[GSoC] Blockwise Quantization Tool (#265)
Browse files* Blockwise quantization tool
* add missing type hints
* add min python version check
* refactoring
- tools/quantize/README.md +11 -1
- tools/quantize/block_quantize.py +419 -0
- tools/quantize/requirements.txt +1 -0
tools/quantize/README.md
CHANGED
@@ -7,7 +7,7 @@ Install dependencies before trying quantization:
|
|
7 |
pip install -r requirements.txt
|
8 |
```
|
9 |
|
10 |
-
## Usage
|
11 |
|
12 |
Quantize all models in the Zoo:
|
13 |
```shell
|
@@ -52,6 +52,16 @@ models = dict(
|
|
52 |
python quantize-inc.py model1
|
53 |
```
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
## Dataset
|
56 |
Some models are quantized with extra datasets.
|
57 |
- [MP-PalmDet](../../models/palm_detection_mediapipe) and [MP-HandPose](../../models/handpose_estimation_mediapipe) are quantized with evaluation set of [FreiHAND](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html). Download the dataset from [this link](https://lmb.informatik.uni-freiburg.de/data/freihand/FreiHAND_pub_v2_eval.zip). Unpack it and replace `path/to/dataset` with the path to `FreiHAND_pub_v2_eval/evaluation/rgb`.
|
|
|
7 |
pip install -r requirements.txt
|
8 |
```
|
9 |
|
10 |
+
## Quantization Usage
|
11 |
|
12 |
Quantize all models in the Zoo:
|
13 |
```shell
|
|
|
52 |
python quantize-inc.py model1
|
53 |
```
|
54 |
|
55 |
+
## Blockwise quantization usage
|
56 |
+
|
57 |
+
`block_quantize.py` requires Python>=3.7
|
58 |
+
|
59 |
+
To perform weight-only blockwise quantization:
|
60 |
+
|
61 |
+
```shell
|
62 |
+
python block_quantize.py --input_model INPUT_MODEL.onnx --output_model OUTPUT_MODEL.onnx --block_size {block size} --bits {8,16}
|
63 |
+
```
|
64 |
+
|
65 |
## Dataset
|
66 |
Some models are quantized with extra datasets.
|
67 |
- [MP-PalmDet](../../models/palm_detection_mediapipe) and [MP-HandPose](../../models/handpose_estimation_mediapipe) are quantized with evaluation set of [FreiHAND](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html). Download the dataset from [this link](https://lmb.informatik.uni-freiburg.de/data/freihand/FreiHAND_pub_v2_eval.zip). Unpack it and replace `path/to/dataset` with the path to `FreiHAND_pub_v2_eval/evaluation/rgb`.
|
tools/quantize/block_quantize.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
MIN_PYTHON_VERSION = (3, 7)
|
4 |
+
|
5 |
+
if sys.version_info < MIN_PYTHON_VERSION:
|
6 |
+
raise ImportError("This script requires Python 3.7 or higher!")
|
7 |
+
|
8 |
+
import argparse
|
9 |
+
import os
|
10 |
+
from dataclasses import dataclass, field
|
11 |
+
from typing import List, Optional, Tuple
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import onnx
|
15 |
+
from onnx import helper
|
16 |
+
|
17 |
+
BITS_TO_NUMPY_TYPE = {8: np.uint8, 16: np.uint16}
|
18 |
+
|
19 |
+
|
20 |
+
SUPPORTED_OPS = {
|
21 |
+
"Conv"
|
22 |
+
}
|
23 |
+
|
24 |
+
ONNX_OPSET = 21
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class BlockQuantizeConfig:
|
29 |
+
input_model_path: str
|
30 |
+
output_model_path: str
|
31 |
+
block_size: int
|
32 |
+
bits: int
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class BlockQuantizeResult:
|
37 |
+
quantized_weights: np.ndarray = field(default_factory=lambda: np.array([]))
|
38 |
+
scales: np.ndarray = field(default_factory=lambda: np.array([]))
|
39 |
+
zero_point: np.ndarray = field(default_factory=lambda: np.array([]))
|
40 |
+
block_size: int = 1
|
41 |
+
axis: int = 1
|
42 |
+
original_shape: Tuple = field(default_factory=tuple)
