Remove DaSiamRPN since we have its superseder VitTrack now (#213)
Browse files- README.md +2 -2
- benchmark/README.md +4 -15
- benchmark/color_table.svg +145 -325
- benchmark/config/object_tracking_dasiamrpn.yaml +0 -14
- benchmark/table_config.yaml +0 -7
- models/__init__.py +0 -2
- models/object_tracking_dasiamrpn/LICENSE +0 -202
- models/object_tracking_dasiamrpn/README.md +0 -37
- models/object_tracking_dasiamrpn/dasiamrpn.py +0 -48
- models/object_tracking_dasiamrpn/demo.py +0 -118
- tools/quantize/quantize-ort.py +1 -1
README.md
CHANGED
|
@@ -71,9 +71,9 @@ Some examples are listed below. You can find more in the directory of each model
|
|
| 71 |
|
| 72 |

|
| 73 |
|
| 74 |
-
### Object Tracking with [
|
| 75 |
|
| 76 |
-

|
| 79 |
|
|
|
|
| 71 |
|
| 72 |

|
| 73 |
|
| 74 |
+
### Object Tracking with [VitTrack](./models/object_tracking_vittrack/)
|
| 75 |
|
| 76 |
+

|
| 77 |
|
| 78 |
### Palm Detection with [MP-PalmDet](./models/palm_detection_mediapipe/)
|
| 79 |
|
benchmark/README.md
CHANGED
|
@@ -31,7 +31,7 @@ python benchmark.py --all --fp32
|
|
| 31 |
|
| 32 |
# All configs but exclude some of them (fill with config name keywords, not sensitive to upper/lower case, seperate with colons)
|
| 33 |
python benchmark.py --all --cfg_exclude wechat
|
| 34 |
-
python benchmark.py --all --cfg_exclude wechat:
|
| 35 |
|
| 36 |
# All configs but exclude some of the models (fill with exact model names, sensitive to upper/lower case, seperate with colons)
|
| 37 |
python benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
|
|
@@ -94,7 +94,6 @@ mean median min input size model
|
|
| 94 |
46.10 47.53 43.06 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 95 |
144.89 149.58 125.71 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 96 |
143.83 146.39 119.75 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 97 |
-
23.43 22.82 20.90 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 98 |
12.99 13.11 12.14 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 99 |
12.64 12.44 10.82 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 100 |
12.64 11.83 11.03 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
@@ -149,7 +148,6 @@ mean median min input size model
|
|
| 149 |
212.90 212.93 209.55 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 150 |
1690.06 2303.34 1480.63 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 151 |
1489.54 1435.48 1308.12 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 152 |
-
564.90 580.35 527.49 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 153 |
356.63 357.29 354.42 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 154 |
217.52 229.39 101.61 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 155 |
198.63 198.25 196.68 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
@@ -205,7 +203,6 @@ mean median min input size model
|
|
| 205 |
216.18 216.19 214.30 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 206 |
1207.83 1208.71 1203.64 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 207 |
1236.98 1250.21 1203.64 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 208 |
-
456.79 456.90 445.83 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 209 |
124.89 125.25 124.53 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 210 |
107.99 109.82 94.05 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 211 |
108.41 108.33 107.91 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
@@ -244,7 +241,6 @@ mean median min input size model
|
|
| 244 |
54.24 55.24 52.87 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 245 |
63.63 63.43 63.32 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 246 |
371.45 378.00 366.39 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 247 |
-
77.50 77.73 76.16 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 248 |
33.85 33.90 33.61 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 249 |
38.16 37.33 37.10 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
| 250 |
91.65 91.98 89.90 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
|
@@ -275,7 +271,6 @@ mean median min input size model
|
|
| 275 |
366.46 366.88 363.46 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 276 |
163.06 163.34 161.77 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 277 |
301.10 311.52 297.74 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 278 |
-
53.34 54.30 51.79 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 279 |
149.37 149.95 148.01 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 280 |
153.89 153.96 153.43 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
| 281 |
44.29 44.03 43.62 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
|
@@ -323,7 +318,6 @@ mean median min input size model
|
|
| 323 |
212.69 262.75 170.88 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 324 |
1110.87 1112.27 1085.31 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 325 |
1128.73 1157.12 1085.31 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 326 |
-
382.57 464.42 354.66 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 327 |
147.01 144.01 139.27 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 328 |
119.70 118.95 94.09 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 329 |
107.63 107.09 105.61 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
@@ -404,7 +398,6 @@ mean median min input size model
|
|
| 404 |
322.98 323.45 312.13 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 405 |
1875.33 1877.53 1871.26 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 406 |
1989.04 2005.25 1871.26 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 407 |
-
637.54 640.61 626.98 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 408 |
159.80 159.62 159.40 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 409 |
152.18 152.86 145.56 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 410 |
145.83 145.77 145.45 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
@@ -426,7 +419,7 @@ mean median min input size model
|
|
| 426 |
NPU (CANN):
|
| 427 |
|
| 428 |
```
|
| 429 |
-
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat:
|
| 430 |
Benchmarking ...
