Add SFace visualization demo and example outputs (#231)
Browse files
README.md
CHANGED
|
@@ -61,6 +61,10 @@ Some examples are listed below. You can find more in the directory of each model
|
|
| 61 |
|
| 62 |

|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
### Facial Expression Recognition with [Progressive Teacher](./models/facial_expression_recognition/)
|
| 65 |
|
| 66 |

|
|
|
|
| 61 |
|
| 62 |

|
| 63 |
|
| 64 |
+
### Face Recognition with [SFace](./models/face_recognition_sface/)
|
| 65 |
+
|
| 66 |
+

|
| 67 |
+
|
| 68 |
### Facial Expression Recognition with [Progressive Teacher](./models/facial_expression_recognition/)
|
| 69 |
|
| 70 |

|
models/face_recognition_sface/README.md
CHANGED
|
@@ -26,12 +26,18 @@ Run the following command to try the demo:
|
|
| 26 |
|
| 27 |
```shell
|
| 28 |
# recognize on images
|
| 29 |
-
python demo.py --
|
| 30 |
|
| 31 |
# get help regarding various parameters
|
| 32 |
python demo.py --help
|
| 33 |
```
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
## License
|
| 36 |
|
| 37 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
|
|
|
| 26 |
|
| 27 |
```shell
|
| 28 |
# recognize on images
|
| 29 |
+
python demo.py --target /path/to/image1 --query /path/to/image2
|
| 30 |
|
| 31 |
# get help regarding various parameters
|
| 32 |
python demo.py --help
|
| 33 |
```
|
| 34 |
|
| 35 |
+
### Example outputs
|
| 36 |
+
|
| 37 |
+

