Add LPD_YuNet for License Plate Detection (#56)
Browse files* add lpd_yunet
* add quantization and quantized model
* quantize with inc instead
* update benchmark results
- README.md +1 -0
- benchmark/config/license_plate_detection_yunet.yaml +22 -0
- benchmark/download_data.py +4 -0
- models/__init__.py +2 -1
- models/license_plate_detection_yunet/LICENSE +203 -0
- models/license_plate_detection_yunet/README.md +22 -0
- models/license_plate_detection_yunet/demo.py +120 -0
- models/license_plate_detection_yunet/lpd_yunet.py +135 -0
- tools/quantize/inc_configs/lpd_yunet.yaml +40 -0
- tools/quantize/quantize-inc.py +17 -6
README.md
CHANGED
@@ -18,6 +18,7 @@ Guidelines:
|
|
18 |
|-------|------------|----------------|--------------|-----------------|--------------|-------------|
|
19 |
| [YuNet](./models/face_detection_yunet) | 160x120 | 1.45 | 6.22 | 12.18 | 4.04 | 86.69 |
|
20 |
| [SFace](./models/face_recognition_sface) | 112x112 | 8.65 | 99.20 | 24.88 | 46.25 | --- |
|
|
|
21 |
| [DB-IC15](./models/text_detection_db) | 640x480 | 142.91 | 2835.91 | 208.41 | --- | --- |
|
22 |
| [DB-TD500](./models/text_detection_db) | 640x480 | 142.91 | 2841.71 | 210.51 | --- | --- |
|
23 |
| [CRNN-EN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
|
|
|
18 |
|-------|------------|----------------|--------------|-----------------|--------------|-------------|
|
19 |
| [YuNet](./models/face_detection_yunet) | 160x120 | 1.45 | 6.22 | 12.18 | 4.04 | 86.69 |
|
20 |
| [SFace](./models/face_recognition_sface) | 112x112 | 8.65 | 99.20 | 24.88 | 46.25 | --- |
|
21 |
+
| [LPD-YuNet](./models/license_plate_detection_yunet/) | 320x240 | --- | 168.03 | 56.12 | 154.20\* | |
|
22 |
| [DB-IC15](./models/text_detection_db) | 640x480 | 142.91 | 2835.91 | 208.41 | --- | --- |
|
23 |
| [DB-TD500](./models/text_detection_db) | 640x480 | 142.91 | 2841.71 | 210.51 | --- | --- |
|
24 |
| [CRNN-EN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
|
benchmark/config/license_plate_detection_yunet.yaml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Benchmark:
|
2 |
+
name: "License Plate Detection Benchmark"
|
3 |
+
type: "Detection"
|
4 |
+
data:
|
5 |
+
path: "benchmark/data/license_plate_detection"
|
6 |
+
files: ["1.jpg", "2.jpg", "3.jpg", "4.jpg"]
|
7 |
+
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
+
- [320, 240]
|
9 |
+
metric:
|
10 |
+
warmup: 30
|
11 |
+
repeat: 10
|
12 |
+
reduction: "median"
|
13 |
+
backend: "default"
|
14 |
+
target: "cpu"
|
15 |
+
|
16 |
+
Model:
|
17 |
+
name: "LPD_YuNet"
|
18 |
+
modelPath: "models/license_plate_detection_yunet/license_plate_detection_lpd_yunet_2022may.onnx"
|
19 |
+
confThreshold: 0.8
|
20 |
+
nmsThreshold: 0.3
|
21 |
+
topK: 5000
|
22 |
+
keepTopK: 750
|
benchmark/download_data.py
CHANGED
@@ -201,6 +201,10 @@ data_downloaders = dict(
|
|
201 |
url='https://drive.google.com/u/0/uc?id=1qScOzehV8OIzJJLuD_LMvZq15YcWd_VV&export=download',
|
202 |
sha='c0d4f811d38c6f833364b9196a719307598213a1',
|
203 |
filename='palm_detection.zip'),
|
|
|
|
|
|
|
|
|
204 |
)
|
205 |
|
206 |
if __name__ == '__main__':
|
|
|
201 |
url='https://drive.google.com/u/0/uc?id=1qScOzehV8OIzJJLuD_LMvZq15YcWd_VV&export=download',
|
202 |
sha='c0d4f811d38c6f833364b9196a719307598213a1',
|
203 |
filename='palm_detection.zip'),
|
204 |
+
license_plate_detection=Downloader(name='license_plate_detection',
|
205 |
+
url='https://drive.google.com/u/0/uc?id=1cf9MEyUqMMy8lLeDGd1any6tM_SsSmny&export=download',
|
206 |
+
sha='997acb143ddc4531e6e41365fb7ad4722064564c',
|
207 |
+
filename='license_plate_detection.zip'),
|
208 |
)
|
209 |
|
210 |
if __name__ == '__main__':
|
models/__init__.py
CHANGED
@@ -10,6 +10,7 @@ from .person_reid_youtureid.youtureid import YoutuReID
|
|
10 |
