Wanli
commited on
Commit
·
60ba673
1
Parent(s):
28adb60
Add script to evaluate face detection by WIDERFace (#70)
Browse files* Add script to evaluate face detection by WIDERFace
* add the result of YuNet
- models/face_detection_yunet/README.md +9 -0
- tools/eval/README.md +42 -1
- tools/eval/datasets/__init__.py +2 -0
- tools/eval/datasets/widerface.py +315 -0
- tools/eval/eval.py +17 -0
models/face_detection_yunet/README.md
CHANGED
@@ -7,6 +7,15 @@ Notes:
|
|
7 |
- For details on training this model, please visit https://github.com/ShiqiYu/libfacedetection.train.
|
8 |
- This ONNX model has fixed input shape, but OpenCV DNN infers on the exact shape of input image. See https://github.com/opencv/opencv_zoo/issues/44 for more information.
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
## Demo
|
11 |
|
12 |
Run the following command to try the demo:
|
|
|
7 |
- For details on training this model, please visit https://github.com/ShiqiYu/libfacedetection.train.
|
8 |
- This ONNX model has fixed input shape, but OpenCV DNN infers on the exact shape of input image. See https://github.com/opencv/opencv_zoo/issues/44 for more information.
|
9 |
|
10 |
+
Results of accuracy evaluation with [tools/eval](../../tools/eval).
|
11 |
+
|
12 |
+
| Models | Easy AP | Medium AP | Hard AP |
|
13 |
+
|-------------|---------|-----------|---------|
|
14 |
+
| YuNet | 0.8498 | 0.8384 | 0.7357 |
|
15 |
+
| YuNet quant | 0.7751 | 0.8145 | 0.7312 |
|
16 |
+
|
17 |
+
\*: 'quant' stands for 'quantized'.
|
18 |
+
|
19 |
## Demo
|
20 |
|
21 |
Run the following command to try the demo:
|
tools/eval/README.md
CHANGED
@@ -4,6 +4,7 @@ Make sure you have the following packages installed:
|
|
4 |
|
5 |
```shell
|
6 |
pip install tqdm
|
|
|
7 |
```
|
8 |
|
9 |
Generally speaking, evaluation can be done with the following command:
|
@@ -13,7 +14,8 @@ python eval.py -m model_name -d dataset_name -dr dataset_root_dir
|
|
13 |
```
|
14 |
|
15 |
Supported datasets:
|
16 |
-
- [ImageNet](
|
|
|
17 |
|
18 |
## ImageNet
|
19 |
|
@@ -53,3 +55,42 @@ Run evaluation with the following command:
|
|
53 |
python eval.py -m mobilenet -d imagenet -dr /path/to/imagenet
|
54 |
```
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
```shell
|
6 |
pip install tqdm
|
7 |
+
pip install scipy
|
8 |
```
|
9 |
|
10 |
Generally speaking, evaluation can be done with the following command:
|
|
|
14 |
```
|
15 |
|
16 |
Supported datasets:
|
17 |
+
- [ImageNet](#imagenet)
|
18 |
+
- [WIDERFace](#widerface)
|
19 |
|
20 |
## ImageNet
|
21 |
|
|
|
55 |
python eval.py -m mobilenet -d imagenet -dr /path/to/imagenet
|
56 |
```
|
57 |
|
58 |
+
## WIDERFace
|
59 |
+
|
60 |
+
The script is modified based on [WiderFace-Evaluation](https://github.com/wondervictor/WiderFace-Evaluation).
|
61 |
+
|
62 |
+
### Prepare data
|
63 |
+
|
64 |
+
Please visit http://shuoyang1213.me/WIDERFACE to download the WIDERFace dataset [Validation Images](https://huggingface.co/datasets/wider_face/resolve/main/data/WIDER_val.zip), [Face annotations](http://shuoyang1213.me/WIDERFACE/support/bbx_annotation/wider_face_split.zip) and [eval_tools](http://shuoyang1213.me/WIDERFACE/support/eval_script/eval_tools.zip). Organize files as follow:
|
65 |
+
|
66 |
+
```shell
|
67 |
+
$ tree -L 2 /path/to/widerface
|
68 |
+
.
