Wanli
commited on
Commit
·
57699b7
1
Parent(s):
4b236af
Add hand pose estimation model from Mediapipe (#83)
Browse files- README.md +23 -18
- benchmark/config/handpose_estimation_mediapipe.yaml +19 -0
- benchmark/download_data.py +3 -3
- models/__init__.py +2 -0
- models/handpose_estimation_mediapipe/LICENSE +202 -0
- models/handpose_estimation_mediapipe/README.md +34 -0
- models/handpose_estimation_mediapipe/demo.py +167 -0
- models/handpose_estimation_mediapipe/mp_handpose.py +165 -0
- tools/quantize/inc_configs/mp_handpose.yaml +40 -0
- tools/quantize/quantize-inc.py +3 -0
- tools/quantize/quantize-ort.py +1 -1
- tools/quantize/requirements.txt +0 -1
README.md
CHANGED
@@ -14,23 +14,24 @@ Guidelines:
|
|
14 |
|
15 |
## Models & Benchmark Results
|
16 |
|
17 |
-
| Model
|
18 |
-
|
19 |
-
| [YuNet](./models/face_detection_yunet) | Face Detection | 160x120
|
20 |
-
| [SFace](./models/face_recognition_sface) | Face Recognition | 112x112
|
21 |
-
| [LPD-YuNet](./models/license_plate_detection_yunet/) | License Plate Detection | 320x240
|
22 |
-
| [DB-IC15](./models/text_detection_db) | Text Detection | 640x480
|
23 |
-
| [DB-TD500](./models/text_detection_db) | Text Detection | 640x480
|
24 |
-
| [CRNN-EN](./models/text_recognition_crnn) | Text Recognition | 100x32
|
25 |
-
| [CRNN-CN](./models/text_recognition_crnn) | Text Recognition | 100x32
|
26 |
-
| [PP-ResNet](./models/image_classification_ppresnet) | Image Classification | 224x224
|
27 |
-
| [MobileNet-V1](./models/image_classification_mobilenet) | Image Classification | 224x224
|
28 |
-
| [MobileNet-V2](./models/image_classification_mobilenet) | Image Classification | 224x224
|
29 |
-
| [PP-HumanSeg](./models/human_segmentation_pphumanseg) | Human Segmentation | 192x192
|
30 |
-
| [WeChatQRCode](./models/qrcode_wechatqrcode) | QR Code Detection and Parsing | 100x100
|
31 |
-
| [DaSiamRPN](./models/object_tracking_dasiamrpn) | Object Tracking | 1280x720
|
32 |
-
| [YoutuReID](./models/person_reid_youtureid) | Person Re-Identification | 128x256
|
33 |
-
| [
|
|
|
34 |
|
35 |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
|
36 |
|
@@ -69,7 +70,11 @@ Some examples are listed below. You can find more in the directory of each model
|
|
69 |
|
70 |
### Palm Detection with [MP-PalmDet](./models/palm_detection_mediapipe/)
|
71 |
|
72 |
-

|
75 |
|
|
|
14 |
|
15 |
## Models & Benchmark Results
|
16 |
|
17 |
+
| Model | Task | Input Size | INTEL-CPU (ms) | RPI-CPU (ms) | JETSON-GPU (ms) | KV3-NPU (ms) | D1-CPU (ms) |
|
18 |
+
|---------------------------------------------------------|-------------------------------|------------|----------------|--------------|-----------------|--------------|-------------|
|
19 |
+
| [YuNet](./models/face_detection_yunet) | Face Detection | 160x120 | 1.45 | 6.22 | 12.18 | 4.04 | 86.69 |
|
20 |
+
| [SFace](./models/face_recognition_sface) | Face Recognition | 112x112 | 8.65 | 99.20 | 24.88 | 46.25 | --- |
|
21 |
+
| [LPD-YuNet](./models/license_plate_detection_yunet/) | License Plate Detection | 320x240 | --- | 168.03 | 56.12 | 154.20\* | |
|
22 |
+
| [DB-IC15](./models/text_detection_db) | Text Detection | 640x480 | 142.91 | 2835.91 | 208.41 | --- | --- |
|
23 |
+
| [DB-TD500](./models/text_detection_db) | Text Detection | 640x480 | 142.91 | 2841.71 | 210.51 | --- | --- |
|
24 |
+
| [CRNN-EN](./models/text_recognition_crnn) | Text Recognition | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
|
25 |
+
| [CRNN-CN](./models/text_recognition_crnn) | Text Recognition | 100x32 | 73.52 | 322.16 | 239.76 | 166.79 | --- |
|
26 |
+
| [PP-ResNet](./models/image_classification_ppresnet) | Image Classification | 224x224 | 56.05 | 602.58 | 98.64 | 75.45 | --- |
|
27 |
+
