Add SFace visualization demo and example outputs (#231)
Browse files
README.md
CHANGED
@@ -61,6 +61,10 @@ Some examples are listed below. You can find more in the directory of each model
|
|
61 |
|
62 |

|
63 |
|
|
|
|
|
|
|
|
|
64 |
### Facial Expression Recognition with [Progressive Teacher](./models/facial_expression_recognition/)
|
65 |
|
66 |

|
|
|
61 |
|
62 |

|
63 |
|
64 |
+
### Face Recognition with [SFace](./models/face_recognition_sface/)
|
65 |
+
|
66 |
+

|
67 |
+
|
68 |
### Facial Expression Recognition with [Progressive Teacher](./models/facial_expression_recognition/)
|
69 |
|
70 |

|
models/face_recognition_sface/README.md
CHANGED
@@ -26,12 +26,18 @@ Run the following command to try the demo:
|
|
26 |
|
27 |
```shell
|
28 |
# recognize on images
|
29 |
-
python demo.py --
|
30 |
|
31 |
# get help regarding various parameters
|
32 |
python demo.py --help
|
33 |
```
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
## License
|
36 |
|
37 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
|
|
26 |
|
27 |
```shell
|
28 |
# recognize on images
|
29 |
+
python demo.py --target /path/to/image1 --query /path/to/image2
|
30 |
|
31 |
# get help regarding various parameters
|
32 |
python demo.py --help
|
33 |
```
|
34 |
|
35 |
+
### Example outputs
|
36 |
+
|
37 |
+