|
69 |
+
├── eval_tools
|
70 |
+
│ ├── boxoverlap.m
|
71 |
+
│ ├── evaluation.m
|
72 |
+
│ ├── ground_truth
|
73 |
+
│ ├── nms.m
|
74 |
+
│ ├── norm_score.m
|
75 |
+
│ ├── plot
|
76 |
+
│ ├── read_pred.m
|
77 |
+
│ └── wider_eval.m
|
78 |
+
├── wider_face_split
|
79 |
+
│ ├── readme.txt
|
80 |
+
│ ├── wider_face_test_filelist.txt
|
81 |
+
│ ├── wider_face_test.mat
|
82 |
+
│ ├── wider_face_train_bbx_gt.txt
|
83 |
+
│ ├── wider_face_train.mat
|
84 |
+
│ ├── wider_face_val_bbx_gt.txt
|
85 |
+
│ └── wider_face_val.mat
|
86 |
+
└── WIDER_val
|
87 |
+
└── images
|
88 |
+
```
|
89 |
+
|
90 |
+
### Evaluation
|
91 |
+
|
92 |
+
Run evaluation with the following command:
|
93 |
+
|
94 |
+
```shell
|
95 |
+
python eval.py -m yunet -d widerface -dr /path/to/widerface
|
96 |
+
```
|
tools/eval/datasets/__init__.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from .imagenet import ImageNet
|
|
|
2 |
|
3 |
class Registery:
|
4 |
def __init__(self, name):
|
@@ -13,3 +14,4 @@ class Registery:
|
|
13 |
|
14 |
DATASETS = Registery("Datasets")
|
15 |
DATASETS.register(ImageNet)
|
|
|
|
1 |
from .imagenet import ImageNet
|
2 |
+
from .widerface import WIDERFace
|
3 |
|
4 |
class Registery:
|
5 |
def __init__(self, name):
|
|
|
14 |
|
15 |
DATASETS = Registery("Datasets")
|
16 |
DATASETS.register(ImageNet)
|
17 |
+
DATASETS.register(WIDERFace)
|
tools/eval/datasets/widerface.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tqdm
|
3 |
+
import pickle
|
4 |
+
import numpy as np
|
5 |
+
from scipy.io import loadmat
|
6 |
+
import cv2 as cv
|
7 |
+
|
8 |
+
|
9 |
+
def get_gt_boxes(gt_dir):
|
10 |
+
""" gt dir: (wider_face_val.mat, wider_easy_val.mat, wider_medium_val.mat, wider_hard_val.mat)"""
|
11 |
+
|
12 |
+
gt_mat = loadmat(os.path.join(gt_dir, 'wider_face_val.mat'))
|
13 |
+
hard_mat = loadmat(os.path.join(gt_dir, 'wider_hard_val.mat'))
|
14 |
+
medium_mat = loadmat(os.path.join(gt_dir, 'wider_medium_val.mat'))
|
15 |
+
easy_mat = loadmat(os.path.join(gt_dir, 'wider_easy_val.mat'))
|
16 |
+
|
17 |
+
facebox_list = gt_mat['face_bbx_list']
|
18 |
+
event_list = gt_mat['event_list']
|
19 |
+
file_list = gt_mat['file_list']
|
20 |
+
|
21 |
+
hard_gt_list = hard_mat['gt_list']
|
22 |
+
medium_gt_list = medium_mat['gt_list']
|
23 |
+
easy_gt_list = easy_mat['gt_list']
|
24 |
+
|
25 |
+
return facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list
|
26 |
+
|
27 |
+