| [MobileNet-V1](./models/image_classification_mobilenet) | Image Classification | 224x224 | 9.04 | 92.25 | 33.18 | 145.66\* | --- |
|
28 |
+
| [MobileNet-V2](./models/image_classification_mobilenet) | Image Classification | 224x224 | 8.86 | 74.03 | 31.92 | 146.31\* | --- |
|
29 |
+
| [PP-HumanSeg](./models/human_segmentation_pphumanseg) | Human Segmentation | 192x192 | 19.92 | 105.32 | 67.97 | 74.77 | --- |
|
30 |
+
| [WeChatQRCode](./models/qrcode_wechatqrcode) | QR Code Detection and Parsing | 100x100 | 7.04 | 37.68 | --- | --- | --- |
|
31 |
+
| [DaSiamRPN](./models/object_tracking_dasiamrpn) | Object Tracking | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
|
32 |
+
| [YoutuReID](./models/person_reid_youtureid) | Person Re-Identification | 128x256 | 35.81 | 521.98 | 90.07 | 44.61 | --- |
|
33 |
+
| [MP-PalmDet](./models/palm_detection_mediapipe) | Palm Detection | 256x256 | 15.57 | 168.37 | 50.64 | 145.56\* | --- |
|
34 |
+
| [MP-HandPose](./models/handpose_estimation_mediapipe) | Hand Pose Estimation | 256x256 | 20.16 | 148.24 | 156.30 | 663.77\* | --- |
|
35 |
|
36 |
\*: Models are quantized in per-channel mode, which run slower than per-tensor quantized models on NPU.
|
37 |
|
|
|
70 |
|
71 |
### Palm Detection with [MP-PalmDet](./models/palm_detection_mediapipe/)
|
72 |
|
73 |
+

|
74 |
+
|
75 |
+
### Hand Pose Estimation with [MP-HandPose](models/handpose_estimation_mediapipe/)
|
76 |
+
|
77 |
+

|
78 |
|
79 |
### QR Code Detection and Parsing with [WeChatQRCode](./models/qrcode_wechatqrcode/)
|
80 |
|
benchmark/config/handpose_estimation_mediapipe.yaml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Benchmark:
|
2 |
+
name: "Hand Pose Estimation Benchmark"
|
3 |
+
type: "Recognition"
|
4 |
+
data:
|
5 |
+
path: "benchmark/data/palm_detection"
|
6 |
+
files: ["palm1.jpg", "palm2.jpg", "palm3.jpg"]
|
7 |
+
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
+
- [256, 256]
|
9 |
+
metric:
|
10 |
+
warmup: 30
|
11 |
+
repeat: 10
|
12 |
+
reduction: "median"
|
13 |
+
backend: "default"
|
14 |
+
target: "cpu"
|
15 |
+
|
16 |
+
Model:
|
17 |
+
name: "MPHandPose"
|
18 |
+
modelPath: "models/handpose_estimation_mediapipe/handpose_estimation_mediapipe_2022may.onnx"
|
19 |
+
confThreshold: 0.9
|
benchmark/download_data.py
CHANGED
@@ -198,9 +198,9 @@ data_downloaders = dict(
|
|
198 |
sha='5b741fbf34c1fbcf59cad8f2a65327a5899e66f1',
|
199 |
filename='person_reid.zip'),
|
200 |
palm_detection=Downloader(name='palm_detection',
|
201 |
-
url='https://drive.google.com/u/0/uc?id=
|
202 |
-
sha='
|
203 |
-
filename='
|
204 |
license_plate_detection=Downloader(name='license_plate_detection',
|
205 |
url='https://drive.google.com/u/0/uc?id=1cf9MEyUqMMy8lLeDGd1any6tM_SsSmny&export=download',
|
206 |
sha='997acb143ddc4531e6e41365fb7ad4722064564c',
|
|
|
198 |
sha='5b741fbf34c1fbcf59cad8f2a65327a5899e66f1',
|
199 |
filename='person_reid.zip'),
|
200 |
palm_detection=Downloader(name='palm_detection',
|
201 |
+
url='https://drive.google.com/u/0/uc?id=1zYnOsXxYXn-hFIdyIws9louzqjpt8byQ&export=download',
|
202 |
+
sha='78ed095b685a9bacdd643782716127afe936f366',
|
203 |
+
filename='palm_detection_20220826.zip'),
|
204 |
license_plate_detection=Downloader(name='license_plate_detection',
|
205 |
url='https://drive.google.com/u/0/uc?id=1cf9MEyUqMMy8lLeDGd1any6tM_SsSmny&export=download',
|
206 |
sha='997acb143ddc4531e6e41365fb7ad4722064564c',
|
models/__init__.py
CHANGED
@@ -10,6 +10,7 @@ from .person_reid_youtureid.youtureid import YoutuReID
|
|
10 |
from .image_classification_mobilenet.mobilenet_v1 import MobileNetV1
|
11 |
from .image_classification_mobilenet.mobilenet_v2 import MobileNetV2
|
12 |
from .palm_detection_mediapipe.mp_palmdet import MPPalmDet
|
|
|
13 |
from .license_plate_detection_yunet.lpd_yunet import LPD_YuNet
|
14 |
|
15 |
class Registery:
|
