Merge pull request #46 from fengyuentau/add_mobilenet_v1_v2
Browse files- README.md +2 -0
- benchmark/config/image_classification_mobilenetv1.yaml +20 -0
- benchmark/config/image_classification_mobilenetv2.yaml +20 -0
- models/__init__.py +6 -1
- models/image_classification_mobilenet/LICENSE +29 -0
- models/image_classification_mobilenet/README.md +35 -0
- models/image_classification_mobilenet/demo.py +59 -0
- models/image_classification_mobilenet/imagenet_labels.txt +1000 -0
- models/image_classification_mobilenet/mobilenet_v1.py +65 -0
- models/image_classification_mobilenet/mobilenet_v2.py +65 -0
- tools/quantize/quantize.py +10 -3
- tools/quantize/transform.py +28 -1
README.md
CHANGED
@@ -23,6 +23,8 @@ Guidelines:
|
|
23 |
| [CRNN-EN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
|
24 |
| [CRNN-CN](./models/text_recognition_crnn) | 100x32 | 73.52 | 322.16 | 239.76 | 166.79 | --- |
|
25 |
| [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58 | 98.64 | 75.45 | --- |
|
|
|
|
|
26 |
| [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 | 67.97 | 74.77 | --- |
|
27 |
| [WeChatQRCode](./models/qrcode_wechatqrcode) | 100x100 | 7.04 | 37.68 | --- | --- | --- |
|
28 |
| [DaSiamRPN](./models/object_tracking_dasiamrpn) | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
|
|
|
23 |
| [CRNN-EN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
|
24 |
| [CRNN-CN](./models/text_recognition_crnn) | 100x32 | 73.52 | 322.16 | 239.76 | 166.79 | --- |
|
25 |
| [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58 | 98.64 | 75.45 | --- |
|
26 |
+
| [MobileNet-V1](./models/image_classification_mobilenet)| 224x224 | 7.76 | 85.09 | 20.78 | 45.78 | --- |
|
27 |
+
| [MobileNet-V2](./models/image_classification_mobilenet)| 224x224 | 7.48 | 74.45 | 23.92 | 104.05 | --- |
|
28 |
| [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 | 67.97 | 74.77 | --- |
|
29 |
| [WeChatQRCode](./models/qrcode_wechatqrcode) | 100x100 | 7.04 | 37.68 | --- | --- | --- |
|
30 |
| [DaSiamRPN](./models/object_tracking_dasiamrpn) | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
|
benchmark/config/image_classification_mobilenetv1.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Benchmark:
|
2 |
+
name: "Image Classification Benchmark"
|
3 |
+
type: "Classification"
|
4 |
+
data:
|
5 |
+
path: "benchmark/data/image_classification"
|
6 |
+
files: ["coffee_mug.jpg", "umbrella.jpg", "wall_clock.jpg"]
|
7 |
+
sizes: [[256, 256]]
|
8 |
+
toRGB: True
|
9 |
+
centerCrop: 224
|
10 |
+
metric:
|
11 |
+
warmup: 30
|
12 |
+
repeat: 10
|
13 |
+
reduction: "median"
|
14 |
+
backend: "default"
|
15 |
+
target: "cpu"
|
16 |
+
|
17 |
+
Model:
|
18 |
+
name: "MobileNetV1"
|
19 |
+
modelPath: "models/image_classification_mobilenet/mobilenet_v1.onnx"
|
20 |
+
labelPath: "models/image_classification_mobilenet/imagenet_labels.txt"
|
benchmark/config/image_classification_mobilenetv2.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Benchmark:
|
2 |
+
name: "Image Classification Benchmark"
|
3 |
+
type: "Classification"
|
4 |
+
data:
|
5 |
+
path: "benchmark/data/image_classification"
|
6 |
+
files: ["coffee_mug.jpg", "umbrella.jpg", "wall_clock.jpg"]
|
7 |
+
sizes: [[256, 256]]
|
8 |
+
toRGB: True
|
9 |
+
centerCrop: 224
|
10 |
+
metric:
|
11 |
+
warmup: 30
|
12 |
+
repeat: 10
|
13 |
+
reduction: "median"
|
14 |
+
backend: "default"
|
15 |
+
target: "cpu"
|
16 |
+
|
17 |
+
Model:
|
18 |
+
name: "MobileNetV2"
|
19 |
+
modelPath: "models/image_classification_mobilenet/mobilenet_v2.onnx"
|
20 |
+