|
| 431 |
backend=cv.dnn.DNN_BACKEND_CANN
|
| 432 |
target=cv.dnn.DNN_TARGET_NPU
|
|
@@ -485,7 +478,6 @@ mean median min input size model
|
|
| 485 |
1903.82 1962.71 1533.79 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 486 |
37604.10 37569.30 37502.48 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 487 |
24229.20 25577.94 13483.54 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 488 |
-
14860.23 14988.15 14769.91 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 489 |
1133.44 1131.54 1124.83 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 490 |
883.96 919.07 655.33 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 491 |
1430.98 1424.55 1415.68 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
@@ -541,7 +533,6 @@ mean median min input size model
|
|
| 541 |
117.28 150.31 83.33 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 542 |
553.58 558.76 535.47 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 543 |
594.18 592.64 535.47 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 544 |
-
138.82 151.00 113.82 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 545 |
56.35 55.73 55.25 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 546 |
57.07 57.19 55.25 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 547 |
47.94 48.41 47.05 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
@@ -596,7 +587,6 @@ mean median min input size model
|
|
| 596 |
406.28 416.58 385.68 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 597 |
2608.90 2612.42 2597.93 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 598 |
2609.88 2609.39 2597.93 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 599 |
-
809.55 814.66 794.67 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 600 |
228.95 228.74 228.35 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 601 |
227.97 228.61 226.76 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 602 |
192.29 192.26 191.74 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
@@ -653,7 +643,6 @@ mean median min input size model
|
|
| 653 |
3002.36 3047.94 2655.38 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 654 |
50678.08 50651.82 50651.19 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 655 |
36249.71 37771.22 24606.37 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
| 656 |
-
19974.99 19984.80 19948.63 [1280, 720] DaSiamRPN with ['object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx', 'object_tracking_dasiamrpn_kernel_r1_2021nov.onnx', 'object_tracking_dasiamrpn_model_2021nov.onnx']
|
| 657 |
1502.15 1501.98 1500.99 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 658 |
1300.15 1320.44 1137.60 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 659 |
1993.05 1993.98 1991.86 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
@@ -680,9 +669,9 @@ Specs: [details_cn](https://doc.rvspace.org/VisionFive2/PB/VisionFive_2/specific
|
|
| 680 |
|
| 681 |
CPU:
|
| 682 |
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
|
| 683 |
-
<!-- config
|
| 684 |
```
|
| 685 |
-
$ python3 benchmark.py --all --cfg_exclude wechat:
|
| 686 |
Benchmarking ...
|
| 687 |
backend=cv.dnn.DNN_BACKEND_OPENCV
|
| 688 |
target=cv.dnn.DNN_TARGET_CPU
|
|
|
|
| 31 |
|
| 32 |
# All configs but exclude some of them (fill with config name keywords, not sensitive to upper/lower case, seperate with colons)
|
| 33 |
python benchmark.py --all --cfg_exclude wechat
|
| 34 |
+
python benchmark.py --all --cfg_exclude wechat:crnn
|
| 35 |
|
| 36 |
# All configs but exclude some of the models (fill with exact model names, sensitive to upper/lower case, seperate with colons)
|
| 37 |
python benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx
|
|
|
|
| 94 |
46.10 47.53 43.06 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 95 |
144.89 149.58 125.71 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 96 |
143.83 146.39 119.75 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
|
|
|
| 97 |
12.99 13.11 12.14 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 98 |
12.64 12.44 10.82 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 99 |
12.64 11.83 11.03 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
|
|
| 148 |
212.90 212.93 209.55 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 149 |
1690.06 2303.34 1480.63 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 150 |
1489.54 1435.48 1308.12 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
|
|
|
| 151 |
356.63 357.29 354.42 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 152 |
217.52 229.39 101.61 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 153 |
198.63 198.25 196.68 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
|
|
| 203 |
216.18 216.19 214.30 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 204 |
1207.83 1208.71 1203.64 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 205 |
1236.98 1250.21 1203.64 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
|
|
|
| 206 |
124.89 125.25 124.53 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 207 |
107.99 109.82 94.05 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 208 |
108.41 108.33 107.91 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
|
|
| 241 |
54.24 55.24 52.87 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 242 |
63.63 63.43 63.32 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 243 |
371.45 378.00 366.39 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
|
|
|
| 244 |
33.85 33.90 33.61 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 245 |
38.16 37.33 37.10 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
| 246 |
91.65 91.98 89.90 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
|
|
|
| 271 |
366.46 366.88 363.46 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
|
| 272 |
163.06 163.34 161.77 [416, 416] NanoDet with ['object_detection_nanodet_2022nov.onnx']
|
| 273 |
301.10 311.52 297.74 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
|
|
|
| 274 |
149.37 149.95 148.01 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 275 |
153.89 153.96 153.43 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
| 276 |
44.29 44.03 43.62 [128, 256] YoutuReID with ['person_reid_youtu_2021nov.onnx']
|
|
|
|
| 318 |
212.69 262.75 170.88 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 319 |
1110.87 1112.27 1085.31 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 320 |
1128.73 1157.12 1085.31 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
|
|
|
| 321 |
147.01 144.01 139.27 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 322 |
119.70 118.95 94.09 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 323 |
107.63 107.09 105.61 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
|
|
| 398 |
322.98 323.45 312.13 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 399 |
1875.33 1877.53 1871.26 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 400 |
1989.04 2005.25 1871.26 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
|
|
|
| 401 |
159.80 159.62 159.40 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 402 |
152.18 152.86 145.56 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 403 |
145.83 145.77 145.45 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
|
|
| 419 |
NPU (CANN):
|
| 420 |
|
| 421 |
```
|
| 422 |
+
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat:crnn --model_exclude pose_estimation_mediapipe_2023mar.onnx --cfg_overwrite_backend_target 4
|
| 423 |
Benchmarking ...