|
43 |
+
quantization_error: np.ndarray = field(default_factory=lambda: np.array([]))
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class LayerParams:
|
48 |
+
weights: np.ndarray = field(default_factory=lambda: np.array([]))
|
49 |
+
bias: Optional[np.ndarray] = None
|
50 |
+
|
51 |
+
|
52 |
+
def closest_divisor(number: int, divisor: int) -> int:
|
53 |
+
for d in range(divisor, 0, -1):
|
54 |
+
if number % d == 0:
|
55 |
+
return d
|
56 |
+
return 1
|
57 |
+
|
58 |
+
|
59 |
+
def block_dequantize_tensor(
|
60 |
+
x: np.ndarray, block_axis: int, scale: np.ndarray, zero_point: np.ndarray
|
61 |
+
) -> np.ndarray:
|
62 |
+
repeats = x.shape[block_axis] // scale.shape[block_axis]
|
63 |
+
|
64 |
+
x_scale_elementwise = np.repeat(scale, repeats=repeats, axis=block_axis)
|
65 |
+
x_zero_point_elementwise = np.repeat(zero_point, repeats=repeats, axis=block_axis)
|
66 |
+
|
67 |
+
y = (
|
68 |
+
x.astype(np.float32) - x_zero_point_elementwise.astype(np.float32)
|
69 |
+
) * x_scale_elementwise
|
70 |
+
|
71 |
+
return y
|
72 |
+
|
73 |
+
|
74 |
+
def block_quantize_tensor(
|
75 |
+
x: np.ndarray,
|
76 |
+
block_axis: int,
|
77 |
+
scale: np.ndarray,
|
78 |
+
zero_point: np.ndarray,
|
79 |
+
n_bits: int,
|
80 |
+
) -> np.ndarray:
|
81 |
+
repeats = x.shape[block_axis] // scale.shape[block_axis]
|
82 |
+
|
83 |
+
y_scale_elementwise = np.repeat(scale, repeats=repeats, axis=block_axis)
|
84 |
+
y_zero_point_elementwise = np.repeat(zero_point, repeats=repeats, axis=block_axis)
|
85 |
+
|
86 |
+
y = np.rint(x / y_scale_elementwise + y_zero_point_elementwise).astype(
|
87 |
+
BITS_TO_NUMPY_TYPE[n_bits]
|
88 |
+
)
|
89 |
+
|
90 |
+
return y
|
91 |
+
|
92 |
+
|
93 |
+
def create_dequantize_node(
|
94 |
+
node_name,
|
95 |
+
quantized_weights,
|
96 |
+
scales,
|
97 |
+
zero_point,
|
98 |
+
dequantized_weights,
|
99 |
+
block_size,
|
100 |
+
axis,
|
101 |
+
) -> onnx.NodeProto:
|
102 |
+
block_size_attr = helper.make_attribute("block_size", block_size)
|
103 |
+
axis_attr = helper.make_attribute("axis", axis)
|
104 |
+
|
105 |
+
n = helper.make_node(
|
106 |
+
"DequantizeLinear",
|
107 |
+
inputs=[quantized_weights, scales, zero_point],
|
108 |
+
outputs=[dequantized_weights],
|
109 |
+
name=node_name,
|
110 |
+
)
|
111 |
+
n.attribute.extend([block_size_attr, axis_attr])
|
112 |
+
return n
|
113 |
+
|
114 |
+
|
115 |
+
def create_reshape_node(
|
116 |
+
node_name, dequantized_weights, shape_tensor, reshaped_weights_name
|
117 |
+
) -> onnx.NodeProto:
|
118 |
+
return helper.make_node(
|
119 |
+
"Reshape",
|
120 |
+
inputs=[dequantized_weights, shape_tensor],
|
121 |
+
outputs=[reshaped_weights_name],
|
122 |
+
name=node_name,
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
class BlockQuantizer:
|
127 |
+
def __init__(self, conf: BlockQuantizeConfig) -> None:
|
128 |
+
self.conf = conf
|
129 |
+
self.validate_conf()
|
130 |
+
|
131 |
+
self.model = onnx.load(conf.input_model_path)
|
132 |
+
|
133 |
+
if self.model.opset_import[0].version != ONNX_OPSET:
|
134 |
+
self.model = onnx.version_converter.convert_version(self.model, ONNX_OPSET)
|
135 |
+
|
136 |
+
self.graph = self.model.graph
|
137 |
+
self.initializers_map = {
|
138 |
+
init.name: init for init in self.model.graph.initializer
|
139 |
+
}
|
140 |
+
|
141 |
+
def validate_conf(self):
|
142 |
+
if not os.path.isfile(self.conf.input_model_path):
|
143 |
+
raise ValueError(
|
144 |
+
f"Input model path '{self.conf.input_model_path}' does not exist or is not a file."