|
| 38 |
+
|
| 39 |
+
Note: Left part of the image is the target identity, the right part is the query. Green boxes are the same identity, red boxes are different identities compared to the left.
|
| 40 |
+
|
| 41 |
## License
|
| 42 |
|
| 43 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
models/face_recognition_sface/demo.py
CHANGED
|
@@ -30,10 +30,10 @@ backend_target_pairs = [
|
|
| 30 |
|
| 31 |
parser = argparse.ArgumentParser(
|
| 32 |
description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)")
|
| 33 |
-
parser.add_argument('--
|
| 34 |
-
help='Usage: Set path to the input image 1 (
|
| 35 |
-
parser.add_argument('--
|
| 36 |
-
help='Usage: Set path to the input image 2 (
|
| 37 |
parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021dec.onnx',
|
| 38 |
help='Usage: Set model path, defaults to face_recognition_sface_2021dec.onnx.')
|
| 39 |
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
|
@@ -46,8 +46,64 @@ parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
|
| 46 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
| 47 |
parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0,
|
| 48 |
help='Usage: Distance type. \'0\': cosine, \'1\': norm_l1. Defaults to \'0\'')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
args = parser.parse_args()
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
if __name__ == '__main__':
|
| 52 |
backend_id = backend_target_pairs[args.backend_target][0]
|
| 53 |
target_id = backend_target_pairs[args.backend_target][1]
|
|
@@ -65,17 +121,35 @@ if __name__ == '__main__':
|
|
| 65 |
backendId=backend_id,
|
| 66 |
targetId=target_id)
|
| 67 |
|
| 68 |
-
img1 = cv.imread(args.
|
| 69 |
-
img2 = cv.imread(args.
|
| 70 |
|
| 71 |
# Detect faces
|
| 72 |
detector.setInputSize([img1.shape[1], img1.shape[0]])
|
| 73 |
-
|
| 74 |
-
assert
|
| 75 |
detector.setInputSize([img2.shape[1], img2.shape[0]])
|
| 76 |
-
|
| 77 |
-
assert
|
| 78 |
|
| 79 |
# Match
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
parser = argparse.ArgumentParser(
|
| 32 |
description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)")
|
| 33 |
+
parser.add_argument('--target', '-t', type=str,
|
| 34 |
+
help='Usage: Set path to the input image 1 (target face).')
|
| 35 |
+
parser.add_argument('--query', '-q', type=str,
|
| 36 |
+
help='Usage: Set path to the input image 2 (query).')
|
| 37 |
parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021dec.onnx',
|
| 38 |
help='Usage: Set model path, defaults to face_recognition_sface_2021dec.onnx.')
|
| 39 |
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
|
|
|
| 46 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
| 47 |
parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0,
|
| 48 |
help='Usage: Distance type. \'0\': cosine, \'1\': norm_l1. Defaults to \'0\'')
|
| 49 |
+
parser.add_argument('--save', '-s', action='store_true',
|
| 50 |
+
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
|
| 51 |
+
parser.add_argument('--vis', '-v', action='store_true',
|
| 52 |
+
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
|
| 53 |
args = parser.parse_args()
|
| 54 |
|
| 55 |
+
def visualize(img1, faces1, img2, faces2, matches, scores, target_size=[512, 512]): # target_size: (h, w)
|
| 56 |
+
out1 = img1.copy()
|
| 57 |
+
out2 = img2.copy()
|
| 58 |
+
matched_box_color = (0, 255, 0) # BGR
|
| 59 |
+
mismatched_box_color = (0, 0, 255) # BGR
|
| 60 |
+
|
| 61 |
+
# Resize to 256x256 with the same aspect ratio
|
| 62 |
+
padded_out1 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8)
|
| 63 |
+
h1, w1, _ = out1.shape
|
| 64 |
+
ratio1 = min(target_size[0] / out1.shape[0], target_size[1] / out1.shape[1])
|
| 65 |
+
new_h1 = int(h1 * ratio1)
|
| 66 |
+
new_w1 = int(w1 * ratio1)
|
| 67 |
+
resized_out1 = cv.resize(out1, (new_w1, new_h1), interpolation=cv.INTER_LINEAR).astype(np.float32)
|
| 68 |
+
top = max(0, target_size[0] - new_h1) // 2
|
| 69 |
+
bottom = top + new_h1
|
| 70 |
+
left = max(0, target_size[1] - new_w1) // 2
|
| 71 |
+
right = left + new_w1
|
| 72 |
+
padded_out1[top : bottom, left : right] = resized_out1
|
| 73 |
+
|
| 74 |
+
# Draw bbox
|
| 75 |
+