|
| 424 |
backend=cv.dnn.DNN_BACKEND_CANN
|
| 425 |
target=cv.dnn.DNN_TARGET_NPU
|
|
|
|
| 478 |
1903.82 1962.71 1533.79 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 479 |
37604.10 37569.30 37502.48 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 480 |
24229.20 25577.94 13483.54 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
|
|
|
| 481 |
1133.44 1131.54 1124.83 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 482 |
883.96 919.07 655.33 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 483 |
1430.98 1424.55 1415.68 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
|
|
| 533 |
117.28 150.31 83.33 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 534 |
553.58 558.76 535.47 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 535 |
594.18 592.64 535.47 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
|
|
|
| 536 |
56.35 55.73 55.25 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 537 |
57.07 57.19 55.25 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 538 |
47.94 48.41 47.05 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
|
|
| 587 |
406.28 416.58 385.68 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 588 |
2608.90 2612.42 2597.93 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 589 |
2609.88 2609.39 2597.93 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
|
|
|
| 590 |
228.95 228.74 228.35 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 591 |
227.97 228.61 226.76 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 592 |
192.29 192.26 191.74 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
|
|
| 643 |
3002.36 3047.94 2655.38 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
| 644 |
50678.08 50651.82 50651.19 [640, 640] YoloX with ['object_detection_yolox_2022nov.onnx']
|
| 645 |
36249.71 37771.22 24606.37 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
|
|
|
| 646 |
1502.15 1501.98 1500.99 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
|
| 647 |
1300.15 1320.44 1137.60 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
| 648 |
1993.05 1993.98 1991.86 [224, 224] MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
|
|
|
|
| 669 |
|
| 670 |
CPU:
|
| 671 |
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
|
| 672 |
+
<!-- config vittrack is excluded due to opencv cannot find ffmpeg and its components -->
|
| 673 |
```
|
| 674 |
+
$ python3 benchmark.py --all --cfg_exclude wechat:vittrack
|
| 675 |
Benchmarking ...
|
| 676 |
backend=cv.dnn.DNN_BACKEND_OPENCV
|
| 677 |
target=cv.dnn.DNN_TARGET_CPU
|
benchmark/color_table.svg
CHANGED
|
|
|
|
benchmark/config/object_tracking_dasiamrpn.yaml
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
Benchmark:
|
| 2 |
-
name: "Object Tracking Benchmark"
|
| 3 |
-
type: "Tracking"
|
| 4 |
-
data:
|
| 5 |
-
type: "TrackingVideoLoader"
|
| 6 |
-
path: "data/object_tracking"
|
| 7 |
-
files: ["throw_cup.mp4"]
|
| 8 |
-
metric:
|
| 9 |
-
type: "Tracking"
|
| 10 |
-
backend: "default"
|
| 11 |
-
target: "cpu"
|
| 12 |
-
|
| 13 |
-
Model:
|
| 14 |
-
name: "DaSiamRPN"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
benchmark/table_config.yaml
CHANGED
|
@@ -122,13 +122,6 @@ Models:
|
|
| 122 |
acceptable_time: 100
|
| 123 |
keyword: "WeChatQRCode"
|
| 124 |
|
| 125 |
-
- name: "DaSiamRPN"
|
| 126 |
-
task: "Object Tracking"
|
| 127 |
-
input_size: "1280x720"
|
| 128 |
-
folder: "object_tracking_dasiamrpn"
|
| 129 |
-
acceptable_time: 3000
|
| 130 |
-
keyword: "object_tracking_dasiamrpn"
|
| 131 |
-
|
| 132 |
- name: "YoutuReID"
|
| 133 |
task: "Person Re-Identification"
|
| 134 |
input_size: "128x256"
|
|
|
|
| 122 |
acceptable_time: 100
|
| 123 |
keyword: "WeChatQRCode"
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
- name: "YoutuReID"
|
| 126 |
task: "Person Re-Identification"
|
| 127 |
input_size: "128x256"
|
models/__init__.py
CHANGED
|
@@ -11,7 +11,6 @@ from .human_segmentation_pphumanseg.pphumanseg import PPHumanSeg
|
|
| 11 |
from .person_detection_mediapipe.mp_persondet import MPPersonDet
|
| 12 |
from .pose_estimation_mediapipe.mp_pose import MPPose
|
| 13 |
from .qrcode_wechatqrcode.wechatqrcode import WeChatQRCode
|
| 14 |
-
from .object_tracking_dasiamrpn.dasiamrpn import DaSiamRPN
|
| 15 |
from .person_reid_youtureid.youtureid import YoutuReID
|
| 16 |
from .image_classification_mobilenet.mobilenet import MobileNet
|
| 17 |
from .palm_detection_mediapipe.mp_palmdet import MPPalmDet
|
|
@@ -85,7 +84,6 @@ MODELS.register(PPHumanSeg)
|
|
| 85 |
MODELS.register(MPPersonDet)
|
| 86 |
MODELS.register(MPPose)
|
| 87 |
MODELS.register(WeChatQRCode)
|
| 88 |
-
MODELS.register(DaSiamRPN)
|
| 89 |
MODELS.register(YoutuReID)
|
| 90 |
MODELS.register(MobileNet)
|