|
38 |
+
|
39 |
+
Note: Left part of the image is the target identity, the right part is the query. Green boxes are the same identity, red boxes are different identities compared to the left.
|
40 |
+
|
41 |
## License
|
42 |
|
43 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
models/face_recognition_sface/demo.py
CHANGED
@@ -30,10 +30,10 @@ backend_target_pairs = [
|
|
30 |
|
31 |
parser = argparse.ArgumentParser(
|
32 |
description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)")
|
33 |
-
parser.add_argument('--
|
34 |
-
help='Usage: Set path to the input image 1 (
|
35 |
-
parser.add_argument('--
|
36 |
-
help='Usage: Set path to the input image 2 (
|
37 |
parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021dec.onnx',
|
38 |
help='Usage: Set model path, defaults to face_recognition_sface_2021dec.onnx.')
|
39 |
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
@@ -46,8 +46,64 @@ parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
|
46 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
47 |
parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0,
|
48 |
help='Usage: Distance type. \'0\': cosine, \'1\': norm_l1. Defaults to \'0\'')
|
|
|
|
|
|
|
|
|
49 |
args = parser.parse_args()
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
if __name__ == '__main__':
|
52 |
backend_id = backend_target_pairs[args.backend_target][0]
|
53 |
target_id = backend_target_pairs[args.backend_target][1]
|
@@ -65,17 +121,35 @@ if __name__ == '__main__':
|
|
65 |
backendId=backend_id,
|
66 |
targetId=target_id)
|
67 |
|
68 |
-
img1 = cv.imread(args.
|
69 |
-
img2 = cv.imread(args.
|
70 |
|
71 |
# Detect faces
|
72 |
detector.setInputSize([img1.shape[1], img1.shape[0]])
|
73 |
-
|
74 |
-
assert
|
75 |
detector.setInputSize([img2.shape[1], img2.shape[0]])
|
76 |
-
|
77 |
-
assert
|
78 |
|
79 |
# Match
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
parser = argparse.ArgumentParser(
|
32 |
description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)")
|
33 |
+
parser.add_argument('--target', '-t', type=str,
|
34 |
+
help='Usage: Set path to the input image 1 (target face).')
|
35 |
+
parser.add_argument('--query', '-q', type=str,
|
36 |
+
help='Usage: Set path to the input image 2 (query).')
|
37 |
parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021dec.onnx',
|
38 |
help='Usage: Set model path, defaults to face_recognition_sface_2021dec.onnx.')
|
39 |
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
|
|
46 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
47 |
parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0,
|
48 |
help='Usage: Distance type. \'0\': cosine, \'1\': norm_l1. Defaults to \'0\'')
|
49 |
+
parser.add_argument('--save', '-s', action='store_true',
|
50 |
+
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
|
51 |
+
parser.add_argument('--vis', '-v', action='store_true',
|
52 |
+
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
|
53 |
args = parser.parse_args()
|
54 |
|
55 |
+
def visualize(img1, faces1, img2, faces2, matches, scores, target_size=[512, 512]): # target_size: (h, w)
|
56 |
+
out1 = img1.copy()
|
57 |
+
out2 = img2.copy()
|
58 |
+
matched_box_color = (0, 255, 0) # BGR
|
59 |
+
mismatched_box_color = (0, 0, 255) # BGR
|
60 |
+
|
61 |
+
# Resize to 256x256 with the same aspect ratio
|
62 |
+
padded_out1 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8)
|
63 |
+
h1, w1, _ = out1.shape
|
64 |
+
ratio1 = min(target_size[0] / out1.shape[0], target_size[1] / out1.shape[1])
|
65 |
+
new_h1 = int(h1 * ratio1)
|
66 |
+
new_w1 = int(w1 * ratio1)
|
67 |
+
resized_out1 = cv.resize(out1, (new_w1, new_h1), interpolation=cv.INTER_LINEAR).astype(np.float32)
|
68 |
+
top = max(0, target_size[0] - new_h1) // 2
|
69 |
+
bottom = top + new_h1
|
70 |
+
left = max(0, target_size[1] - new_w1) // 2
|
71 |
+
right = left + new_w1
|
72 |
+
padded_out1[top : bottom, left : right] = resized_out1
|
73 |
+
|
74 |
+
# Draw bbox
|
75 |
+
bbox1 = faces1[0][:4] * ratio1
|
76 |
+
x, y, w, h = bbox1.astype(np.int32)
|
77 |
+
cv.rectangle(padded_out1, (x + left, y + top), (x + left + w, y + top + h), matched_box_color, 2)
|
78 |
+
|
79 |
+
# Resize to 256x256 with the same aspect ratio
|
80 |
+
padded_out2 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8)
|
81 |
+
h2, w2, _ = out2.shape
|
82 |
+
ratio2 = min(target_size[0] / out2.shape[0], target_size[1] / out2.shape[1])
|
83 |
+
new_h2 = int(h2 * ratio2)
|
84 |
+
new_w2 = int(w2 * ratio2)
|
85 |
+
resized_out2 = cv.resize(out2, (new_w2, new_h2), interpolation=cv.INTER_LINEAR).astype(np.float32)
|
86 |
+
top = max(0, target_size[0] - new_h2) // 2
|
87 |
+
bottom = top + new_h2
|
88 |
+
left = max(0, target_size[1] - new_w2) // 2
|
89 |
+
right = left + new_w2
|
90 |
+
padded_out2[top : bottom, left : right] = resized_out2
|
91 |
+
|
92 |
+
# Draw bbox
|
93 |
+
assert faces2.shape[0] == len(matches), "number of faces2 needs to match matches"
|
94 |
+
assert len(matches) == len(scores), "number of matches needs to match number of scores"
|
95 |
+
for index, match in enumerate(matches):
|
96 |
+
bbox2 = faces2[index][:4] * ratio2
|
97 |
+
x, y, w, h = bbox2.astype(np.int32)
|
98 |
+
box_color = matched_box_color if match else mismatched_box_color
|
99 |
+
cv.rectangle(padded_out2, (x + left, y + top), (x + left + w, y + top + h), box_color, 2)
|
100 |
+
|
101 |
+
score = scores[index]
|
102 |
+
text_color = matched_box_color if match else mismatched_box_color
|
103 |
+
cv.putText(padded_out2, "{:.2f}".format(score), (x + left, y + top - 5), cv.FONT_HERSHEY_DUPLEX, 0.4, text_color)
|
104 |
+
|
105 |
+
return np.concatenate([padded_out1, padded_out2], axis=1)
|
106 |
+
|
107 |
if __name__ == '__main__':
|
108 |
backend_id = backend_target_pairs[args.backend_target][0]
|
109 |
target_id = backend_target_pairs[args.backend_target][1]
|
|
|
121 |
backendId=backend_id,
|
122 |
targetId=target_id)
|
123 |
|
124 |
+
img1 = cv.imread(args.target)
|
125 |
+
img2 = cv.imread(args.query)
|
126 |
|
127 |
# Detect faces
|
128 |
detector.setInputSize([img1.shape[1], img1.shape[0]])
|
129 |
+
faces1 = detector.infer(img1)
|
130 |
+
assert faces1.shape[0] > 0, 'Cannot find a face in {}'.format(args.target)
|
131 |
detector.setInputSize([img2.shape[1], img2.shape[0]])
|
132 |
+
faces2 = detector.infer(img2)
|
133 |
+
assert faces2.shape[0] > 0, 'Cannot find a face in {}'.format(args.query)
|
134 |
|
135 |
# Match
|
136 |
+
scores = []
|
137 |
+
matches = []
|
138 |
+
for face in faces2:
|
139 |
+
result = recognizer.match(img1, faces1[0][:-1], img2, face[:-1])
|
140 |
+
scores.append(result[0])
|
141 |
+
matches.append(result[1])
|
142 |
+
|
143 |
+
# Draw results
|
144 |
+
image = visualize(img1, faces1, img2, faces2, matches, scores)
|
145 |
+
|
146 |
+
# Save results if save is true
|
147 |
+
if args.save:
|
148 |
+
print('Resutls saved to result.jpg\n')
|
149 |
+
cv.imwrite('result.jpg', image)
|
150 |
+
|
151 |
+
# Visualize results in a new window
|
152 |
+
if args.vis:
|
153 |
+
cv.namedWindow("SFace Demo", cv.WINDOW_AUTOSIZE)
|
154 |
+
cv.imshow("SFace Demo", image)
|
155 |
+
cv.waitKey(0)
|
models/face_recognition_sface/sface.py
CHANGED
@@ -57,7 +57,7 @@ class SFace:
|
|
57 |
|
58 |
if self._disType == 0: # COSINE
|
59 |
cosine_score = self._model.match(feature1, feature2, self._disType)
|
60 |
-
return 1 if cosine_score >= self._threshold_cosine else 0
|
61 |
else: # NORM_L2
|
62 |
norml2_distance = self._model.match(feature1, feature2, self._disType)
|
63 |
-
return 1 if norml2_distance <= self._threshold_norml2 else 0
|
|
|
57 |
|
58 |
if self._disType == 0: # COSINE
|
59 |
cosine_score = self._model.match(feature1, feature2, self._disType)
|
60 |
+
return cosine_score, 1 if cosine_score >= self._threshold_cosine else 0
|
61 |
else: # NORM_L2
|
62 |
norml2_distance = self._model.match(feature1, feature2, self._disType)
|
63 |
+
return norml2_distance, 1 if norml2_distance <= self._threshold_norml2 else 0
|