add benchmark results on Jetson Nano Orin (#224)
Browse files- benchmark/README.md +107 -7
- benchmark/color_table.svg +0 -0
- benchmark/table_config.yaml +8 -0
benchmark/README.md
CHANGED
@@ -813,28 +813,128 @@ mean median min input size model
|
|
813 |
126.64 125.09 110.45 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
|
814 |
```
|
815 |
|
816 |
-
|
817 |
|
818 |
-
|
|
|
|
|
819 |
|
820 |
CPU:
|
821 |
|
822 |
```
|
823 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
824 |
```
|
825 |
|
826 |
-
CUDA:
|
827 |
|
828 |
```
|
829 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
830 |
```
|
831 |
|
832 |
-
CUDA-FP16:
|
833 |
|
834 |
```
|
835 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
836 |
```
|
837 |
|
|
|
|
|
838 |
### Atlas 200I DK
|
839 |
|
840 |
CPU:
|
|
|
813 |
126.64 125.09 110.45 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
|
814 |
```
|
815 |
|
816 |
+
### Jetson Nano Orin
|
817 |
|
818 |
+
Specs: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
|
819 |
+
- CPU: 6-core Arm® Cortex®-A78AE v8.2 64-bit CPU, 1.5MB L2 + 4MB L3
|
820 |
+
- GPU: 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores, max freq 625MHz
|
821 |
|
822 |
CPU:
|
823 |
|
824 |
```
|
825 |
+
$ python3 benchmark.py --all
|
826 |
+
Benchmarking ...
|
827 |
+
backend=cv.dnn.DNN_BACKEND_OPENCV
|
828 |
+
target=cv.dnn.DNN_TARGET_CPU
|
829 |
+
mean median min input size model
|
830 |
+
2.59 2.62 2.50 [160, 120] YuNet with ['face_detection_yunet_2023mar.onnx']
|
831 |
+
2.98 2.97 2.50 [160, 120] YuNet with ['face_detection_yunet_2023mar_int8.onnx']
|
832 |
+
20.05 24.76 19.75 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
|
833 |
+
31.84 32.72 19.75 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
|
834 |
+
9.15 9.22 9.04 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
|
835 |
+
14.33 15.35 9.04 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
|
836 |
+
15.00 15.17 14.80 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
|
837 |
+
18.37 18.63 14.80 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
|
838 |
+
24.86 25.09 24.12 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
|
839 |
+
30.17 34.51 24.12 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
|
840 |
+
18.47 18.55 18.23 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
|
841 |
+
17.08 17.30 15.80 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
|
842 |
+
21.26 15.89 15.80 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
|
843 |
+
23.19 24.15 15.80 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
|
844 |
+
102.30 101.90 101.44 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
|
845 |
+
142.33 146.24 101.44 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
|
846 |
+
39.91 39.01 38.46 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
847 |
+
51.35 50.70 38.46 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
|
848 |
+
125.31 126.50 121.92 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
849 |
+
132.95 133.67 121.92 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
850 |
+
400.91 430.48 384.87 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
851 |
+
476.63 509.48 384.87 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
852 |
+
19.16 19.91 18.04 [1280, 720] VitTrack with ['object_tracking_vittrack_2023sep.onnx']
|
853 |
+
27.73 26.93 26.72 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
854 |
+
35.16 41.14 26.72 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
855 |
+
33.05 33.18 32.67 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
856 |
+
93.58 94.02 92.36 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
857 |
+
119.80 153.20 92.36 [128, 256] YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
|
858 |
+
31.51 32.19 30.69 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
859 |
+
3.53 3.53 3.51 [100, 100] WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
|
860 |
+
78.10 77.77 77.17 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
861 |
+
78.03 78.38 77.17 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
862 |
+
99.09 79.42 77.17 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
|
863 |
+
112.82 116.06 77.17 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
|
864 |
+
142.97 142.84 135.56 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
|
865 |
+
144.53 148.52 135.56 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
|
866 |
+
134.47 146.62 112.91 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
|
867 |
+
136.37 131.39 112.91 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
|
868 |
+
132.08 117.15 109.24 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
|
869 |
+
135.17 130.23 109.24 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
|
870 |
+
138.38 143.25 109.24 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
|
871 |
+
137.08 134.22 109.24 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
|
872 |
```
|
873 |
|
874 |
+
GPU (CUDA-FP32):
|
875 |
|
876 |
```
|
877 |
+
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 1
|
878 |
+
Benchmarking ...