| 91 |
MODELS.register(MPPalmDet)
|
|
|
|
| 11 |
from .person_detection_mediapipe.mp_persondet import MPPersonDet
|
| 12 |
from .pose_estimation_mediapipe.mp_pose import MPPose
|
| 13 |
from .qrcode_wechatqrcode.wechatqrcode import WeChatQRCode
|
|
|
|
| 14 |
from .person_reid_youtureid.youtureid import YoutuReID
|
| 15 |
from .image_classification_mobilenet.mobilenet import MobileNet
|
| 16 |
from .palm_detection_mediapipe.mp_palmdet import MPPalmDet
|
|
|
|
| 84 |
MODELS.register(MPPersonDet)
|
| 85 |
MODELS.register(MPPose)
|
| 86 |
MODELS.register(WeChatQRCode)
|
|
|
|
| 87 |
MODELS.register(YoutuReID)
|
| 88 |
MODELS.register(MobileNet)
|
| 89 |
MODELS.register(MPPalmDet)
|
models/object_tracking_dasiamrpn/LICENSE
DELETED
|
@@ -1,202 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
Apache License
|
| 3 |
-
Version 2.0, January 2004
|
| 4 |
-
http://www.apache.org/licenses/
|
| 5 |
-
|
| 6 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 7 |
-
|
| 8 |
-
1. Definitions.
|
| 9 |
-
|
| 10 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
| 11 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
| 12 |
-
|
| 13 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
| 14 |
-
the copyright owner that is granting the License.
|
| 15 |
-
|
| 16 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
| 17 |
-
other entities that control, are controlled by, or are under common
|
| 18 |
-
control with that entity. For the purposes of this definition,
|
| 19 |
-
"control" means (i) the power, direct or indirect, to cause the
|
| 20 |
-
direction or management of such entity, whether by contract or
|
| 21 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 22 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 23 |
-
|
| 24 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
| 25 |
-
exercising permissions granted by this License.
|
| 26 |
-
|
| 27 |
-
"Source" form shall mean the preferred form for making modifications,
|
| 28 |
-
including but not limited to software source code, documentation
|
| 29 |
-
source, and configuration files.
|
| 30 |
-
|
| 31 |
-
"Object" form shall mean any form resulting from mechanical
|
| 32 |
-
transformation or translation of a Source form, including but
|
| 33 |
-
not limited to compiled object code, generated documentation,
|
| 34 |
-
and conversions to other media types.
|
| 35 |
-
|
| 36 |
-
"Work" shall mean the work of authorship, whether in Source or
|
| 37 |
-
Object form, made available under the License, as indicated by a
|
| 38 |
-
copyright notice that is included in or attached to the work
|
| 39 |
-
(an example is provided in the Appendix below).
|
| 40 |
-
|
| 41 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
| 42 |
-
form, that is based on (or derived from) the Work and for which the
|
| 43 |
-
editorial revisions, annotations, elaborations, or other modifications
|
| 44 |
-
represent, as a whole, an original work of authorship. For the purposes
|
| 45 |
-
of this License, Derivative Works shall not include works that remain
|
| 46 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
| 47 |
-
the Work and Derivative Works thereof.
|
| 48 |
-
|
| 49 |
-
"Contribution" shall mean any work of authorship, including
|
| 50 |
-
the original version of the Work and any modifications or additions
|
| 51 |
-
to that Work or Derivative Works thereof, that is intentionally
|
| 52 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 53 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
| 54 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
| 55 |
-
means any form of electronic, verbal, or written communication sent
|
| 56 |
-
to the Licensor or its representatives, including but not limited to
|
| 57 |
-
communication on electronic mailing lists, source code control systems,
|
| 58 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
| 59 |
-
Licensor for the purpose of discussing and improving the Work, but
|
| 60 |
-
excluding communication that is conspicuously marked or otherwise
|
| 61 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
| 62 |
-
|
| 63 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 64 |
-
on behalf of whom a Contribution has been received by Licensor and
|
| 65 |
-
subsequently incorporated within the Work.
|
| 66 |
-
|
| 67 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 68 |
-
this License, each Contributor hereby grants to You a perpetual,
|
| 69 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 70 |
-
copyright license to reproduce, prepare Derivative Works of,
|
| 71 |
-
publicly display, publicly perform, sublicense, and distribute the
|
| 72 |
-
Work and such Derivative Works in Source or Object form.