labelPath: "models/image_classification_mobilenet/imagenet_labels.txt"
|
models/__init__.py
CHANGED
@@ -7,6 +7,8 @@ from .human_segmentation_pphumanseg.pphumanseg import PPHumanSeg
|
|
7 |
from .qrcode_wechatqrcode.wechatqrcode import WeChatQRCode
|
8 |
from .object_tracking_dasiamrpn.dasiamrpn import DaSiamRPN
|
9 |
from .person_reid_youtureid.youtureid import YoutuReID
|
|
|
|
|
10 |
|
11 |
class Registery:
|
12 |
def __init__(self, name):
|
@@ -28,4 +30,7 @@ MODELS.register(PPResNet)
|
|
28 |
MODELS.register(PPHumanSeg)
|
29 |
MODELS.register(WeChatQRCode)
|
30 |
MODELS.register(DaSiamRPN)
|
31 |
-
MODELS.register(YoutuReID)
|
|
|
|
|
|
|
|
7 |
from .qrcode_wechatqrcode.wechatqrcode import WeChatQRCode
|
8 |
from .object_tracking_dasiamrpn.dasiamrpn import DaSiamRPN
|
9 |
from .person_reid_youtureid.youtureid import YoutuReID
|
10 |
+
from .image_classification_mobilenet.mobilenet_v1 import MobileNetV1
|
11 |
+
from .image_classification_mobilenet.mobilenet_v2 import MobileNetV2
|
12 |
|
13 |
class Registery:
|
14 |
def __init__(self, name):
|
|
|
30 |
MODELS.register(PPHumanSeg)
|
31 |
MODELS.register(WeChatQRCode)
|
32 |
MODELS.register(DaSiamRPN)
|
33 |
+
MODELS.register(YoutuReID)
|
34 |
+
MODELS.register(MobileNetV1)
|
35 |
+
MODELS.register(MobileNetV2)
|
36 |
+
|
models/image_classification_mobilenet/LICENSE
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2017-, Shicai Yang
|
4 |
+
All rights reserved.
|
5 |
+
|
6 |
+
Redistribution and use in source and binary forms, with or without
|
7 |
+
modification, are permitted provided that the following conditions are met:
|
8 |
+
|
9 |
+
* Redistributions of source code must retain the above copyright notice, this
|
10 |
+
list of conditions and the following disclaimer.
|
11 |
+
|
12 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
13 |
+
this list of conditions and the following disclaimer in the documentation
|
14 |
+
and/or other materials provided with the distribution.
|
15 |
+
|
16 |
+
* Neither the name of the copyright holder nor the names of its
|
17 |
+
contributors may be used to endorse or promote products derived from
|
18 |
+
this software without specific prior written permission.
|
19 |
+
|
20 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
21 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
22 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
24 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
25 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
26 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
27 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
28 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
29 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
models/image_classification_mobilenet/README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MobileNets
|
2 |
+
|
3 |
+
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
|
4 |
+
|
5 |
+
MobileNetV2: Inverted Residuals and Linear Bottlenecks
|
6 |
+
|
7 |
+
Models are taken from https://github.com/shicai/MobileNet-Caffe and converted to ONNX format using [caffe2onnx](https://github.com/asiryan/caffe2onnx):
|
8 |
+
```
|
9 |
+
python -m caffe2onnx.convert --prototxt mobilenet_deploy.prototxt --caffemodel mobilenet.caffemodel --onnx mobilenet_v1.onnx
|
10 |
+
python -m caffe2onnx.convert --prototxt mobilenet_v2_deploy.prototxt --caffemodel mobilenet_v2.caffemodel --onnx mobilenet_v2.onnx
|
11 |
+
```
|
12 |
+
|
13 |
+
NOTE: Quantized MobileNet V1 & V2 have a great drop in accuracy. We are working on producing higher accuracy MobileNets.