@@ -36,4 +37,5 @@ MODELS.register(YoutuReID)
|
|
36 |
MODELS.register(MobileNetV1)
|
37 |
MODELS.register(MobileNetV2)
|
38 |
MODELS.register(MPPalmDet)
|
|
|
39 |
MODELS.register(LPD_YuNet)
|
|
|
10 |
from .image_classification_mobilenet.mobilenet_v1 import MobileNetV1
|
11 |
from .image_classification_mobilenet.mobilenet_v2 import MobileNetV2
|
12 |
from .palm_detection_mediapipe.mp_palmdet import MPPalmDet
|
13 |
+
from .handpose_estimation_mediapipe.mp_handpose import MPHandPose
|
14 |
from .license_plate_detection_yunet.lpd_yunet import LPD_YuNet
|
15 |
|
16 |
class Registery:
|
|
|
37 |
MODELS.register(MobileNetV1)
|
38 |
MODELS.register(MobileNetV2)
|
39 |
MODELS.register(MPPalmDet)
|
40 |
+
MODELS.register(MPHandPose)
|
41 |
MODELS.register(LPD_YuNet)
|
models/handpose_estimation_mediapipe/LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
models/handpose_estimation_mediapipe/README.md
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hand pose estimation from MediaPipe Handpose
|
2 |
+
|
3 |
+
This model estimates 21 hand keypoints per detected hand from [palm detector](../palm_detection_mediapipe). (The image below is referenced from [MediaPipe Hands Keypoints](https://github.com/tensorflow/tfjs-models/tree/master/hand-pose-detection#mediapipe-hands-keypoints-used-in-mediapipe-hands))
|
4 |
+
|
5 |
+

|
6 |
+
|
7 |
+
This model is converted from Tensorflow-JS to ONNX using following tools:
|
8 |
+
- tfjs to tf_saved_model: https://github.com/patlevin/tfjs-to-tf/
|
9 |
+
- tf_saved_model to ONNX: https://github.com/onnx/tensorflow-onnx
|
10 |
+
- simplified by [onnx-simplifier](https://github.com/daquexian/onnx-simplifier)
|
11 |
+
|
12 |
+
Also note that the model is quantized in per-channel mode with [Intel's neural compressor](https://github.com/intel/neural-compressor), which gives better accuracy but may lose some speed.
|
13 |
+
|
14 |
+
## Demo
|
15 |
+
|
16 |
+
Run the following commands to try the demo:
|
17 |
+
```bash
|
18 |
+
# detect on camera input
|
19 |
+
python demo.py
|
20 |
+
# detect on an image
|
21 |
+
python demo.py -i /path/to/image
|
22 |
+
```
|
23 |
+
|
24 |
+
### Example outputs
|
25 |
+
|
26 |
+

|
27 |
+
|
28 |
+
## License
|
29 |
+
|
30 |
+
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
31 |
+
|
32 |
+
## Reference
|
33 |
+
|
34 |
+
- MediaPipe Handpose: https://github.com/tensorflow/tfjs-models/tree/master/handpose
|
models/handpose_estimation_mediapipe/demo.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import cv2 as cv
|
6 |
+
|
7 |
+
from mp_handpose import MPHandPose
|
8 |
+
|
9 |
+
sys.path.append('../palm_detection_mediapipe')
|
10 |
+
from mp_palmdet import MPPalmDet
|
11 |
+
|
12 |
+
def str2bool(v):
|
13 |
+
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
14 |
+
return True
|
15 |
+
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
16 |
+
return False
|
17 |
+
else:
|
18 |
+
raise NotImplementedError
|
19 |
+
|
20 |
+
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
|
21 |
+
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
|
22 |
+
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
|
23 |
+
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
|
24 |
+
try:
|
25 |
+
backends += [cv.dnn.DNN_BACKEND_TIMVX]
|
26 |
+
targets += [cv.dnn.DNN_TARGET_NPU]
|
27 |
+
help_msg_backends += "; {:d}: TIMVX"
|
28 |
+
help_msg_targets += "; {:d}: NPU"
|
29 |
+
except:
|
30 |
+
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')
|
31 |
+
|
32 |
+
parser = argparse.ArgumentParser(description='Hand Pose Estimation from MediaPipe')
|
33 |
+
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
|
34 |
+
parser.add_argument('--model', '-m', type=str, default='./handpose_estimation_mediapipe_2022may.onnx', help='Path to the model.')