from .image_classification_mobilenet.mobilenet_v1 import MobileNetV1
|
11 |
from .image_classification_mobilenet.mobilenet_v2 import MobileNetV2
|
12 |
from .palm_detection_mediapipe.mp_palmdet import MPPalmDet
|
|
|
13 |
|
14 |
class Registery:
|
15 |
def __init__(self, name):
|
@@ -35,4 +36,4 @@ MODELS.register(YoutuReID)
|
|
35 |
MODELS.register(MobileNetV1)
|
36 |
MODELS.register(MobileNetV2)
|
37 |
MODELS.register(MPPalmDet)
|
38 |
-
|
|
|
10 |
from .image_classification_mobilenet.mobilenet_v1 import MobileNetV1
|
11 |
from .image_classification_mobilenet.mobilenet_v2 import MobileNetV2
|
12 |
from .palm_detection_mediapipe.mp_palmdet import MPPalmDet
|
13 |
+
from .license_plate_detection_yunet.lpd_yunet import LPD_YuNet
|
14 |
|
15 |
class Registery:
|
16 |
def __init__(self, name):
|
|
|
36 |
MODELS.register(MobileNetV1)
|
37 |
MODELS.register(MobileNetV2)
|
38 |
MODELS.register(MPPalmDet)
|
39 |
+
MODELS.register(LPD_YuNet)
|
models/license_plate_detection_yunet/LICENSE
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright (c) 2022 WATRIX
|
191 |
+
Author: Dong Xu
|
192 |
+
|
193 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
194 |
+
you may not use this file except in compliance with the License.
|
195 |
+
You may obtain a copy of the License at
|
196 |
+
|
197 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
198 |
+
|
199 |
+
Unless required by applicable law or agreed to in writing, software
|
200 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
201 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
202 |
+
See the License for the specific language governing permissions and
|
203 |
+
limitations under the License.
|
models/license_plate_detection_yunet/README.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# License Plate Detection with YuNet
|
2 |
+
|
3 |
+
This model is contributed by Dong Xu (徐栋) from [watrix.ai](watrix.ai) (银河水滴).
|
4 |
+
|
5 |
+
Please note that the model is trained with Chinese license plates, so the detection results of other license plates with this model may be limited.
|
6 |
+
|
7 |
+
## Demo
|
8 |
+
|
9 |
+
Run the following command to try the demo:
|
10 |
+
```shell
|
11 |
+
# detect on camera input
|
12 |
+
python demo.py
|
13 |
+
# detect on an image
|
14 |
+
python demo.py --input /path/to/image
|
15 |
+
```
|
16 |
+
|
17 |
+
## License
|
18 |
+
All files in this directory are licensed under [Apache 2.0 License](./LICENSE)
|
19 |
+
|
20 |
+
## Reference
|
21 |
+
|
22 |
+
- https://github.com/ShiqiYu/libfacedetection.train
|
models/license_plate_detection_yunet/demo.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import cv2 as cv
|
5 |
+
|
6 |
+
from lpd_yunet import LPD_YuNet
|
7 |
+
|
8 |
+
def str2bool(v):
|
9 |
+
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
10 |
+
return True
|
11 |
+
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
12 |
+
return False
|
13 |
+
else:
|
14 |
+
raise NotImplementedError
|
15 |
+
|
16 |
+
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
|
17 |
+
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
|
18 |
+
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
|
19 |
+
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
|
20 |
+
try:
|
21 |
+
backends += [cv.dnn.DNN_BACKEND_TIMVX]
|
22 |
+
targets += [cv.dnn.DNN_TARGET_NPU]
|
23 |
+
help_msg_backends += "; {:d}: TIMVX"
|
24 |
+
help_msg_targets += "; {:d}: NPU"
|
25 |
+
except:
|
26 |
+
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')
|
27 |
+
|
28 |
+
parser = argparse.ArgumentParser(description='LPD-YuNet for License Plate Detection')
|
29 |
+
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
|
30 |
+
parser.add_argument('--model', '-m', type=str, default='license_plate_detection_lpd_yunet_2022may.onnx', help='Path to the model.')