|
28 |
+
def get_gt_boxes_from_txt(gt_path, cache_dir):
|
29 |
+
cache_file = os.path.join(cache_dir, 'gt_cache.pkl')
|
30 |
+
if os.path.exists(cache_file):
|
31 |
+
f = open(cache_file, 'rb')
|
32 |
+
boxes = pickle.load(f)
|
33 |
+
f.close()
|
34 |
+
return boxes
|
35 |
+
|
36 |
+
f = open(gt_path, 'r')
|
37 |
+
state = 0
|
38 |
+
lines = f.readlines()
|
39 |
+
lines = list(map(lambda x: x.rstrip('\r\n'), lines))
|
40 |
+
boxes = {}
|
41 |
+
print(len(lines))
|
42 |
+
f.close()
|
43 |
+
current_boxes = []
|
44 |
+
current_name = None
|
45 |
+
for line in lines:
|
46 |
+
if state == 0 and '--' in line:
|
47 |
+
state = 1
|
48 |
+
current_name = line
|
49 |
+
continue
|
50 |
+
if state == 1:
|
51 |
+
state = 2
|
52 |
+
continue
|
53 |
+
|
54 |
+
if state == 2 and '--' in line:
|
55 |
+
state = 1
|
56 |
+
boxes[current_name] = np.array(current_boxes).astype('float32')
|
57 |
+
current_name = line
|
58 |
+
current_boxes = []
|
59 |
+
continue
|
60 |
+
|
61 |
+
if state == 2:
|
62 |
+
box = [float(x) for x in line.split(' ')[:4]]
|
63 |
+
current_boxes.append(box)
|
64 |
+
continue
|
65 |
+
|
66 |
+
f = open(cache_file, 'wb')
|
67 |
+
pickle.dump(boxes, f)
|
68 |
+
f.close()
|
69 |
+
return boxes
|
70 |
+
|
71 |
+
|
72 |
+
def norm_score(pred):
|
73 |
+
""" norm score
|
74 |
+
pred {key: [[x1,y1,x2,y2,s]]}
|
75 |
+
"""
|
76 |
+
|
77 |
+
max_score = 0
|
78 |
+
min_score = 1
|
79 |
+
|
80 |
+
for _, k in pred.items():
|
81 |
+
for _, v in k.items():
|
82 |
+
if len(v) == 0:
|
83 |
+
continue
|
84 |
+
_min = np.min(v[:, -1])
|
85 |
+
_max = np.max(v[:, -1])
|
86 |
+
max_score = max(_max, max_score)
|
87 |
+
min_score = min(_min, min_score)
|
88 |
+
|
89 |
+
diff = max_score - min_score
|
90 |
+
for _, k in pred.items():
|
91 |
+
for _, v in k.items():
|
92 |
+
if len(v) == 0:
|
93 |
+
continue
|
94 |
+
v[:, -1] = (v[:, -1] - min_score) / diff
|
95 |
+
|
96 |
+
|
97 |
+
def bbox_overlaps(a, b):
|
98 |
+
"""
|
99 |
+
return iou of a and b, numpy version for data augenmentation
|
100 |
+
"""
|
101 |
+
lt = np.maximum(a[:, np.newaxis, 0:2], b[:, 0:2])
|
102 |
+
rb = np.minimum(a[:, np.newaxis, 2:4], b[:, 2:4])
|
103 |
+
|
104 |
+
area_i = np.prod(rb - lt + 1, axis=2) * (lt < rb).all(axis=2)
|
105 |
+
area_a = np.prod(a[:, 2:4] - a[:, 0:2] + 1, axis=1)
|
106 |
+
area_b = np.prod(b[:, 2:4] - b[:, 0:2] + 1, axis=1)
|
107 |
+
return area_i / (area_a[:, np.newaxis] + area_b - area_i)