|
145 |
+
)
|
146 |
+
|
147 |
+
if not self.conf.input_model_path.lower().endswith(".onnx"):
|
148 |
+
raise ValueError(
|
149 |
+
f"Input model path '{self.conf.input_model_path}' must have a .onnx extension."
|
150 |
+
)
|
151 |
+
|
152 |
+
if not self.conf.output_model_path.lower().endswith(".onnx"):
|
153 |
+
raise ValueError(
|
154 |
+
f"Output model path '{self.conf.output_model_path}' must have a .onnx extension."
|
155 |
+
)
|
156 |
+
|
157 |
+
if self.conf.block_size <= 0:
|
158 |
+
raise ValueError("Block size must be a positive integer.")
|
159 |
+
|
160 |
+
if self.conf.bits not in BITS_TO_NUMPY_TYPE:
|
161 |
+
allowed_values = ", ".join([str(k) for k in BITS_TO_NUMPY_TYPE.keys()])
|
162 |
+
raise ValueError(
|
163 |
+
f"Bits must be one of the following values: [{allowed_values}]."
|
164 |
+
)
|
165 |
+
|
166 |
+
def get_initializer_tensor(self, name: str) -> Optional[np.ndarray]:
|
167 |
+
if name in self.initializers_map:
|
168 |
+
return onnx.numpy_helper.to_array(self.initializers_map[name])
|
169 |
+
|
170 |
+
return None
|
171 |
+
|
172 |
+
def get_layer_params(self, node: onnx.NodeProto) -> LayerParams:
|
173 |
+
params = LayerParams()
|
174 |
+
|
175 |
+
weights_name = node.input[1]
|
176 |
+
params.weights = self.get_initializer_tensor(weights_name)
|
177 |
+
|
178 |
+
if len(node.input) > 2:
|
179 |
+
bias_name = node.input[2]
|
180 |
+
params.bias = self.get_initializer_tensor(bias_name)
|
181 |
+
|
182 |
+
return params
|
183 |
+
|
184 |
+
def compute_scale_zeropoint(
|
185 |
+
self, b_min: np.ndarray, b_max: np.ndarray
|
186 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
187 |
+
assert (
|
188 |
+
b_min < b_max
|
189 |
+
).all(), (
|
190 |
+
"minimum must be lower than maximum when computing scale and zero point"
|
191 |
+
)
|
192 |
+
|
193 |
+
# zero must be present in the range, this enforces qmin <= zero_point <= qmax
|
194 |
+
b_min = np.minimum(b_min, np.zeros_like(b_min, dtype=b_min.dtype))
|
195 |
+
b_max = np.maximum(b_max, np.zeros_like(b_max, dtype=b_max.dtype))
|
196 |
+
|
197 |
+
qmin = np.iinfo(BITS_TO_NUMPY_TYPE[self.conf.bits]).min
|
198 |
+
qmax = np.iinfo(BITS_TO_NUMPY_TYPE[self.conf.bits]).max
|
199 |
+
|
200 |
+
dq = qmax - qmin
|
201 |
+
|
202 |
+
scales = (b_max - b_min) / dq
|
203 |
+
zeropoints = np.rint(qmin - b_min / scales).astype(
|
204 |
+
BITS_TO_NUMPY_TYPE[self.conf.bits]
|
205 |
+
)
|
206 |
+
|
207 |
+
return (scales, zeropoints)
|
208 |
+
|
209 |
+
def block_quantize(self, weight: np.ndarray) -> BlockQuantizeResult:
|
210 |
+
original_shape = weight.shape
|
211 |
+
weight = weight.reshape((weight.shape[0], -1))
|
212 |
+
|
213 |
+
quantization_axis = 1
|
214 |
+
|
215 |
+
block_size = closest_divisor(weight.shape[1], self.conf.block_size)
|
216 |
+
|
217 |
+
assert (
|
218 |
+
weight.shape[1] % block_size == 0
|
219 |
+
), f"weight shape ({weight.shape[1]}) must be divisible by block size ({block_size})"
|
220 |
+
|
221 |
+
# Warning, axis = 1 specific instruction!
|
222 |
+
blocked_weight = weight.reshape(
|
223 |
+
(weight.shape[0], weight.shape[1] // block_size, -1)
|
224 |
+
)
|
225 |
+
|
226 |
+
# Warning, axis = 1 specific instruction!
|
227 |
+
blocked_max = np.max(blocked_weight, -1)