|
31 |
+
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
|
32 |
+
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
|
33 |
+
parser.add_argument('--conf_threshold', type=float, default=0.9, help='Filter out faces of confidence < conf_threshold.')
|
34 |
+
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
|
35 |
+
parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.')
|
36 |
+
parser.add_argument('--keep_top_k', type=int, default=750, help='Keep keep_top_k bounding boxes after NMS.')
|
37 |
+
parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.')
|
38 |
+
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
|
39 |
+
args = parser.parse_args()
|
40 |
+
|
41 |
+
def visualize(image, dets, line_color=(0, 255, 0), text_color=(0, 0, 255), fps=None):
|
42 |
+
output = image.copy()
|
43 |
+
|
44 |
+
if fps is not None:
|
45 |
+
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)
|
46 |
+
|
47 |
+
for det in dets:
|
48 |
+
bbox = det[:-1].astype(np.int32)
|
49 |
+
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
|
50 |
+
|
51 |
+
# Draw the border of license plate
|
52 |
+
cv.line(output, (x1, y1), (x2, y2), line_color, 2)
|
53 |
+
cv.line(output, (x2, y2), (x3, y3), line_color, 2)
|
54 |
+
cv.line(output, (x3, y3), (x4, y4), line_color, 2)
|
55 |
+
cv.line(output, (x4, y4), (x1, y1), line_color, 2)
|
56 |
+
|
57 |
+
return output
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
# Instantiate LPD-YuNet
|
61 |
+
model = LPD_YuNet(modelPath=args.model,
|
62 |
+
confThreshold=args.conf_threshold,
|
63 |
+
nmsThreshold=args.nms_threshold,
|
64 |
+
topK=args.top_k,
|
65 |
+
keepTopK=args.keep_top_k,
|
66 |
+
backendId=args.backend,
|
67 |
+
targetId=args.target)
|
68 |
+
|
69 |
+
# If input is an image
|
70 |
+
if args.input is not None:
|
71 |
+
image = cv.imread(args.input)
|
72 |
+
h, w, _ = image.shape
|
73 |
+
|
74 |
+
# Inference
|
75 |
+
model.setInputSize([w, h])
|
76 |
+
results = model.infer(image)
|
77 |
+
|
78 |
+
# Print results
|
79 |
+
print('{} license plates detected.'.format(results.shape[0]))
|
80 |
+
|
81 |
+
# Draw results on the input image
|
82 |
+
image = visualize(image, results)
|
83 |
+
|
84 |
+
# Save results if save is true
|
85 |
+
if args.save:
|
86 |
+
print('Resutls saved to result.jpg')
|
87 |
+
cv.imwrite('result.jpg', image)
|
88 |
+
|
89 |
+
# Visualize results in a new window
|
90 |
+
if args.vis:
|
91 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
92 |
+
cv.imshow(args.input, image)
|
93 |
+
cv.waitKey(0)
|
94 |
+
else: # Omit input to call default camera
|
95 |
+
deviceId = 0
|
96 |
+
cap = cv.VideoCapture(deviceId)
|
97 |
+
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
|
98 |
+
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
|
99 |
+
model.setInputSize([w, h])
|
100 |
+
|
101 |
+
tm = cv.TickMeter()
|
102 |
+
while cv.waitKey(1) < 0:
|
103 |
+
hasFrame, frame = cap.read()
|
104 |
+
if not hasFrame:
|
105 |
+
print('No frames grabbed!')