|
879 |
+
backend=cv.dnn.DNN_BACKEND_CUDA
|
880 |
+
target=cv.dnn.DNN_TARGET_CUDA
|
881 |
+
mean median min input size model
|
882 |
+
5.23 5.27 5.17 [160, 120] YuNet with ['face_detection_yunet_2023mar.onnx']
|
883 |
+
7.59 7.62 7.55 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
|
884 |
+
8.48 8.46 8.37 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
|
885 |
+
12.29 13.04 11.11 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
|
886 |
+
12.91 13.28 12.79 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
|
887 |
+
8.41 8.42 8.35 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
|
888 |
+
9.36 9.43 8.35 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
|
889 |
+
32.58 32.71 31.11 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
|
890 |
+
16.33 16.08 16.04 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
891 |
+
24.46 24.35 24.01 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
892 |
+
103.28 103.41 102.37 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
893 |
+
19.75 19.78 19.10 [1280, 720] VitTrack with ['object_tracking_vittrack_2023sep.onnx']
|
894 |
+
10.84 10.76 10.75 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
895 |
+
14.50 14.50 14.36 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
896 |
+
23.53 23.36 23.16 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
897 |
+
26.54 27.22 25.99 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
898 |
+
27.49 27.80 26.97 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
899 |
+
27.53 27.75 26.95 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
900 |
+
15.66 16.30 15.41 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
|
901 |
+
15.91 15.80 15.41 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
|
902 |
+
13.58 16.70 9.48 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
|
903 |
```
|
904 |
|
905 |
+
GPU (CUDA-FP16):
|
906 |
|
907 |
```
|
908 |
+
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 2
|
909 |
+
Benchmarking ...
|
910 |
+
backend=cv.dnn.DNN_BACKEND_CUDA
|
911 |
+
target=cv.dnn.DNN_TARGET_CUDA_FP16
|
912 |
+
mean median min input size model
|
913 |
+
5.00 5.04 4.92 [160, 120] YuNet with ['face_detection_yunet_2023mar.onnx']
|
914 |
+
5.09 5.08 5.05 [150, 150] SFace with ['face_recognition_sface_2021dec.onnx']
|
915 |
+
6.81 6.86 6.66 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
|
916 |
+
9.19 10.18 9.06 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
|
917 |
+
16.20 16.62 15.93 [192, 192] PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
|
918 |
+
6.84 6.82 6.80 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
|
919 |
+
7.46 7.87 6.80 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
|
920 |
+
14.18 14.16 14.03 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
|
921 |
+
13.35 13.10 13.04 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
922 |
+
19.94 19.95 19.50 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
923 |
+
72.25 72.91 70.99 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
924 |
+
22.37 22.44 21.60 [1280, 720] VitTrack with ['object_tracking_vittrack_2023sep.onnx']
|
925 |
+
8.92 8.92 8.84 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
926 |
+
11.11 11.13 10.98 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
927 |
+
13.22 13.23 13.12 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
928 |
+
26.79 27.04 26.24 [256, 256] MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
|
929 |
+
19.71 19.75 19.47 [640, 480] PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
|
930 |
+
19.76 19.93 19.47 [640, 480] PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
|
931 |
+
16.30 15.88 15.80 [1280, 720] CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
|
932 |
+
16.36 16.51 15.80 [1280, 720] CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
|
933 |
+
13.64 16.27 8.90 [1280, 720] CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
|
934 |
```
|
935 |
|
936 |
+
<!--
|
937 |
+
|
938 |
### Atlas 200I DK
|
939 |
|
940 |
CPU:
|
benchmark/color_table.svg
CHANGED
|
|
benchmark/table_config.yaml
CHANGED
@@ -198,6 +198,10 @@ Devices:
|
|
198 |
display_info: "Jetson Nano\nB01\nCPU"
|
199 |
platform: "CPU"
|
200 |
|
|
|
|
|
|
|
|
|
201 |
- name: "Khadas VIM3"
|
202 |
display_info: "Khadas VIM3\nA311D\nCPU"
|
203 |
platform: "CPU"
|
@@ -214,6 +218,10 @@ Devices:
|
|
214 |
display_info: "Jetson Nano\nB01\nGPU"
|
215 |
platform: "GPU (CUDA-FP32)"
|
216 |
|
|
|
|
|
|
|
|
|
217 |
- name: "Khadas VIM3"
|
218 |
display_info: "Khadas VIM3\nA311D\nNPU"
|
219 |
platform: "NPU (TIMVX)"
|
|
|
198 |
display_info: "Jetson Nano\nB01\nCPU"
|
199 |
platform: "CPU"
|
200 |
|
201 |
+
- name: "Jetson Nano Orin"
|
202 |
+
display_info: "Jetson Nano\nOrin\nCPU"
|
203 |
+
platform: "CPU"
|
204 |
+
|
205 |
- name: "Khadas VIM3"
|
206 |
display_info: "Khadas VIM3\nA311D\nCPU"
|
207 |
platform: "CPU"
|
|
|
218 |
display_info: "Jetson Nano\nB01\nGPU"
|
219 |
platform: "GPU (CUDA-FP32)"
|
220 |
|
221 |
+
- name: "Jetson Nano Orin"
|
222 |
+
display_info: "Jetson Nano\nOrin\nGPU"
|
223 |
+
platform: "GPU (CUDA-FP32)"
|
224 |
+
|
225 |
- name: "Khadas VIM3"
|
226 |
display_info: "Khadas VIM3\nA311D\nNPU"
|
227 |
platform: "NPU (TIMVX)"
|