|
35 |
+
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
|
36 |
+
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
|
37 |
+
parser.add_argument('--conf_threshold', type=float, default=0.8, help='Filter out hands of confidence < conf_threshold.')
|
38 |
+
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
|
39 |
+
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
|
40 |
+
args = parser.parse_args()
|
41 |
+
|
42 |
+
|
43 |
+
def visualize(image, hands, print_result=False):
|
44 |
+
output = image.copy()
|
45 |
+
|
46 |
+
for idx, handpose in enumerate(hands):
|
47 |
+
conf = handpose[-1]
|
48 |
+
bbox = handpose[0:4].astype(np.int32)
|
49 |
+
landmarks = handpose[4:-1].reshape(21, 2).astype(np.int32)
|
50 |
+
|
51 |
+
# Print results
|
52 |
+
if print_result:
|
53 |
+
print('-----------hand {}-----------'.format(idx + 1))
|
54 |
+
print('conf: {:.2f}'.format(conf))
|
55 |
+
print('hand box: {}'.format(bbox))
|
56 |
+
print('hand landmarks: ')
|
57 |
+
for l in landmarks:
|
58 |
+
print('\t{}'.format(l))
|
59 |
+
|
60 |
+
# Draw line between each key points
|
61 |
+
cv.line(output, landmarks[0], landmarks[1], (255, 255, 255), 2)
|
62 |
+
cv.line(output, landmarks[1], landmarks[2], (255, 255, 255), 2)
|
63 |
+
cv.line(output, landmarks[2], landmarks[3], (255, 255, 255), 2)
|
64 |
+
cv.line(output, landmarks[3], landmarks[4], (255, 255, 255), 2)
|
65 |
+
|
66 |
+
cv.line(output, landmarks[0], landmarks[5], (255, 255, 255), 2)
|
67 |
+
cv.line(output, landmarks[5], landmarks[6], (255, 255, 255), 2)
|
68 |
+
cv.line(output, landmarks[6], landmarks[7], (255, 255, 255), 2)
|
69 |
+
cv.line(output, landmarks[7], landmarks[8], (255, 255, 255), 2)
|
70 |
+
|
71 |
+
cv.line(output, landmarks[0], landmarks[9], (255, 255, 255), 2)
|
72 |
+
cv.line(output, landmarks[9], landmarks[10], (255, 255, 255), 2)
|
73 |
+
cv.line(output, landmarks[10], landmarks[11], (255, 255, 255), 2)
|
74 |
+
cv.line(output, landmarks[11], landmarks[12], (255, 255, 255), 2)
|
75 |
+
|
76 |
+
cv.line(output, landmarks[0], landmarks[13], (255, 255, 255), 2)
|
77 |
+
cv.line(output, landmarks[13], landmarks[14], (255, 255, 255), 2)
|
78 |
+
cv.line(output, landmarks[14], landmarks[15], (255, 255, 255), 2)
|
79 |
+
cv.line(output, landmarks[15], landmarks[16], (255, 255, 255), 2)
|
80 |
+
|
81 |
+
cv.line(output, landmarks[0], landmarks[17], (255, 255, 255), 2)
|
82 |
+
cv.line(output, landmarks[17], landmarks[18], (255, 255, 255), 2)
|
83 |
+
cv.line(output, landmarks[18], landmarks[19], (255, 255, 255), 2)
|
84 |
+
cv.line(output, landmarks[19], landmarks[20], (255, 255, 255), 2)
|
85 |
+
|
86 |
+
for p in landmarks:
|
87 |
+
cv.circle(output, p, 2, (0, 0, 255), 2)
|
88 |
+
|
89 |
+
return output
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == '__main__':
|
93 |
+
# palm detector
|
94 |
+
palm_detector = MPPalmDet(modelPath='../palm_detection_mediapipe/palm_detection_mediapipe_2022may.onnx',
|
95 |
+
nmsThreshold=0.3,
|
96 |
+
scoreThreshold=0.8,
|
97 |
+
backendId=args.backend,
|
98 |
+
targetId=args.target)
|
99 |
+
# handpose detector
|
100 |
+
handpose_detector = MPHandPose(modelPath=args.model,
|
101 |
+
confThreshold=args.conf_threshold,
|
102 |
+
backendId=args.backend,
|
103 |
+
targetId=args.target)
|
104 |
+
|
105 |
+
# If input is an image
|
106 |
+
if args.input is not None:
|
107 |
+
image = cv.imread(args.input)
|
108 |
+
|
109 |
+
# Palm detector inference
|
110 |
+
palms = palm_detector.infer(image)
|
111 |
+
hands = np.empty(shape=(0, 47))
|
112 |
+
|
113 |
+
# Estimate the pose of each hand
|
114 |
+
for palm in palms:
|
115 |
+
# Handpose detector inference
|
116 |
+
handpose = handpose_detector.infer(image, palm)
|
117 |
+
if handpose is not None:
|
118 |
+
hands = np.vstack((hands, handpose))
|
119 |
+
# Draw results on the input image
|
120 |
+
image = visualize(image, hands, True)
|
121 |
+
|
122 |
+
if len(palms) == 0:
|
123 |
+
print('No palm detected!')