|
106 |
+
break
|
107 |
+
|
108 |
+
# Inference
|
109 |
+
tm.start()
|
110 |
+
results = model.infer(frame) # results is a tuple
|
111 |
+
tm.stop()
|
112 |
+
|
113 |
+
# Draw results on the input image
|
114 |
+
frame = visualize(frame, results, fps=tm.getFPS())
|
115 |
+
|
116 |
+
# Visualize results in a new Window
|
117 |
+
cv.imshow('LPD-YuNet Demo', frame)
|
118 |
+
|
119 |
+
tm.reset()
|
120 |
+
|
models/license_plate_detection_yunet/lpd_yunet.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import product
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import cv2 as cv
|
5 |
+
|
6 |
+
class LPD_YuNet:
|
7 |
+
def __init__(self, modelPath, inputSize=[320, 240], confThreshold=0.8, nmsThreshold=0.3, topK=5000, keepTopK=750, backendId=0, targetId=0):
|
8 |
+
self.model_path = modelPath
|
9 |
+
self.input_size = np.array(inputSize)
|
10 |
+
self.confidence_threshold=confThreshold
|
11 |
+
self.nms_threshold = nmsThreshold
|
12 |
+
self.top_k = topK
|
13 |
+
self.keep_top_k = keepTopK
|
14 |
+
self.backend_id = backendId
|
15 |
+
self.target_id = targetId
|
16 |
+
|
17 |
+
self.output_names = ['loc', 'conf', 'iou']
|
18 |
+
self.min_sizes = [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]]
|
19 |
+
self.steps = [8, 16, 32, 64]
|
20 |
+
self.variance = [0.1, 0.2]
|
21 |
+
|
22 |
+
# load model
|
23 |
+
self.model = cv.dnn.readNet(self.model_path)
|
24 |
+
# generate anchors/priorboxes
|
25 |
+
self._priorGen()
|
26 |
+
|
27 |
+
@property
|
28 |
+
def name(self):
|
29 |
+
return self.__class__.__name__
|
30 |
+
|
31 |
+
def setBackend(self, backendId):
|
32 |
+
self.backend_id = backendId
|
33 |
+
self.model.setPreferableBackend(self.backend_id)
|
34 |
+
|
35 |
+
def setTarget(self, targetId):
|
36 |
+
self.target_id = targetId
|
37 |
+
self.model.setPreferableTarget(self.target_id)
|
38 |
+
|
39 |
+
def setInputSize(self, inputSize):
|
40 |
+
self.input_size = inputSize
|
41 |
+
# re-generate anchors/priorboxes
|
42 |
+
self._priorGen()
|
43 |
+
|
44 |
+
def _preprocess(self, image):
|
45 |
+
return cv.dnn.blobFromImage(image)
|
46 |
+
|
47 |
+
def infer(self, image):
|
48 |
+
assert image.shape[0] == self.input_size[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self.input_size[1])
|
49 |
+
assert image.shape[1] == self.input_size[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self.input_size[0])
|
50 |
+
|
51 |
+
# Preprocess
|
52 |
+
inputBlob = self._preprocess(image)
|
53 |
+
|
54 |
+
# Forward
|
55 |
+
self.model.setInput(inputBlob)
|
56 |
+
outputBlob = self.model.forward(self.output_names)
|
57 |
+
|
58 |
+
# Postprocess
|
59 |
+
results = self._postprocess(outputBlob)
|
60 |
+
|
61 |
+
return results
|
62 |
+
|
63 |
+
def _postprocess(self, blob):
|
64 |
+
# Decode
|
65 |
+
dets = self._decode(blob)
|
66 |
+
|
67 |
+
# NMS
|
68 |
+
keepIdx = cv.dnn.NMSBoxes(
|
69 |
+
bboxes=dets[:, 0:4].tolist(),
|
70 |
+
scores=dets[:, -1].tolist(),
|
71 |
+
score_threshold=self.confidence_threshold,
|
72 |
+
nms_threshold=self.nms_threshold,
|
73 |
+
top_k=self.top_k
|
74 |
+
) # box_num x class_num
|
75 |
+
if len(keepIdx) > 0:
|
76 |
+
dets = dets[keepIdx]
|
77 |
+
return dets[:self.keep_top_k]
|
78 |
+
else:
|
79 |
+
return np.empty(shape=(0, 9))
|
80 |
+
|
81 |
+
def _priorGen(self):
|
82 |
+
w, h = self.input_size
|
83 |
+
feature_map_2th = [int(int((h + 1) / 2) / 2),
|
84 |
+
int(int((w + 1) / 2) / 2)]
|
85 |
+
feature_map_3th = [int(feature_map_2th[0] / 2),
|
86 |
+
int(feature_map_2th[1] / 2)]
|
87 |
+
feature_map_4th = [int(feature_map_3th[0] / 2),
|
88 |
+
int(feature_map_3th[1] / 2)]
|
89 |
+
feature_map_5th = [int(feature_map_4th[0] / 2),
|
90 |
+
int(feature_map_4th[1] / 2)]
|
91 |
+
feature_map_6th = [int(feature_map_5th[0] / 2),
|
92 |
+
int(feature_map_5th[1] / 2)]
|
93 |
+
|
94 |
+
feature_maps = [feature_map_3th, feature_map_4th,
|
95 |
+
feature_map_5th, feature_map_6th]
|
96 |
+
|
97 |
+
priors = []
|
98 |
+
for k, f in enumerate(feature_maps):
|
99 |
+
min_sizes = self.min_sizes[k]
|
100 |
+
for i, j in product(range(f[0]), range(f[1])): # i->h, j->w
|
101 |
+
for min_size in min_sizes:
|
102 |
+
s_kx = min_size / w
|
103 |
+
s_ky = min_size / h
|
104 |
+
|
105 |
+
cx = (j + 0.5) * self.steps[k] / w
|
106 |
+
cy = (i + 0.5) * self.steps[k] / h
|
107 |
+
|
108 |
+
priors.append([cx, cy, s_kx, s_ky])
|
109 |
+
self.priors = np.array(priors, dtype=np.float32)
|
110 |
+
|
111 |
+
def _decode(self, blob):
|
112 |
+
loc, conf, iou = blob
|
113 |
+
# get score
|
114 |
+
cls_scores = conf[:, 1]
|
115 |
+
iou_scores = iou[:, 0]
|
116 |
+
# clamp
|
117 |
+
_idx = np.where(iou_scores < 0.)
