-
CUDA:
|
| 827 |
|
| 828 |
```
|
| 829 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 830 |
```
|
| 831 |
|
| 832 |
-
CUDA-FP16:
|
| 833 |
|
| 834 |
```
|
| 835 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 836 |
```
|
| 837 |
|
|
|
|
|
|
|
| 838 |
### Atlas 200I DK
|
| 839 |
|
| 840 |
CPU:
|
|
|
|
| 813 |
126.64 125.09 110.45 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
|
| 814 |
```
|
| 815 |
|
| 816 |
+
### Jetson Nano Orin
|
| 817 |
|
| 818 |
+
Specs: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
|
| 819 |
+
- CPU: 6-core Arm® Cortex®-A78AE v8.2 64-bit CPU, 1.5MB L2 + 4MB L3
|
| 820 |
+
- GPU: 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores, max freq 625MHz
|
| 821 |
|
| 822 |
CPU:
|
| 823 |
|
| 824 |
```
|
| 825 |
+
$ python3 benchmark.py --all
|
| 826 |
+
Benchmarking ...
|
| 827 |
+
backend=cv.dnn.DNN_BACKEND_OPENCV
|
| 828 |
+
target=cv.dnn.DNN_TARGET_CPU
|
| 829 |
+
mean median min input size model
|
| 830 |
+
2.59 2.62 2.50 [160, 120] YuNet with ['face_detection_yunet_2023mar.onnx']
|
| 831 |
+
2.98 2.97 2.50 [160, 120] YuNet with ['face_detection_yunet_2023mar_int8.onnx']
|
| 832 |
+
20.05 24.76 19.75 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
|
| 833 |
+
31.84 32.72 19.75 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
|
| 834 |
+
9.15 9.22 9.04 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
|
| 835 |
+
14.33 15.35 9.04 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
|
| 836 |
+
15.00 15.17 14.80 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
|
| 837 |
+
18.37 18.63 14.80 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
|
| 838 |
+
24.86 25.09 24.12 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
|
| 839 |
+
30.17 34.51 24.12 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
|
| 840 |
+
18.47 18.55 18.23 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
|
| 841 |
+
17.08 17.30 15.80 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
|
| 842 |
+
21.26 15.89 15.80 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
|
| 843 |
+
23.19 24.15 15.80 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
|
| 844 |
+
102.30 101.90 101.44 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
|
| 845 |
+
142.33 146.24 101.44 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
|
| 846 |
+
39.91 39.01 38.46 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 847 |
+
51.35 50.70 38.46 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
|
| 848 |
+
125.31 126.50 121.92 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 849 |
+
132.95 133.67 121.92 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 850 |
+
400.91 430.48 384.87 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 851 |
+
476.63 509.48 384.87 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 852 |
+
19.16 19.91 18.04 [1280, 720] VitTrack with ['object_tracking_vittrack_2023sep.onnx']
|
| 853 |
+
27.73 26.93 26.72 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 854 |
+
35.16 41.14 26.72 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 855 |
+
33.05 33.18 32.67 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
| 856 |
+
93.58 94.02 92.36 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
| 857 |
+
119.80 153.20 92.36 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
| 858 |
+
31.51 32.19 30.69 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
| 859 |
+
3.53 3.53 3.51 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
| 860 |
+
78.10 77.77 77.17 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
| 861 |
+
78.03 78.38 77.17 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
| 862 |
+
99.09 79.42 77.17 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
| 863 |
+
112.82 116.06 77.17 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
|
| 864 |
+
142.97 142.84 135.56 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
|
| 865 |
+
144.53 148.52 135.56 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
|
| 866 |
+
134.47 146.62 112.91 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
|
| 867 |
+
136.37 131.39 112.91 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
|
| 868 |
+
132.08 117.15 109.24 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
|
| 869 |
+
135.17 130.23 109.24 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
|
| 870 |
+
138.38 143.25 109.24 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
|
| 871 |
+
137.08 134.22 109.24 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
|
| 872 |
```
|
| 873 |
|
| 874 |
+
GPU (CUDA-FP32):
|
| 875 |
|
| 876 |
```
|
| 877 |
+
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 1
|
| 878 |
+
Benchmarking ...