|
124 |
+
|
125 |
+
# Save results
|
126 |
+
if args.save:
|
127 |
+
cv.imwrite('result.jpg', image)
|
128 |
+
print('Results saved to result.jpg\n')
|
129 |
+
|
130 |
+
# Visualize results in a new window
|
131 |
+
if args.vis:
|
132 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
133 |
+
cv.imshow(args.input, image)
|
134 |
+
cv.waitKey(0)
|
135 |
+
else: # Omit input to call default camera
|
136 |
+
deviceId = 0
|
137 |
+
cap = cv.VideoCapture(deviceId)
|
138 |
+
|
139 |
+
tm = cv.TickMeter()
|
140 |
+
while cv.waitKey(1) < 0:
|
141 |
+
hasFrame, frame = cap.read()
|
142 |
+
if not hasFrame:
|
143 |
+
print('No frames grabbed!')
|
144 |
+
break
|
145 |
+
|
146 |
+
# Palm detector inference
|
147 |
+
palms = palm_detector.infer(frame)
|
148 |
+
hands = np.empty(shape=(0, 47))
|
149 |
+
|
150 |
+
tm.start()
|
151 |
+
# Estimate the pose of each hand
|
152 |
+
for palm in palms:
|
153 |
+
# Handpose detector inference
|
154 |
+
handpose = handpose_detector.infer(frame, palm)
|
155 |
+
if handpose is not None:
|
156 |
+
hands = np.vstack((hands, handpose))
|
157 |
+
tm.stop()
|
158 |
+
# Draw results on the input image
|
159 |
+
frame = visualize(frame, hands)
|
160 |
+
|
161 |
+
if len(palms) == 0:
|
162 |
+
print('No palm detected!')
|
163 |
+
else:
|
164 |
+
cv.putText(frame, 'FPS: {:.2f}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
165 |
+
|
166 |
+
cv.imshow('MediaPipe Handpose Detection Demo', frame)
|
167 |
+
tm.reset()
|
models/handpose_estimation_mediapipe/mp_handpose.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2 as cv
|
3 |
+
|
4 |
+
|
5 |
+
class MPHandPose:
|
6 |
+
def __init__(self, modelPath, confThreshold=0.8, backendId=0, targetId=0):
|
7 |
+
self.model_path = modelPath
|
8 |
+
self.conf_threshold = confThreshold
|
9 |
+
self.backend_id = backendId
|
10 |
+
self.target_id = targetId
|
11 |
+
|
12 |
+
self.input_size = np.array([256, 256]) # wh
|
13 |
+
self.PALM_LANDMARK_IDS = [0, 5, 9, 13, 17, 1, 2]
|
14 |
+
self.PALM_LANDMARKS_INDEX_OF_PALM_BASE = 0
|
15 |
+
self.PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE = 2
|
16 |
+
self.PALM_BOX_SHIFT_VECTOR = [0, -0.4]
|
17 |
+
self.PALM_BOX_ENLARGE_FACTOR = 3
|
18 |
+
self.HAND_BOX_SHIFT_VECTOR = [0, -0.1]
|
19 |
+
self.HAND_BOX_ENLARGE_FACTOR = 1.65
|
20 |
+
|
21 |
+
self.model = cv.dnn.readNet(self.model_path)
|
22 |
+
self.model.setPreferableBackend(self.backend_id)
|
23 |
+
self.model.setPreferableTarget(self.target_id)
|
24 |
+
|
25 |
+
@property
|
26 |
+
def name(self):
|
27 |
+
return self.__class__.__name__
|
28 |
+
|
29 |
+
def setBackend(self, backendId):
|
30 |
+
self.backend_id = backendId
|
31 |
+
self.model.setPreferableBackend(self.backend_id)
|
32 |
+
|
33 |
+
def setTarget(self, targetId):
|
34 |
+
self.target_id = targetId
|
35 |
+
self.model.setPreferableTarget(self.target_id)
|
36 |
+
|
37 |
+
def _preprocess(self, image, palm):
|
38 |
+
'''
|
39 |
+
Rotate input for inference.