|
228 |
+
# Warning, axis = 1 specific instruction!
|
229 |
+
blocked_min = np.min(blocked_weight, -1)
|
230 |
+
|
231 |
+
scales, zeropoints = self.compute_scale_zeropoint(blocked_min, blocked_max)
|
232 |
+
|
233 |
+
quantized_weight = block_quantize_tensor(
|
234 |
+
weight, quantization_axis, scales, zeropoints, self.conf.bits
|
235 |
+
)
|
236 |
+
reconstructed_mat = block_dequantize_tensor(
|
237 |
+
quantized_weight, quantization_axis, scales, zeropoints
|
238 |
+
)
|
239 |
+
|
240 |
+
qerror = np.linalg.norm(reconstructed_mat - weight)
|
241 |
+
|
242 |
+
res = BlockQuantizeResult(
|
243 |
+
quantized_weight,
|
244 |
+
scales,
|
245 |
+
zeropoints,
|
246 |
+
block_size,
|
247 |
+
quantization_axis,
|
248 |
+
original_shape,
|
249 |
+
qerror,
|
250 |
+
)
|
251 |
+
|
252 |
+
return res
|
253 |
+
|
254 |
+
def get_model_size(self, model_path: str) -> float:
|
255 |
+
size_bytes = os.path.getsize(model_path)
|
256 |
+
size_mb = size_bytes / 1024
|
257 |
+
|
258 |
+
return size_mb
|
259 |
+
|
260 |
+
def display_summary(self, sqe: List):
|
261 |
+
mse = sum(sqe) / len(sqe)
|
262 |
+
original_model_size = self.get_model_size(self.conf.input_model_path)
|
263 |
+
quantized_model_size = self.get_model_size(self.conf.output_model_path)
|
264 |
+
|
265 |
+
print("Done! Results saved in", self.conf.output_model_path)
|
266 |
+
print("\nSummary of Results:\n")
|
267 |
+
print(f"{'Metric':<30} {'Value':<10}")
|
268 |
+
print(f"{'-'*40}")
|
269 |
+
print(f"{'Mean Squared Quantization Error':<30} {mse:.6f}")
|
270 |
+
print(f"{'Original Model Size (KB)':<31} {original_model_size:,.2f}")
|
271 |
+
print(f"{'Block-Quantized Model Size (KB)':<30} {quantized_model_size:,.2f}")
|
272 |
+
|
273 |
+
def run(self):
|
274 |
+
print("Quantizing the model...")
|
275 |
+
|
276 |
+
visited_nodes = []
|
277 |
+
sqe = []
|
278 |
+
|
279 |
+
for node in self.model.graph.node:
|
280 |
+
if node.name in visited_nodes:
|
281 |
+
continue
|
282 |
+
if node.op_type in SUPPORTED_OPS:
|
283 |
+
conv_params = self.get_layer_params(node)
|
284 |
+
block_quantize_res = self.block_quantize(conv_params.weights)
|
285 |
+
|
286 |
+
quantized_weights_name = f"{node.name}_quantized_weights"
|
287 |
+
quantized_node_name = f"{node.name}_quantized_node"
|
288 |
+
dequantized_weights_name = f"{node.name}_dequantized_weights"
|
289 |
+
scales_name = f"{node.name}_scales"
|
290 |
+
zero_point_name = f"{node.name}_zero_point"
|
291 |
+
|
292 |
+
shape_node_name = f"{node.name}_shape_node"
|
293 |
+
shape_name = f"{node.name}_shape"
|
294 |
+
reshaped_weights_name = f"{node.name}_reshaped_weights"
|
295 |
+
|
296 |
+
dequantize_node = create_dequantize_node(
|
297 |
+
quantized_node_name,
|
298 |
+
quantized_weights_name,
|
299 |
+
scales_name,
|
300 |
+
zero_point_name,
|
301 |
+
dequantized_weights_name,
|
302 |
+
block_quantize_res.block_size,
|
303 |
+
block_quantize_res.axis,
|
304 |
+
)
|
305 |
+
reshape_node = create_reshape_node(
|
306 |
+
shape_node_name,
|
307 |
+
dequantized_weights_name,
|
308 |
+
shape_name,
|
309 |
+
reshaped_weights_name,
|
310 |
+
)
|
311 |
+
|
312 |
+
shape_tensor = onnx.numpy_helper.from_array(
|
313 |
+
np.array(block_quantize_res.original_shape), name=shape_name
|
314 |
+
)
|
315 |
+
scale_initializer = onnx.numpy_helper.from_array(
|
316 |
+
block_quantize_res.scales, name=scales_name
|
317 |
+
)
|
318 |
+
zero_point_initializer = onnx.numpy_helper.from_array(