|
| 73 |
-
|
| 74 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
| 75 |
-
this License, each Contributor hereby grants to You a perpetual,
|
| 76 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 77 |
-
(except as stated in this section) patent license to make, have made,
|
| 78 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 79 |
-
where such license applies only to those patent claims licensable
|
| 80 |
-
by such Contributor that are necessarily infringed by their
|
| 81 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
| 82 |
-
with the Work to which such Contribution(s) was submitted. If You
|
| 83 |
-
institute patent litigation against any entity (including a
|
| 84 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 85 |
-
or a Contribution incorporated within the Work constitutes direct
|
| 86 |
-
or contributory patent infringement, then any patent licenses
|
| 87 |
-
granted to You under this License for that Work shall terminate
|
| 88 |
-
as of the date such litigation is filed.
|
| 89 |
-
|
| 90 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
| 91 |
-
Work or Derivative Works thereof in any medium, with or without
|
| 92 |
-
modifications, and in Source or Object form, provided that You
|
| 93 |
-
meet the following conditions:
|
| 94 |
-
|
| 95 |
-
(a) You must give any other recipients of the Work or
|
| 96 |
-
Derivative Works a copy of this License; and
|
| 97 |
-
|
| 98 |
-
(b) You must cause any modified files to carry prominent notices
|
| 99 |
-
stating that You changed the files; and
|
| 100 |
-
|
| 101 |
-
(c) You must retain, in the Source form of any Derivative Works
|
| 102 |
-
that You distribute, all copyright, patent, trademark, and
|
| 103 |
-
attribution notices from the Source form of the Work,
|
| 104 |
-
excluding those notices that do not pertain to any part of
|
| 105 |
-
the Derivative Works; and
|
| 106 |
-
|
| 107 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
| 108 |
-
distribution, then any Derivative Works that You distribute must
|
| 109 |
-
include a readable copy of the attribution notices contained
|
| 110 |
-
within such NOTICE file, excluding those notices that do not
|
| 111 |
-
pertain to any part of the Derivative Works, in at least one
|
| 112 |
-
of the following places: within a NOTICE text file distributed
|
| 113 |
-
as part of the Derivative Works; within the Source form or
|
| 114 |
-
documentation, if provided along with the Derivative Works; or,
|
| 115 |
-
within a display generated by the Derivative Works, if and
|
| 116 |
-
wherever such third-party notices normally appear. The contents
|
| 117 |
-
of the NOTICE file are for informational purposes only and
|
| 118 |
-
do not modify the License. You may add Your own attribution
|
| 119 |
-
notices within Derivative Works that You distribute, alongside
|
| 120 |
-
or as an addendum to the NOTICE text from the Work, provided
|
| 121 |
-
that such additional attribution notices cannot be construed
|
| 122 |
-
as modifying the License.
|
| 123 |
-
|
| 124 |
-
You may add Your own copyright statement to Your modifications and
|
| 125 |
-
may provide additional or different license terms and conditions
|
| 126 |
-
for use, reproduction, or distribution of Your modifications, or
|
| 127 |
-
for any such Derivative Works as a whole, provided Your use,
|
| 128 |
-
reproduction, and distribution of the Work otherwise complies with
|
| 129 |
-
the conditions stated in this License.
|
| 130 |
-
|
| 131 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 132 |
-
any Contribution intentionally submitted for inclusion in the Work
|
| 133 |
-
by You to the Licensor shall be under the terms and conditions of
|
| 134 |
-
this License, without any additional terms or conditions.
|
| 135 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
| 136 |
-
the terms of any separate license agreement you may have executed
|
| 137 |
-
with Licensor regarding such Contributions.
|
| 138 |
-
|
| 139 |
-
6. Trademarks. This License does not grant permission to use the trade
|
| 140 |
-
names, trademarks, service marks, or product names of the Licensor,
|
| 141 |
-
except as required for reasonable and customary use in describing the
|
| 142 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
| 143 |
-
|
| 144 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 145 |
-
agreed to in writing, Licensor provides the Work (and each
|
| 146 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 147 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 148 |
-
implied, including, without limitation, any warranties or conditions
|
| 149 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 150 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 151 |
-
appropriateness of using or redistributing the Work and assume any
|
| 152 |
-
risks associated with Your exercise of permissions under this License.
|
| 153 |
-
|
| 154 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
| 155 |
-
whether in tort (including negligence), contract, or otherwise,
|
| 156 |
-
unless required by applicable law (such as deliberate and grossly
|
| 157 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
| 158 |
-
liable to You for damages, including any direct, indirect, special,
|
| 159 |
-
incidental, or consequential damages of any character arising as a
|
| 160 |
-
result of this License or out of the use or inability to use the
|
| 161 |
-
Work (including but not limited to damages for loss of goodwill,
|
| 162 |
-
work stoppage, computer failure or malfunction, or any and all
|
| 163 |
-
other commercial damages or losses), even if such Contributor
|
| 164 |
-
has been advised of the possibility of such damages.