|
40 |
+
Parameters:
|
41 |
+
image - input image of BGR channel order
|
42 |
+
palm_bbox - palm bounding box found in image of format [[x1, y1], [x2, y2]] (top-left and bottom-right points)
|
43 |
+
palm_landmarks - 7 landmarks (5 finger base points, 2 palm base points) of shape [7, 2]
|
44 |
+
Returns:
|
45 |
+
rotated_hand - rotated hand image for inference
|
46 |
+
rotation_matrix - matrix for rotation and de-rotation
|
47 |
+
'''
|
48 |
+
# Rotate input to have vertically oriented hand image
|
49 |
+
# compute rotation
|
50 |
+
palm_bbox = palm[0:4].reshape(2, 2)
|
51 |
+
palm_landmarks = palm[4:18].reshape(7, 2)
|
52 |
+
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
53 |
+
|
54 |
+
p1 = palm_landmarks[self.PALM_LANDMARKS_INDEX_OF_PALM_BASE]
|
55 |
+
p2 = palm_landmarks[self.PALM_LANDMARKS_INDEX_OF_MIDDLE_FINGER_BASE]
|
56 |
+
radians = np.pi / 2 - np.arctan2(-(p2[1] - p1[1]), p2[0] - p1[0])
|
57 |
+
radians = radians - 2 * np.pi * np.floor((radians + np.pi) / (2 * np.pi))
|
58 |
+
angle = np.rad2deg(radians)
|
59 |
+
# get bbox center
|
60 |
+
center_palm_bbox = np.sum(palm_bbox, axis=0) / 2
|
61 |
+
# get rotation matrix
|
62 |
+
rotation_matrix = cv.getRotationMatrix2D(center_palm_bbox, angle, 1.0)
|
63 |
+
# get rotated image
|
64 |
+
rotated_image = cv.warpAffine(image, rotation_matrix, (image.shape[1], image.shape[0]))
|
65 |
+
# get bounding boxes from rotated palm landmarks
|
66 |
+
homogeneous_coord = np.c_[palm_landmarks, np.ones(palm_landmarks.shape[0])]
|
67 |
+
rotated_palm_landmarks = np.array([
|
68 |
+
np.dot(homogeneous_coord, rotation_matrix[0]),
|
69 |
+
np.dot(homogeneous_coord, rotation_matrix[1])])
|
70 |
+
# get landmark bounding box
|
71 |
+
rotated_palm_bbox = np.array([
|
72 |
+
np.amin(rotated_palm_landmarks, axis=1),
|
73 |
+
np.amax(rotated_palm_landmarks, axis=1)]) # [top-left, bottom-right]
|
74 |
+
|
75 |
+
# shift bounding box
|
76 |
+
wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
|
77 |
+
shift_vector = self.PALM_BOX_SHIFT_VECTOR * wh_rotated_palm_bbox
|
78 |
+
rotated_palm_bbox = rotated_palm_bbox + shift_vector
|
79 |
+
# squarify bounding boxx
|
80 |
+
center_rotated_plam_bbox = np.sum(rotated_palm_bbox, axis=0) / 2
|
81 |
+
wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
|
82 |
+
new_half_size = np.amax(wh_rotated_palm_bbox) / 2
|
83 |
+
rotated_palm_bbox = np.array([
|
84 |
+
center_rotated_plam_bbox - new_half_size,
|
85 |
+
center_rotated_plam_bbox + new_half_size])
|
86 |
+
|
87 |
+
# enlarge bounding box
|
88 |
+
center_rotated_plam_bbox = np.sum(rotated_palm_bbox, axis=0) / 2
|
89 |
+
wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
|
90 |
+
new_half_size = wh_rotated_palm_bbox * self.PALM_BOX_ENLARGE_FACTOR / 2
|
91 |
+
rotated_palm_bbox = np.array([
|
92 |
+
center_rotated_plam_bbox - new_half_size,
|
93 |
+
center_rotated_plam_bbox + new_half_size])
|
94 |
+
|
95 |
+
# Crop and resize the rotated image by the bounding box
|
96 |
+
[[x1, y1], [x2, y2]] = rotated_palm_bbox.astype(np.int32)
|
97 |
+
diff = np.maximum([-x1, -y1, x2 - rotated_image.shape[1], y2 - rotated_image.shape[0]], 0)
|
98 |
+
[x1, y1, x2, y2] = [x1, y1, x2, y2] + diff
|
99 |
+
crop = rotated_image[y1:y2, x1:x2, :]
|
100 |
+
crop = cv.copyMakeBorder(crop, diff[1], diff[3], diff[0], diff[2], cv.BORDER_CONSTANT, value=(0, 0, 0))
|
101 |
+