|
118 |
+
iou_scores[_idx] = 0.
|
119 |
+
_idx = np.where(iou_scores > 1.)
|
120 |
+
iou_scores[_idx] = 1.
|
121 |
+
scores = np.sqrt(cls_scores * iou_scores)
|
122 |
+
scores = scores[:, np.newaxis]
|
123 |
+
|
124 |
+
scale = self.input_size
|
125 |
+
|
126 |
+
# get four corner points for bounding box
|
127 |
+
bboxes = np.hstack((
|
128 |
+
(self.priors[:, 0:2] + loc[:, 4: 6] * self.variance[0] * self.priors[:, 2:4]) * scale,
|
129 |
+
(self.priors[:, 0:2] + loc[:, 6: 8] * self.variance[0] * self.priors[:, 2:4]) * scale,
|
130 |
+
(self.priors[:, 0:2] + loc[:, 10:12] * self.variance[0] * self.priors[:, 2:4]) * scale,
|
131 |
+
(self.priors[:, 0:2] + loc[:, 12:14] * self.variance[0] * self.priors[:, 2:4]) * scale
|
132 |
+
))
|
133 |
+
|
134 |
+
dets = np.hstack((bboxes, scores))
|
135 |
+
return dets
|
tools/quantize/inc_configs/lpd_yunet.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (c) 2021 Intel Corporation
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
version: 1.0
|
17 |
+
|
18 |
+
model: # mandatory. used to specify model specific information.
|
19 |
+
name: lpd_yunet
|
20 |
+
framework: onnxrt_qlinearops # mandatory. supported values are tensorflow, pytorch, pytorch_ipex, onnxrt_integer, onnxrt_qlinear or mxnet; allow new framework backend extension.
|
21 |
+
|
22 |
+
quantization: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
|
23 |
+
approach: post_training_static_quant # optional. default value is post_training_static_quant.
|
24 |
+
calibration:
|
25 |
+
dataloader:
|
26 |
+
batch_size: 1
|
27 |
+
dataset:
|
28 |
+
dummy:
|
29 |
+
shape: [1, 3, 240, 320]
|
30 |
+
low: 0.0
|
31 |
+
high: 127.0
|
32 |
+
dtype: float32
|
33 |
+
label: True
|
34 |
+
|
35 |
+
tuning:
|
36 |
+
accuracy_criterion:
|
37 |
+
relative: 0.02 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
|
38 |
+
exit_policy:
|
39 |
+
timeout: 0 # optional. tuning timeout (seconds). default value is 0 which means early stop. combine with max_trials field to decide when to exit.
|
40 |
+
random_seed: 9527 # optional. random seed for deterministic tuning.