|
108 |
+
|
109 |
+
|
110 |
+
def image_eval(pred, gt, ignore, iou_thresh):
|
111 |
+
""" single image evaluation
|
112 |
+
pred: Nx5
|
113 |
+
gt: Nx4
|
114 |
+
ignore:
|
115 |
+
"""
|
116 |
+
|
117 |
+
_pred = pred.copy()
|
118 |
+
_gt = gt.copy()
|
119 |
+
pred_recall = np.zeros(_pred.shape[0])
|
120 |
+
recall_list = np.zeros(_gt.shape[0])
|
121 |
+
proposal_list = np.ones(_pred.shape[0])
|
122 |
+
|
123 |
+
_pred[:, 2] = _pred[:, 2] + _pred[:, 0]
|
124 |
+
_pred[:, 3] = _pred[:, 3] + _pred[:, 1]
|
125 |
+
_gt[:, 2] = _gt[:, 2] + _gt[:, 0]
|
126 |
+
_gt[:, 3] = _gt[:, 3] + _gt[:, 1]
|
127 |
+
|
128 |
+
overlaps = bbox_overlaps(_pred[:, :4], _gt)
|
129 |
+
|
130 |
+
for h in range(_pred.shape[0]):
|
131 |
+
|
132 |
+
gt_overlap = overlaps[h]
|
133 |
+
max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax()
|
134 |
+
if max_overlap >= iou_thresh:
|
135 |
+
if ignore[max_idx] == 0:
|
136 |
+
recall_list[max_idx] = -1
|
137 |
+
proposal_list[h] = -1
|
138 |
+
elif recall_list[max_idx] == 0:
|
139 |
+
recall_list[max_idx] = 1
|
140 |
+
|
141 |
+
r_keep_index = np.where(recall_list == 1)[0]
|
142 |
+
pred_recall[h] = len(r_keep_index)
|
143 |
+
return pred_recall, proposal_list
|
144 |
+
|
145 |
+
|
146 |
+
def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall):
|
147 |
+
pr_info = np.zeros((thresh_num, 2)).astype('float')
|
148 |
+
for t in range(thresh_num):
|
149 |
+
|
150 |
+
thresh = 1 - (t + 1) / thresh_num
|
151 |
+
r_index = np.where(pred_info[:, 4] >= thresh)[0]
|
152 |
+
if len(r_index) == 0:
|
153 |
+
pr_info[t, 0] = 0
|
154 |
+
pr_info[t, 1] = 0
|
155 |
+
else:
|
156 |
+
r_index = r_index[-1]
|
157 |
+
p_index = np.where(proposal_list[:r_index + 1] == 1)[0]
|
158 |
+
pr_info[t, 0] = len(p_index)
|
159 |
+
pr_info[t, 1] = pred_recall[r_index]
|
160 |
+
return pr_info
|
161 |
+
|
162 |
+
|
163 |
+
def dataset_pr_info(thresh_num, pr_curve, count_face):
|
164 |
+
_pr_curve = np.zeros((thresh_num, 2))
|
165 |
+
for i in range(thresh_num):
|
166 |
+
_pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0]
|
167 |
+
_pr_curve[i, 1] = pr_curve[i, 1] / count_face
|
168 |
+
return _pr_curve
|
169 |
+
|
170 |
+
|
171 |
+
def voc_ap(rec, prec):
|
172 |
+
# correct AP calculation
|
173 |
+
# first append sentinel values at the end
|
174 |
+
mrec = np.concatenate(([0.], rec, [1.]))
|
175 |
+
mpre = np.concatenate(([0.], prec, [0.]))