blob = cv.resize(crop, dsize=self.input_size, interpolation=cv.INTER_AREA).astype(np.float32) / 255.0
|
102 |
+
|
103 |
+
return blob[np.newaxis, :, :, :], rotated_palm_bbox, angle, rotation_matrix
|
104 |
+
|
105 |
+
def infer(self, image, palm):
|
106 |
+
# Preprocess
|
107 |
+
input_blob, rotated_palm_bbox, angle, rotation_matrix = self._preprocess(image, palm)
|
108 |
+
|
109 |
+
# Forward
|
110 |
+
self.model.setInput(input_blob)
|
111 |
+
output_blob = self.model.forward(self.model.getUnconnectedOutLayersNames())
|
112 |
+
|
113 |
+
# Postprocess
|
114 |
+
results = self._postprocess(output_blob, rotated_palm_bbox, angle, rotation_matrix)
|
115 |
+
return results # [bbox_coords, landmarks_coords, conf]
|
116 |
+
|
117 |
+
def _postprocess(self, blob, rotated_palm_bbox, angle, rotation_matrix):
|
118 |
+
landmarks, conf = blob
|
119 |
+
|
120 |
+
if conf < self.conf_threshold:
|
121 |
+
return None
|
122 |
+
|
123 |
+
landmarks = landmarks.reshape(-1, 3) # shape: (1, 63) -> (21, 3)
|
124 |
+
|
125 |
+
# transform coords back to the input coords
|
126 |
+
wh_rotated_palm_bbox = rotated_palm_bbox[1] - rotated_palm_bbox[0]
|
127 |
+
scale_factor = wh_rotated_palm_bbox / self.input_size
|
128 |
+
landmarks[:, :2] = (landmarks[:, :2] - self.input_size / 2) * scale_factor
|
129 |
+
coords_rotation_matrix = cv.getRotationMatrix2D((0, 0), angle, 1.0)
|
130 |
+
rotated_landmarks = np.dot(landmarks[:, :2], coords_rotation_matrix[:, :2])
|
131 |
+
rotated_landmarks = np.c_[rotated_landmarks, landmarks[:, 2]]
|
132 |
+
# invert rotation
|
133 |
+
rotation_component = np.array([
|
134 |
+
[rotation_matrix[0][0], rotation_matrix[1][0]],
|
135 |
+
[rotation_matrix[0][1], rotation_matrix[1][1]]])
|
136 |
+
translation_component = np.array([
|
137 |
+
rotation_matrix[0][2], rotation_matrix[1][2]])
|
138 |
+
inverted_translation = np.array([
|
139 |
+
-np.dot(rotation_component[0], translation_component),
|
140 |
+
-np.dot(rotation_component[1], translation_component)])
|
141 |
+
inverse_rotation_matrix = np.c_[rotation_component, inverted_translation]
|
142 |
+
# get box center
|
143 |
+
center = np.append(np.sum(rotated_palm_bbox, axis=0) / 2, 1)
|
144 |
+
original_center = np.array([
|
145 |
+
np.dot(center, inverse_rotation_matrix[0]),
|
146 |
+
np.dot(center, inverse_rotation_matrix[1])])
|
147 |
+
landmarks = rotated_landmarks[:, :2] + original_center
|
148 |
+
|
149 |
+
# get bounding box from rotated_landmarks
|
150 |
+
bbox = np.array([
|
151 |
+
np.amin(landmarks, axis=0),
|
152 |
+
np.amax(landmarks, axis=0)]) # [top-left, bottom-right]
|
153 |
+
# shift bounding box
|
154 |
+
wh_bbox = bbox[1] - bbox[0]
|
155 |
+
shift_vector = self.HAND_BOX_SHIFT_VECTOR * wh_bbox
|
156 |
+
bbox = bbox + shift_vector
|
157 |
+
# enlarge bounding box
|
158 |
+
center_bbox = np.sum(bbox, axis=0) / 2
|
159 |
+
wh_bbox = bbox[1] - bbox[0]
|
160 |
+
new_half_size = wh_bbox * self.HAND_BOX_ENLARGE_FACTOR / 2
|
161 |
+
bbox = np.array([
|
162 |
+
center_bbox - new_half_size,
|
163 |
+
center_bbox + new_half_size])
|
164 |
+
|
165 |
+
return np.r_[bbox.reshape(-1), landmarks.reshape(-1), conf[0]]
|
tools/quantize/inc_configs/mp_handpose.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (c) 2021 Intel Corporation
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
version: 1.0
|
17 |
+
|
18 |
+
model: # mandatory. used to specify model specific information.