|
| 165 |
-
|
| 166 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
| 167 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
| 168 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 169 |
-
or other liability obligations and/or rights consistent with this
|
| 170 |
-
License. However, in accepting such obligations, You may act only
|
| 171 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
| 172 |
-
of any other Contributor, and only if You agree to indemnify,
|
| 173 |
-
defend, and hold each Contributor harmless for any liability
|
| 174 |
-
incurred by, or claims asserted against, such Contributor by reason
|
| 175 |
-
of your accepting any such warranty or additional liability.
|
| 176 |
-
|
| 177 |
-
END OF TERMS AND CONDITIONS
|
| 178 |
-
|
| 179 |
-
APPENDIX: How to apply the Apache License to your work.
|
| 180 |
-
|
| 181 |
-
To apply the Apache License to your work, attach the following
|
| 182 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 183 |
-
replaced with your own identifying information. (Don't include
|
| 184 |
-
the brackets!) The text should be enclosed in the appropriate
|
| 185 |
-
comment syntax for the file format. We also recommend that a
|
| 186 |
-
file or class name and description of purpose be included on the
|
| 187 |
-
same "printed page" as the copyright notice for easier
|
| 188 |
-
identification within third-party archives.
|
| 189 |
-
|
| 190 |
-
Copyright [yyyy] [name of copyright owner]
|
| 191 |
-
|
| 192 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
| 193 |
-
you may not use this file except in compliance with the License.
|
| 194 |
-
You may obtain a copy of the License at
|
| 195 |
-
|
| 196 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
| 197 |
-
|
| 198 |
-
Unless required by applicable law or agreed to in writing, software
|
| 199 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
| 200 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 201 |
-
See the License for the specific language governing permissions and
|
| 202 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/object_tracking_dasiamrpn/README.md
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
# DaSiamRPN
|
| 2 |
-
|
| 3 |
-
[Distractor-aware Siamese Networks for Visual Object Tracking](https://arxiv.org/abs/1808.06048)
|
| 4 |
-
|
| 5 |
-
Note:
|
| 6 |
-
|
| 7 |
-
- Model source: [opencv/samples/dnn/diasiamrpn_tracker.cpp](https://github.com/opencv/opencv/blob/ceb94d52a104c0c1287a43dfa6ba72705fb78ac1/samples/dnn/dasiamrpn_tracker.cpp#L5-L7)
|
| 8 |
-
- Visit https://github.com/foolwood/DaSiamRPN for training details.
|
| 9 |
-
|
| 10 |
-
## Demo
|
| 11 |
-
|
| 12 |
-
Run the following command to try the demo:
|
| 13 |
-
|
| 14 |
-
```shell
|
| 15 |
-
# track on camera input
|
| 16 |
-
python demo.py
|
| 17 |
-
# track on video input
|
| 18 |
-
python demo.py --input /path/to/video -v
|
| 19 |
-
|
| 20 |
-
# get help regarding various parameters
|
| 21 |
-
python demo.py --help
|
| 22 |
-
```
|
| 23 |
-
|
| 24 |
-
### Example outputs
|
| 25 |
-
|
| 26 |
-

|
| 27 |
-
|
| 28 |
-
## License
|
| 29 |
-
|
| 30 |
-
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
| 31 |
-
|
| 32 |
-
## Reference:
|
| 33 |
-
|
| 34 |
-
- DaSiamRPN Official Repository: https://github.com/foolwood/DaSiamRPN
|
| 35 |
-
- Paper: https://arxiv.org/abs/1808.06048
|
| 36 |
-
- OpenCV API `TrackerDaSiamRPN` Doc: https://docs.opencv.org/4.x/de/d93/classcv_1_1TrackerDaSiamRPN.html
|
| 37 |
-
- OpenCV Sample: https://github.com/opencv/opencv/blob/4.x/samples/dnn/dasiamrpn_tracker.cpp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/object_tracking_dasiamrpn/dasiamrpn.py