bbox1 = faces1[0][:4] * ratio1
|
| 76 |
+
x, y, w, h = bbox1.astype(np.int32)
|
| 77 |
+
cv.rectangle(padded_out1, (x + left, y + top), (x + left + w, y + top + h), matched_box_color, 2)
|
| 78 |
+
|
| 79 |
+
# Resize to 256x256 with the same aspect ratio
|
| 80 |
+
padded_out2 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8)
|
| 81 |
+
h2, w2, _ = out2.shape
|
| 82 |
+
ratio2 = min(target_size[0] / out2.shape[0], target_size[1] / out2.shape[1])
|
| 83 |
+
new_h2 = int(h2 * ratio2)
|
| 84 |
+
new_w2 = int(w2 * ratio2)
|
| 85 |
+
resized_out2 = cv.resize(out2, (new_w2, new_h2), interpolation=cv.INTER_LINEAR).astype(np.float32)
|
| 86 |
+
top = max(0, target_size[0] - new_h2) // 2
|
| 87 |
+
bottom = top + new_h2
|
| 88 |
+
left = max(0, target_size[1] - new_w2) // 2
|
| 89 |
+
right = left + new_w2
|
| 90 |
+
padded_out2[top : bottom, left : right] = resized_out2
|
| 91 |
+
|
| 92 |
+
# Draw bbox
|
| 93 |
+
assert faces2.shape[0] == len(matches), "number of faces2 needs to match matches"
|
| 94 |
+
assert len(matches) == len(scores), "number of matches needs to match number of scores"
|
| 95 |
+
for index, match in enumerate(matches):
|
| 96 |
+
bbox2 = faces2[index][:4] * ratio2
|
| 97 |
+
x, y, w, h = bbox2.astype(np.int32)
|
| 98 |
+
box_color = matched_box_color if match else mismatched_box_color
|
| 99 |
+
cv.rectangle(padded_out2, (x + left, y + top), (x + left + w, y + top + h), box_color, 2)
|
| 100 |
+
|
| 101 |
+
score = scores[index]
|
| 102 |
+
text_color = matched_box_color if match else mismatched_box_color
|
| 103 |
+
cv.putText(padded_out2, "{:.2f}".format(score), (x + left, y + top - 5), cv.FONT_HERSHEY_DUPLEX, 0.4, text_color)
|
| 104 |
+
|
| 105 |
+
return np.concatenate([padded_out1, padded_out2], axis=1)
|
| 106 |
+
|
| 107 |
if __name__ == '__main__':
|
| 108 |
backend_id = backend_target_pairs[args.backend_target][0]
|
| 109 |
target_id = backend_target_pairs[args.backend_target][1]
|
|
|
|
| 121 |
backendId=backend_id,
|
| 122 |
targetId=target_id)
|
| 123 |
|
| 124 |
+
img1 = cv.imread(args.target)
|
| 125 |
+
img2 = cv.imread(args.query)
|
| 126 |
|
| 127 |
# Detect faces
|
| 128 |
detector.setInputSize([img1.shape[1], img1.shape[0]])
|
| 129 |
+
faces1 = detector.infer(img1)
|
| 130 |
+
assert faces1.shape[0] > 0, 'Cannot find a face in {}'.format(args.target)
|
| 131 |
detector.setInputSize([img2.shape[1], img2.shape[0]])
|
| 132 |
+
faces2 = detector.infer(img2)
|
| 133 |
+
assert faces2.shape[0] > 0, 'Cannot find a face in {}'.format(args.query)
|
| 134 |
|
| 135 |
# Match
|
| 136 |
+
scores = []
|
| 137 |
+
matches = []
|
| 138 |
+
for face in faces2:
|
| 139 |
+
result = recognizer.match(img1, faces1[0][:-1], img2, face[:-1])
|
| 140 |
+
scores.append(result[0])
|
| 141 |
+
matches.append(result[1])
|
| 142 |
+
|
| 143 |
+
# Draw results
|
| 144 |
+
image = visualize(img1, faces1, img2, faces2, matches, scores)
|
| 145 |
+
|
| 146 |
+
# Save results if save is true
|
| 147 |
+
if args.save:
|
| 148 |
+
print('Resutls saved to result.jpg\n')
|
| 149 |
+
cv.imwrite('result.jpg', image)
|
| 150 |
+
|
| 151 |
+
# Visualize results in a new window
|
| 152 |
+
if args.vis:
|
| 153 |
+
cv.namedWindow("SFace Demo", cv.WINDOW_AUTOSIZE)
|
| 154 |
+
cv.imshow("SFace Demo", image)
|
| 155 |
+
cv.waitKey(0)
|
models/face_recognition_sface/sface.py
CHANGED
|
@@ -57,7 +57,7 @@ class SFace:
|
|
| 57 |
|
| 58 |
if self._disType == 0: # COSINE
|
| 59 |
cosine_score = self._model.match(feature1, feature2, self._disType)
|
| 60 |
-
return 1 if cosine_score >= self._threshold_cosine else 0
|
| 61 |
else: # NORM_L2
|
| 62 |
norml2_distance = self._model.match(feature1, feature2, self._disType)
|
| 63 |
-
return 1 if norml2_distance <= self._threshold_norml2 else 0
|
|
|
|
| 57 |
|
| 58 |
if self._disType == 0: # COSINE
|
| 59 |
cosine_score = self._model.match(feature1, feature2, self._disType)
|
| 60 |
+
return cosine_score, 1 if cosine_score >= self._threshold_cosine else 0
|
| 61 |
else: # NORM_L2
|
| 62 |
norml2_distance = self._model.match(feature1, feature2, self._disType)
|
| 63 |
+
return norml2_distance, 1 if norml2_distance <= self._threshold_norml2 else 0
|