|
19 |
+
name: mp_handpose
|
20 |
+
framework: onnxrt_qlinearops # mandatory. supported values are tensorflow, pytorch, pytorch_ipex, onnxrt_integer, onnxrt_qlinear or mxnet; allow new framework backend extension.
|
21 |
+
|
22 |
+
quantization: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
|
23 |
+
approach: post_training_static_quant # optional. default value is post_training_static_quant.
|
24 |
+
calibration:
|
25 |
+
dataloader:
|
26 |
+
batch_size: 1
|
27 |
+
dataset:
|
28 |
+
dummy:
|
29 |
+
shape: [1, 256, 256, 3]
|
30 |
+
low: -1.0
|
31 |
+
high: 1.0
|
32 |
+
dtype: float32
|
33 |
+
label: True
|
34 |
+
|
35 |
+
tuning:
|
36 |
+
accuracy_criterion:
|
37 |
+
relative: 0.02 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
|
38 |
+
exit_policy:
|
39 |
+
timeout: 0 # optional. tuning timeout (seconds). default value is 0 which means early stop. combine with max_trials field to decide when to exit.
|
40 |
+
random_seed: 9527 # optional. random seed for deterministic tuning.
|
tools/quantize/quantize-inc.py
CHANGED
@@ -78,6 +78,9 @@ models=dict(
|
|
78 |
mp_palmdet=Quantize(model_path='../../models/palm_detection_mediapipe/palm_detection_mediapipe_2022may.onnx',
|
79 |
config_path='./inc_configs/mp_palmdet.yaml',
|
80 |
custom_dataset=Dataset(root='../../benchmark/data/palm_detection', dim='hwc', swapRB=True, mean=127.5, std=127.5, toFP32=True)),
|
|
|
|
|
|
|
81 |
lpd_yunet=Quantize(model_path='../../models/license_plate_detection_yunet/license_plate_detection_lpd_yunet_2022may.onnx',
|
82 |
config_path='./inc_configs/lpd_yunet.yaml',
|
83 |
custom_dataset=Dataset(root='../../benchmark/data/license_plate_detection', size=(320, 240), dim='chw', toFP32=True)),
|
|
|
78 |
mp_palmdet=Quantize(model_path='../../models/palm_detection_mediapipe/palm_detection_mediapipe_2022may.onnx',
|
79 |
config_path='./inc_configs/mp_palmdet.yaml',
|
80 |
custom_dataset=Dataset(root='../../benchmark/data/palm_detection', dim='hwc', swapRB=True, mean=127.5, std=127.5, toFP32=True)),
|
81 |
+
mp_handpose=Quantize(model_path='../../models/handpose_estimation_mediapipe/handpose_estimation_mediapipe_2022may.onnx',
|
82 |
+
config_path='./inc_configs/mp_handpose.yaml',
|
83 |
+
custom_dataset=Dataset(root='../../benchmark/data/palm_detection', dim='hwc', swapRB=True, mean=127.5, std=127.5, toFP32=True)),
|
84 |
lpd_yunet=Quantize(model_path='../../models/license_plate_detection_yunet/license_plate_detection_lpd_yunet_2022may.onnx',
|
85 |
config_path='./inc_configs/lpd_yunet.yaml',
|
86 |
custom_dataset=Dataset(root='../../benchmark/data/license_plate_detection', size=(320, 240), dim='chw', toFP32=True)),
|
tools/quantize/quantize-ort.py
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
|
7 |
import os
|
8 |
import sys
|
9 |
-
import numpy as
|
10 |
import cv2 as cv
|
11 |
|
12 |
import onnx
|
|
|
6 |
|
7 |
import os
|
8 |
import sys
|
9 |
+
import numpy as np
|
10 |
import cv2 as cv
|
11 |
|
12 |
import onnx
|
tools/quantize/requirements.txt
CHANGED
@@ -2,4 +2,3 @@ opencv-python>=4.5.4.58
|
|
2 |
onnx
|
3 |
onnxruntime
|
4 |
neural-compressor
|
5 |
-
|
|
|
2 |
onnx
|
3 |
onnxruntime
|
4 |
neural-compressor
|
|