|
176 |
+
|
177 |
+
# compute the precision envelope
|
178 |
+
for i in range(mpre.size - 1, 0, -1):
|
179 |
+
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
180 |
+
|
181 |
+
# to calculate area under PR curve, look for points
|
182 |
+
# where X axis (recall) changes value
|
183 |
+
i = np.where(mrec[1:] != mrec[:-1])[0]
|
184 |
+
|
185 |
+
# and sum (\Delta recall) * prec
|
186 |
+
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
187 |
+
return ap
|
188 |
+
|
189 |
+
|
190 |
+
def evaluation(pred, gt_path, iou_thresh=0.5):
|
191 |
+
norm_score(pred)
|
192 |
+
facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list = get_gt_boxes(gt_path)
|
193 |
+
event_num = len(event_list)
|
194 |
+
thresh_num = 1000
|
195 |
+
settings = ['easy', 'medium', 'hard']
|
196 |
+
setting_gts = [easy_gt_list, medium_gt_list, hard_gt_list]
|
197 |
+
aps = []
|
198 |
+
for setting_id in range(3):
|
199 |
+
# different setting
|
200 |
+
gt_list = setting_gts[setting_id]
|
201 |
+
count_face = 0
|
202 |
+
pr_curve = np.zeros((thresh_num, 2)).astype('float')
|
203 |
+
# [hard, medium, easy]
|
204 |
+
pbar = tqdm.tqdm(range(event_num))
|
205 |
+
for i in pbar:
|
206 |
+
pbar.set_description('Processing {}'.format(settings[setting_id]))
|
207 |
+
event_name = str(event_list[i][0][0])
|
208 |
+
img_list = file_list[i][0]
|
209 |
+
pred_list = pred[event_name]
|
210 |
+
sub_gt_list = gt_list[i][0]
|
211 |
+
# img_pr_info_list = np.zeros((len(img_list), thresh_num, 2))
|
212 |
+
gt_bbx_list = facebox_list[i][0]
|
213 |
+
|
214 |
+
for j in range(len(img_list)):
|
215 |
+
pred_info = pred_list[str(img_list[j][0][0])]
|
216 |
+
|
217 |
+
gt_boxes = gt_bbx_list[j][0].astype('float')
|
218 |
+
keep_index = sub_gt_list[j][0]
|
219 |
+
count_face += len(keep_index)
|
220 |
+
|
221 |
+
if len(gt_boxes) == 0 or len(pred_info) == 0:
|
222 |
+
continue
|
223 |
+
ignore = np.zeros(gt_boxes.shape[0])
|
224 |
+
if len(keep_index) != 0:
|
225 |
+
ignore[keep_index - 1] = 1
|
226 |
+
pred_recall, proposal_list = image_eval(pred_info, gt_boxes, ignore, iou_thresh)
|
227 |
+
|
228 |
+
_img_pr_info = img_pr_info(thresh_num, pred_info, proposal_list, pred_recall)
|
229 |
+
|
230 |
+
pr_curve += _img_pr_info
|
231 |
+
pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face)
|
232 |
+
|
233 |
+
propose = pr_curve[:, 0]
|
234 |
+
recall = pr_curve[:, 1]
|
235 |
+
|
236 |
+
ap = voc_ap(recall, propose)
|
237 |
+
aps.append(ap)
|
238 |
+
return aps
|
239 |
+
|
240 |
+
|
241 |
+
class WIDERFace:
|
242 |
+
def __init__(self, root, split='val'):
|
243 |
+
self.aps = []
|
244 |
+
self.widerface_root = root
|
245 |
+
self._split = split
|
246 |
+
|
247 |
+
self.widerface_img_paths = {
|
248 |
+
'val': os.path.join(self.widerface_root, 'WIDER_val', 'images'),
|
249 |
+
'test': os.path.join(self.widerface_root, 'WIDER_test', 'images')
|
250 |
+
}
|
251 |
+
|
252 |
+
self.widerface_split_fpaths = {
|
253 |
+
'val': os.path.join(self.widerface_root, 'wider_face_split', 'wider_face_val.mat'),
|
254 |
+
'test': os.path.join(self.widerface_root, 'wider_face_split', 'wider_face_test.mat')
|
255 |
+
}
|
256 |
+
self.img_list, self.num_img = self.load_list()
|
257 |
+
|
258 |
+
@property
|
259 |
+
def name(self):
|
260 |
+
return self.__class__.__name__
|
261 |
+
|
262 |
+
def load_list(self):
|
263 |
+
n_imgs = 0
|
264 |
+
flist = []
|
265 |
+
|
266 |
+
split_fpath = self.widerface_split_fpaths[self._split]