|
319 |
+
block_quantize_res.zero_point, name=zero_point_name
|
320 |
+
)
|
321 |
+
quantized_weights_initializer = onnx.numpy_helper.from_array(
|
322 |
+
block_quantize_res.quantized_weights, name=quantized_weights_name
|
323 |
+
)
|
324 |
+
|
325 |
+
dequantized_weights_info = helper.make_tensor_value_info(
|
326 |
+
dequantized_weights_name,
|
327 |
+
onnx.TensorProto.FLOAT,
|
328 |
+
block_quantize_res.quantized_weights.shape,
|
329 |
+
)
|
330 |
+
shape_info = helper.make_tensor_value_info(
|
331 |
+
reshaped_weights_name,
|
332 |
+
onnx.TensorProto.FLOAT,
|
333 |
+
block_quantize_res.original_shape,
|
334 |
+
)
|
335 |
+
|
336 |
+
self.graph.initializer.extend(
|
337 |
+
[
|
338 |
+
scale_initializer,
|
339 |
+
zero_point_initializer,
|
340 |
+
shape_tensor,
|
341 |
+
quantized_weights_initializer,
|
342 |
+
]
|
343 |
+
)
|
344 |
+
|
345 |
+
# Removing fp32 weights
|
346 |
+
self.graph.initializer.remove(
|
347 |
+
next(
|
348 |
+
init
|
349 |
+
for init in self.graph.initializer
|
350 |
+
if init.name == node.input[1]
|
351 |
+
)
|
352 |
+
)
|
353 |
+
node.input[1] = reshaped_weights_name
|
354 |
+
|
355 |
+
# Preserving the topological order of graph nodes
|
356 |
+
self.graph.node.insert(0, reshape_node)
|
357 |
+
self.graph.node.insert(0, dequantize_node)
|
358 |
+
self.graph.value_info.insert(0, shape_info)
|
359 |
+
self.graph.value_info.insert(0, dequantized_weights_info)
|
360 |
+
|
361 |
+
sqe.append(block_quantize_res.quantization_error**2)
|
362 |
+
visited_nodes.append(node.name)
|
363 |
+
|
364 |
+
onnx.checker.check_model(self.model, full_check=True)
|
365 |
+
onnx.save(self.model, self.conf.output_model_path)
|
366 |
+
|
367 |
+
self.display_summary(sqe)
|
368 |
+
|
369 |
+
|
370 |
+
def setup_args() -> argparse.Namespace:
|
371 |
+
parser = argparse.ArgumentParser(description="Blockwise quantization tool")
|
372 |
+
|
373 |
+
parser.add_argument(
|
374 |
+
"-i",
|
375 |
+
"--input_model",
|
376 |
+
type=str,
|
377 |
+
help="The path of onnx model to quantize",
|
378 |
+
required=True,
|
379 |
+
)
|
380 |
+
parser.add_argument(
|
381 |
+
"-bs",
|
382 |
+
"--block_size",
|
383 |
+
type=int,
|
384 |
+
help="The maximum size of quantization block",
|
385 |
+
required=True,
|
386 |
+
)
|
387 |
+
parser.add_argument(
|
388 |
+
"-b",
|
389 |
+
"--bits",
|
390 |
+
type=int,
|
391 |
+
help="Quantization bits",
|
392 |
+
choices=[8, 16],
|
393 |
+
default=8,
|
394 |
+
required=False,
|
395 |
+
)
|
396 |
+
parser.add_argument(
|
397 |
+
"-o",
|
398 |
+
"--output_model",
|
399 |
+
type=str,
|
400 |
+
help="The output model path",
|
401 |
+
default="block_quantized_model.onnx",
|
402 |
+
required=False,
|
403 |
+
)
|
404 |
+
|
405 |
+
return parser.parse_args()
|
406 |
+
|
407 |
+
|
408 |
+
if __name__ == "__main__":
|
409 |
+
args = setup_args()
|
410 |
+
|
411 |
+
quantization_config = BlockQuantizeConfig(
|
412 |
+
input_model_path=args.input_model,
|
413 |
+
output_model_path=args.output_model,
|
414 |
+
block_size=args.block_size,
|
415 |
+
bits=args.bits,
|
416 |
+
)
|
417 |
+
|
418 |
+
quantizer = BlockQuantizer(quantization_config)
|
419 |
+
quantizer.run()
|
tools/quantize/requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
opencv-python>=4.10.0
|
|
|
2 |
onnx
|
3 |
onnxruntime
|
4 |
onnxruntime-extensions
|
|
|
1 |
opencv-python>=4.10.0
|
2 |
+
numpy
|
3 |
onnx
|
4 |
onnxruntime
|
5 |
onnxruntime-extensions
|