|
tools/quantize/quantize-inc.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
-
import numpy as
|
4 |
import cv2 as cv
|
5 |
|
6 |
import onnx
|
7 |
-
from neural_compressor.experimental import Quantization, common
|
8 |
|
9 |
class Quantize:
|
10 |
def __init__(self, model_path, config_path, custom_dataset=None):
|
@@ -20,7 +20,7 @@ class Quantize:
|
|
20 |
output_name = '{}-int8-quantized.onnx'.format(self.model_path[:-5])
|
21 |
|
22 |
model = onnx.load(self.model_path)
|
23 |
-
quantizer =
|
24 |
if self.custom_dataset is not None:
|
25 |
quantizer.calib_dataloader = common.DataLoader(self.custom_dataset)
|
26 |
quantizer.model = common.Model(model)
|
@@ -28,8 +28,11 @@ class Quantize:
|
|
28 |
q_model.save(output_name)
|
29 |
|
30 |
class Dataset:
|
31 |
-
def __init__(self, root):
|
32 |
self.root = root
|
|
|
|
|
|
|
33 |
self.image_list = self.load_image_list(self.root)
|
34 |
|
35 |
def load_image_list(self, path):
|
@@ -37,11 +40,16 @@ class Dataset:
|
|
37 |
for f in os.listdir(path):
|
38 |
if not f.endswith('.jpg'):
|
39 |
continue
|
40 |
-
image_list.append(f)
|
41 |
return image_list
|
42 |
|
43 |
def __getitem__(self, idx):
|
44 |
img = cv.imread(self.image_list[idx])
|
|
|
|
|
|
|
|
|
|
|
45 |
return img, 1
|
46 |
|
47 |
def __len__(self):
|
@@ -54,7 +62,10 @@ models=dict(
|
|
54 |
config_path='./inc_configs/mobilenet.yaml'),
|
55 |
mppalm_det=Quantize(model_path='../../models/palm_detection_mediapipe/palm_detection_mediapipe_2022may.onnx',
|
56 |
config_path='./inc_configs/mppalmdet.yaml',
|
57 |
-
custom_dataset=Dataset(root='../../benchmark/data/palm_detection'))
|
|
|
|
|
|
|
58 |
)
|
59 |
|
60 |
if __name__ == '__main__':
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
+
import numpy as np
|
4 |
import cv2 as cv
|
5 |
|
6 |
import onnx
|
7 |
+
from neural_compressor.experimental import Quantization, common
|
8 |
|
9 |
class Quantize:
|
10 |
def __init__(self, model_path, config_path, custom_dataset=None):
|
|
|
20 |
output_name = '{}-int8-quantized.onnx'.format(self.model_path[:-5])
|
21 |
|
22 |
model = onnx.load(self.model_path)
|
23 |
+
quantizer = Quantization(self.config_path)
|
24 |
if self.custom_dataset is not None:
|
25 |
quantizer.calib_dataloader = common.DataLoader(self.custom_dataset)
|
26 |
quantizer.model = common.Model(model)
|
|
|
28 |
q_model.save(output_name)
|
29 |
|
30 |
class Dataset:
|
31 |
+
def __init__(self, root, size=None, toTensor=False):
|
32 |
self.root = root
|
33 |
+
self.size = size
|
34 |
+
self.toTensor = toTensor
|
35 |
+
|
36 |
self.image_list = self.load_image_list(self.root)
|
37 |
|
38 |
def load_image_list(self, path):
|
|
|
40 |
for f in os.listdir(path):
|
41 |
if not f.endswith('.jpg'):
|
42 |
continue
|
43 |
+
image_list.append(os.path.join(path, f))
|
44 |
return image_list
|
45 |
|
46 |
def __getitem__(self, idx):
|
47 |
img = cv.imread(self.image_list[idx])
|
48 |
+
if self.size:
|
49 |
+
img = cv.resize(img, dsize=self.size)
|
50 |
+
if self.toTensor:
|
51 |
+
img = img.transpose(2, 0, 1) # hwc -> chw
|
52 |
+
img = img.astype(np.float32)
|
53 |
return img, 1
|
54 |
|
55 |
def __len__(self):
|
|
|
62 |
config_path='./inc_configs/mobilenet.yaml'),
|
63 |
mppalm_det=Quantize(model_path='../../models/palm_detection_mediapipe/palm_detection_mediapipe_2022may.onnx',
|
64 |
config_path='./inc_configs/mppalmdet.yaml',
|
65 |
+
custom_dataset=Dataset(root='../../benchmark/data/palm_detection')),
|
66 |
+
lpd_yunet=Quantize(model_path='../../models/license_plate_detection_yunet/license_plate_detection_lpd_yunet_2022may.onnx',
|
67 |
+
config_path='./inc_configs/lpd_yunet.yaml',
|
68 |
+
custom_dataset=Dataset(root='../../benchmark/data/license_plate_detection', size=(320, 240), toTensor=True)),
|
69 |
)
|
70 |
|
71 |
if __name__ == '__main__':
|