|
| 879 |
+
backend=cv.dnn.DNN_BACKEND_CUDA
|
| 880 |
+
target=cv.dnn.DNN_TARGET_CUDA
|
| 881 |
+
mean median min input size model
|
| 882 |
+
5.23 5.27 5.17 [160, 120] YuNet with ['face_detection_yunet_2023mar.onnx']
|
| 883 |
+
7.59 7.62 7.55 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
|
| 884 |
+
8.48 8.46 8.37 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
|
| 885 |
+
12.29 13.04 11.11 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
|
| 886 |
+
12.91 13.28 12.79 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
|
| 887 |
+
8.41 8.42 8.35 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
|
| 888 |
+
9.36 9.43 8.35 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
|
| 889 |
+
32.58 32.71 31.11 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
|
| 890 |
+
16.33 16.08 16.04 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 891 |
+
24.46 24.35 24.01 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 892 |
+
103.28 103.41 102.37 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 893 |
+
19.75 19.78 19.10 [1280, 720] VitTrack with ['object_tracking_vittrack_2023sep.onnx']
|
| 894 |
+
10.84 10.76 10.75 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 895 |
+
14.50 14.50 14.36 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
| 896 |
+
23.53 23.36 23.16 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
| 897 |
+
26.54 27.22 25.99 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
| 898 |
+
27.49 27.80 26.97 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
| 899 |
+
27.53 27.75 26.95 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
| 900 |
+
15.66 16.30 15.41 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
|
| 901 |
+
15.91 15.80 15.41 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
|
| 902 |
+
13.58 16.70 9.48 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
|
| 903 |
```
|
| 904 |
|
| 905 |
+
GPU (CUDA-FP16):
|
| 906 |
|
| 907 |
```
|
| 908 |
+
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 2
|
| 909 |
+
Benchmarking ...
|
| 910 |
+
backend=cv.dnn.DNN_BACKEND_CUDA
|
| 911 |
+
target=cv.dnn.DNN_TARGET_CUDA_FP16
|
| 912 |
+
mean median min input size model
|
| 913 |
+
5.00 5.04 4.92 [160, 120] YuNet with ['face_detection_yunet_2023mar.onnx']
|
| 914 |
+
5.09 5.08 5.05 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
|
| 915 |
+
6.81 6.86 6.66 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
|
| 916 |
+
9.19 10.18 9.06 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
|
| 917 |
+
16.20 16.62 15.93 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
|
| 918 |
+
6.84 6.82 6.80 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
|
| 919 |
+
7.46 7.87 6.80 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
|
| 920 |
+
14.18 14.16 14.03 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
|
| 921 |
+
13.35 13.10 13.04 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 922 |
+
19.94 19.95 19.50 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 923 |
+
72.25 72.91 70.99 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 924 |
+
22.37 22.44 21.60 [1280, 720] VitTrack with ['object_tracking_vittrack_2023sep.onnx']
|
| 925 |
+
8.92 8.92 8.84 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 926 |
+
11.11 11.13 10.98 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
| 927 |
+
13.22 13.23 13.12 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
| 928 |
+
26.79 27.04 26.24 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
| 929 |
+
19.71 19.75 19.47 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
| 930 |
+
19.76 19.93 19.47 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
| 931 |
+
16.30 15.88 15.80 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
|
| 932 |
+
16.36 16.51 15.80 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
|
| 933 |
+
13.64 16.27 8.90 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
|
| 934 |
```
|
| 935 |
|
| 936 |
+
<!--
|
| 937 |
+
|
| 938 |
### Atlas 200I DK
|
| 939 |
|
| 940 |
CPU:
|
benchmark/color_table.svg
CHANGED
|
|
|
|
benchmark/table_config.yaml
CHANGED
|
@@ -198,6 +198,10 @@ Devices:
|
|
| 198 |
display_info: "Jetson Nano\nB01\nCPU"
|
| 199 |
platform: "CPU"
|
| 200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
- name: "Khadas VIM3"
|
| 202 |
display_info: "Khadas VIM3\nA311D\nCPU"
|
| 203 |
platform: "CPU"
|
|
@@ -214,6 +218,10 @@ Devices:
|
|
| 214 |
display_info: "Jetson Nano\nB01\nGPU"
|
| 215 |
platform: "GPU (CUDA-FP32)"
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
- name: "Khadas VIM3"
|
| 218 |
display_info: "Khadas VIM3\nA311D\nNPU"
|
| 219 |
platform: "NPU (TIMVX)"
|
|
|
|
| 198 |
display_info: "Jetson Nano\nB01\nCPU"
|
| 199 |
platform: "CPU"
|
| 200 |
|
| 201 |
+
- name: "Jetson Nano Orin"
|
| 202 |
+
display_info: "Jetson Nano\nOrin\nCPU"
|
| 203 |
+
platform: "CPU"
|
| 204 |
+
|
| 205 |
- name: "Khadas VIM3"
|
| 206 |
display_info: "Khadas VIM3\nA311D\nCPU"
|
| 207 |
platform: "CPU"
|
|
|
|
| 218 |
display_info: "Jetson Nano\nB01\nGPU"
|
| 219 |
platform: "GPU (CUDA-FP32)"
|
| 220 |
|
| 221 |
+
- name: "Jetson Nano Orin"
|
| 222 |
+
display_info: "Jetson Nano\nOrin\nGPU"
|
| 223 |
+
platform: "GPU (CUDA-FP32)"
|
| 224 |
+
|
| 225 |
- name: "Khadas VIM3"
|
| 226 |
display_info: "Khadas VIM3\nA311D\nNPU"
|
| 227 |
platform: "NPU (TIMVX)"
|