DELETED
|
@@ -1,48 +0,0 @@
|
|
| 1 |
-
# This file is part of OpenCV Zoo project.
|
| 2 |
-
# It is subject to the license terms in the LICENSE file found in the same directory.
|
| 3 |
-
#
|
| 4 |
-
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
| 5 |
-
# Third party copyrights are property of their respective owners.
|
| 6 |
-
|
| 7 |
-
import numpy as np
|
| 8 |
-
import cv2 as cv
|
| 9 |
-
|
| 10 |
-
class DaSiamRPN:
|
| 11 |
-
def __init__(self, kernel_cls1_path, kernel_r1_path, model_path, backend_id=0, target_id=0):
|
| 12 |
-
self._model_path = model_path
|
| 13 |
-
self._kernel_cls1_path = kernel_cls1_path
|
| 14 |
-
self._kernel_r1_path = kernel_r1_path
|
| 15 |
-
self._backend_id = backend_id
|
| 16 |
-
self._target_id = target_id
|
| 17 |
-
|
| 18 |
-
self._param = cv.TrackerDaSiamRPN_Params()
|
| 19 |
-
self._param.model = self._model_path
|
| 20 |
-
self._param.kernel_cls1 = self._kernel_cls1_path
|
| 21 |
-
self._param.kernel_r1 = self._kernel_r1_path
|
| 22 |
-
self._param.backend = self._backend_id
|
| 23 |
-
self._param.target = self._target_id
|
| 24 |
-
self._model = cv.TrackerDaSiamRPN.create(self._param)
|
| 25 |
-
|
| 26 |
-
@property
|
| 27 |
-
def name(self):
|
| 28 |
-
return self.__class__.__name__
|
| 29 |
-
|
| 30 |
-
def setBackendAndTarget(self, backendId, targetId):
|
| 31 |
-
self._backend_id = backendId
|
| 32 |
-
self._target_id = targetId
|
| 33 |
-
|
| 34 |
-
self._param = cv.TrackerDaSiamRPN_Params()
|
| 35 |
-
self._param.model = self._model_path
|
| 36 |
-
self._param.kernel_cls1 = self._kernel_cls1_path
|
| 37 |
-
self._param.kernel_r1 = self._kernel_r1_path
|
| 38 |
-
self._param.backend = self._backend_id
|
| 39 |
-
self._param.target = self._target_id
|
| 40 |
-
self._model = cv.TrackerDaSiamRPN.create(self._param)
|
| 41 |
-
|
| 42 |
-
def init(self, image, roi):
|
| 43 |
-
self._model.init(image, roi)
|
| 44 |
-
|
| 45 |
-
def infer(self, image):
|
| 46 |
-
isLocated, bbox = self._model.update(image)
|
| 47 |
-
score = self._model.getTrackingScore()
|
| 48 |
-
return isLocated, bbox, score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/object_tracking_dasiamrpn/demo.py
DELETED
|
@@ -1,118 +0,0 @@
|
|
| 1 |
-
# This file is part of OpenCV Zoo project.
|
| 2 |
-
# It is subject to the license terms in the LICENSE file found in the same directory.
|
| 3 |
-
#
|
| 4 |
-
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
| 5 |
-
# Third party copyrights are property of their respective owners.
|
| 6 |
-
|
| 7 |
-
import argparse
|
| 8 |
-
|
| 9 |
-
import numpy as np
|
| 10 |
-
import cv2 as cv
|
| 11 |
-
|
| 12 |
-
from dasiamrpn import DaSiamRPN
|
| 13 |
-
|
| 14 |
-
# Check OpenCV version
|
| 15 |
-
assert cv.__version__ >= "4.8.0", \
|
| 16 |
-
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
| 17 |
-
|
| 18 |
-
# Valid combinations of backends and targets
|
| 19 |
-
backend_target_pairs = [
|
| 20 |
-
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
| 21 |
-
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
| 22 |
-
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
| 23 |
-
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
| 24 |
-
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
| 25 |
-
]
|
| 26 |
-
|
| 27 |
-
parser = argparse.ArgumentParser(
|
| 28 |
-
description="Distractor-aware Siamese Networks for Visual Object Tracking (https://arxiv.org/abs/1808.06048)")
|
| 29 |
-
parser.add_argument('--input', '-i', type=str,
|
| 30 |
-
help='Usage: Set path to the input video. Omit for using default camera.')
|
| 31 |
-
parser.add_argument('--model_path', type=str, default='object_tracking_dasiamrpn_model_2021nov.onnx',
|
| 32 |
-
help='Usage: Set model path, defaults to object_tracking_dasiamrpn_model_2021nov.onnx.')
|
| 33 |
-
parser.add_argument('--kernel_cls1_path', type=str, default='object_tracking_dasiamrpn_kernel_cls1_2021nov.onnx',
|
| 34 |
-
help='Usage: Set path to dasiamrpn_kernel_cls1.onnx.')
|
| 35 |
-
parser.add_argument('--kernel_r1_path', type=str, default='object_tracking_dasiamrpn_kernel_r1_2021nov.onnx',
|
| 36 |
-
help='Usage: Set path to dasiamrpn_kernel_r1.onnx.')
|
| 37 |
-
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
| 38 |
-
help='''Choose one of the backend-target pair to run this demo:
|
| 39 |
-
{:d}: (default) OpenCV implementation + CPU,
|
| 40 |
-
{:d}: CUDA + GPU (CUDA),
|
| 41 |
-
{:d}: CUDA + GPU (CUDA FP16),
|
| 42 |
-
{:d}: TIM-VX + NPU,
|
| 43 |
-
{:d}: CANN + NPU
|
| 44 |
-
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
| 45 |
-
parser.add_argument('--save', '-s', action='store_true',
|
| 46 |
-
help='Usage: Specify to save a file with results. Invalid in case of camera input.')