|
267 |
+
img_path = self.widerface_img_paths[self._split]
|
268 |
+
|
269 |
+
anno_data = loadmat(split_fpath)
|
270 |
+
event_list = anno_data.get('event_list')
|
271 |
+
file_list = anno_data.get('file_list')
|
272 |
+
|
273 |
+
for event_idx, event in enumerate(event_list):
|
274 |
+
event_name = event[0][0]
|
275 |
+
for f_idx, f in enumerate(file_list[event_idx][0]):
|
276 |
+
f_name = f[0][0]
|
277 |
+
f_path = os.path.join(img_path, event_name, f_name + '.jpg')
|
278 |
+
flist.append(f_path)
|
279 |
+
n_imgs += 1
|
280 |
+
|
281 |
+
return flist, n_imgs
|
282 |
+
|
283 |
+
def __getitem__(self, index):
|
284 |
+
img = cv.imread(self.img_list[index])
|
285 |
+
event, name = self.img_list[index].split(os.sep)[-2:]
|
286 |
+
return event, name, img
|
287 |
+
|
288 |
+
def eval(self, model):
|
289 |
+
results_list = dict()
|
290 |
+
pbar = tqdm.tqdm(self)
|
291 |
+
pbar.set_description_str("Evaluating {} with {} val set".format(model.name, self.name))
|
292 |
+
# forward
|
293 |
+
for event_name, img_name, img in pbar:
|
294 |
+
img_shape = [img.shape[1], img.shape[0]]
|
295 |
+
model.setInputSize(img_shape)
|
296 |
+
det = model.infer(img)
|
297 |
+
|
298 |
+
if not results_list.get(event_name):
|
299 |
+
results_list[event_name] = dict()
|
300 |
+
|
301 |
+
if det is None:
|
302 |
+
det = np.array([[10, 10, 20, 20, 0.002]])
|
303 |
+
else:
|
304 |
+
det = np.append(np.around(det[:, :4], 1), np.around(det[:, -1], 3).reshape(-1, 1), axis=1)
|
305 |
+
|
306 |
+
results_list[event_name][img_name.rstrip('.jpg')] = det
|
307 |
+
|
308 |
+
self.aps = evaluation(results_list, os.path.join(self.widerface_root, 'eval_tools', 'ground_truth'))
|
309 |
+
|
310 |
+
def print_result(self):
|
311 |
+
print("==================== Results ====================")
|
312 |
+
print("Easy Val AP: {}".format(self.aps[0]))
|
313 |
+
print("Medium Val AP: {}".format(self.aps[1]))
|
314 |
+
print("Hard Val AP: {}".format(self.aps[2]))
|
315 |
+
print("=================================================")
|
tools/eval/eval.py
CHANGED
@@ -51,6 +51,20 @@ models = dict(
|
|
51 |
topic="image_classification",
|
52 |
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan-act_int8-wt_int8-quantized.onnx"),
|
53 |
topK=5),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
)
|
55 |
|
56 |
datasets = dict(
|
@@ -58,6 +72,9 @@ datasets = dict(
|
|
58 |
name="ImageNet",
|
59 |
topic="image_classification",
|
60 |
size=224),
|
|
|
|
|
|
|
61 |
)
|
62 |
|
63 |
def main(args):
|
|
|
51 |
topic="image_classification",
|
52 |
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan-act_int8-wt_int8-quantized.onnx"),
|
53 |
topK=5),
|
54 |
+
yunet=dict(
|
55 |
+
name="YuNet",
|
56 |
+
topic="face_detection",
|
57 |
+
modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar.onnx"),
|
58 |
+
topK=5000,
|
59 |
+
confThreshold=0.3,
|
60 |
+
nmsThreshold=0.45),
|
61 |
+
yunet_q=dict(
|
62 |
+
name="YuNet",
|
63 |
+
topic="face_detection",
|
64 |
+
modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar-act_int8-wt_int8-quantized.onnx"),
|
65 |
+
topK=5000,
|
66 |
+
confThreshold=0.3,
|
67 |
+
nmsThreshold=0.45)
|
68 |
)
|
69 |
|
70 |
datasets = dict(
|
|
|
72 |
name="ImageNet",
|
73 |
topic="image_classification",
|
74 |
size=224),
|
75 |
+
widerface=dict(
|
76 |
+
name="WIDERFace",
|
77 |
+
topic="face_detection")
|
78 |
)
|
79 |
|
80 |
def main(args):
|