|
| 47 |
-
parser.add_argument('--vis', '-v', action='store_true',
|
| 48 |
-
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
|
| 49 |
-
args = parser.parse_args()
|
| 50 |
-
|
| 51 |
-
def visualize(image, bbox, score, isLocated, fps=None, box_color=(0, 255, 0),text_color=(0, 255, 0), fontScale = 1, fontSize = 1):
|
| 52 |
-
output = image.copy()
|
| 53 |
-
h, w, _ = output.shape
|
| 54 |
-
|
| 55 |
-
if fps is not None:
|
| 56 |
-
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 30), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize)
|
| 57 |
-
|
| 58 |
-
if isLocated and score >= 0.6:
|
| 59 |
-
# bbox: Tuple of length 4
|
| 60 |
-
x, y, w, h = bbox
|
| 61 |
-
cv.rectangle(output, (x, y), (x+w, y+h), box_color, 2)
|
| 62 |
-
cv.putText(output, '{:.2f}'.format(score), (x, y+20), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize)
|
| 63 |
-
else:
|
| 64 |
-
text_size, baseline = cv.getTextSize('Target lost!', cv.FONT_HERSHEY_DUPLEX, fontScale, fontSize)
|
| 65 |
-
text_x = int((w - text_size[0]) / 2)
|
| 66 |
-
text_y = int((h - text_size[1]) / 2)
|
| 67 |
-
cv.putText(output, 'Target lost!', (text_x, text_y), cv.FONT_HERSHEY_DUPLEX, fontScale, (0, 0, 255), fontSize)
|
| 68 |
-
|
| 69 |
-
return output
|
| 70 |
-
|
| 71 |
-
if __name__ == '__main__':
|
| 72 |
-
backend_id = backend_target_pairs[args.backend_target][0]
|
| 73 |
-
target_id = backend_target_pairs[args.backend_target][1]
|
| 74 |
-
|
| 75 |
-
# Instantiate DaSiamRPN
|
| 76 |
-
model = DaSiamRPN(
|
| 77 |
-
kernel_cls1_path=args.kernel_cls1_path,
|
| 78 |
-
kernel_r1_path=args.kernel_r1_path,
|
| 79 |
-
model_path=args.model_path,
|
| 80 |
-
backend_id=backend_id,
|
| 81 |
-
target_id=target_id)
|
| 82 |
-
|
| 83 |
-
# Read from args.input
|
| 84 |
-
_input = args.input
|
| 85 |
-
if args.input is None:
|
| 86 |
-
device_id = 0
|
| 87 |
-
_input = device_id
|
| 88 |
-
video = cv.VideoCapture(_input)
|
| 89 |
-
|
| 90 |
-
# Select an object
|
| 91 |
-
has_frame, first_frame = video.read()
|
| 92 |
-
if not has_frame:
|
| 93 |
-
print('No frames grabbed!')
|
| 94 |
-
exit()
|
| 95 |
-
first_frame_copy = first_frame.copy()
|
| 96 |
-
cv.putText(first_frame_copy, "1. Drag a bounding box to track.", (0, 15), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
|
| 97 |
-
cv.putText(first_frame_copy, "2. Press ENTER to confirm", (0, 35), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
|
| 98 |
-
roi = cv.selectROI('DaSiamRPN Demo', first_frame_copy)
|
| 99 |
-
print("Selected ROI: {}".format(roi))
|
| 100 |
-
|
| 101 |
-
# Init tracker with ROI
|
| 102 |
-
model.init(first_frame, roi)
|
| 103 |
-
|
| 104 |
-
# Track frame by frame
|
| 105 |
-
tm = cv.TickMeter()
|
| 106 |
-
while cv.waitKey(1) < 0:
|
| 107 |
-
has_frame, frame = video.read()
|
| 108 |
-
if not has_frame:
|
| 109 |
-
print('End of video')
|
| 110 |
-
break
|
| 111 |
-
# Inference
|
| 112 |
-
tm.start()
|
| 113 |
-
isLocated, bbox, score = model.infer(frame)
|
| 114 |
-
tm.stop()
|
| 115 |
-
# Visualize
|
| 116 |
-
frame = visualize(frame, bbox, score, isLocated, fps=tm.getFPS())
|
| 117 |
-
cv.imshow('DaSiamRPN Demo', frame)
|
| 118 |
-
tm.reset()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/quantize/quantize-ort.py
CHANGED
|
@@ -102,7 +102,7 @@ models=dict(
|
|
| 102 |
ppresnet50=Quantize(model_path='../../models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx',
|
| 103 |
calibration_image_dir='../../benchmark/data/image_classification',
|
| 104 |
transforms=Compose([Resize(size=(224, 224))])),
|
| 105 |
-
# TBD:
|
| 106 |
youtureid=Quantize(model_path='../../models/person_reid_youtureid/person_reid_youtu_2021nov.onnx',
|
| 107 |
calibration_image_dir='../../benchmark/data/person_reid',
|
| 108 |
transforms=Compose([Resize(size=(128, 256))])),
|
|
|
|
| 102 |
ppresnet50=Quantize(model_path='../../models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx',
|
| 103 |
calibration_image_dir='../../benchmark/data/image_classification',
|
| 104 |
transforms=Compose([Resize(size=(224, 224))])),
|
| 105 |
+
# TBD: VitTrack
|
| 106 |
youtureid=Quantize(model_path='../../models/person_reid_youtureid/person_reid_youtu_2021nov.onnx',
|
| 107 |
calibration_image_dir='../../benchmark/data/person_reid',
|
| 108 |
transforms=Compose([Resize(size=(128, 256))])),
|