|
14 |
+
|
15 |
+
## Demo
|
16 |
+
|
17 |
+
Run the following command to try the demo:
|
18 |
+
```shell
|
19 |
+
# MobileNet V1
|
20 |
+
python demo.py --input /path/to/image
|
21 |
+
# MobileNet V2
|
22 |
+
python demo.py --input /path/to/image --model v2
|
23 |
+
```
|
24 |
+
|
25 |
+
## License
|
26 |
+
|
27 |
+
Model weights are licensed under [BSD-3-Clause License](./LICENSE).
|
28 |
+
Scripts are licensed unser [Apache 2.0 License](../../LICENSE).
|
29 |
+
|
30 |
+
## Reference
|
31 |
+
|
32 |
+
- MobileNet V1: https://arxiv.org/abs/1704.04861
|
33 |
+
- MobileNet V2: https://arxiv.org/abs/1801.04381
|
34 |
+
- https://github.com/shicai/MobileNet-Caffe
|
35 |
+
|
models/image_classification_mobilenet/demo.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import cv2 as cv
|
5 |
+
|
6 |
+
from mobilenet_v1 import MobileNetV1
|
7 |
+
from mobilenet_v2 import MobileNetV2
|
8 |
+
|
9 |
+
def str2bool(v):
|
10 |
+
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
11 |
+
return True
|
12 |
+
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
13 |
+
return False
|
14 |
+
else:
|
15 |
+
raise NotImplementedError
|
16 |
+
|
17 |
+
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
|
18 |
+
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
|
19 |
+
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
|
20 |
+
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
|
21 |
+
try:
|
22 |
+
backends += [cv.dnn.DNN_BACKEND_TIMVX]
|
23 |
+
targets += [cv.dnn.DNN_TARGET_NPU]
|
24 |
+
help_msg_backends += "; {:d}: TIMVX"
|
25 |
+
help_msg_targets += "; {:d}: NPU"
|
26 |
+
except:
|
27 |
+
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.')
|
28 |
+
|
29 |
+
parser = argparse.ArgumentParser(description='Demo for MobileNet V1 & V2.')
|
30 |
+
parser.add_argument('--input', '-i', type=str, help='Path to the input image.')
|
31 |
+
parser.add_argument('--model', '-m', type=str, choices=['v1', 'v2', 'v1-q', 'v2-q'], default='v1', help='Which model to use, either v1 or v2.')
|
32 |
+
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
|
33 |
+
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
|
34 |
+
parser.add_argument('--label', '-l', type=str, default='./imagenet_labels.txt', help='Path to the dataset labels.')
|
35 |
+
args = parser.parse_args()
|
36 |
+
|
37 |
+
if __name__ == '__main__':
|
38 |
+
# Instantiate ResNet
|
39 |
+
models = {
|
40 |
+
'v1': MobileNetV1(modelPath='./image_classification_mobilenetv1_2022apr.onnx', labelPath=args.label, backendId=args.backend, targetId=args.target),
|
41 |
+
'v2': MobileNetV2(modelPath='./image_classification_mobilenetv2_2022apr.onnx', labelPath=args.label, backendId=args.backend, targetId=args.target),
|
42 |
+
'v1-q': MobileNetV1(modelPath='./image_classification_mobilenetv1_2022apr-act_int8-wt_int8-quantized.onnx', labelPath=args.label, backendId=args.backend, targetId=args.target),
|
43 |
+
'v2-q': MobileNetV2(modelPath='./image_classification_mobilenetv2_2022apr-act_int8-wt_int8-quantized.onnx', labelPath=args.label, backendId=args.backend, targetId=args.target)
|
44 |
+
|
45 |
+
}
|
46 |
+
model = models[args.model]
|
47 |
+
|
48 |
+
# Read image and get a 224x224 crop from a 256x256 resized
|
49 |
+
image = cv.imread(args.input)
|
50 |
+
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
51 |
+
image = cv.resize(image, dsize=(256, 256))
|
52 |
+
image = image[16:240, 16:240, :]
|
53 |
+
|
54 |
+
# Inference
|
55 |
+
result = model.infer(image)
|
56 |
+
|
57 |
+
# Print result
|
58 |
+
print('label: {}'.format(result))
|
59 |
+
|
models/image_classification_mobilenet/imagenet_labels.txt
ADDED
@@ -0,0 +1,1000 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tench
|
2 |
+
goldfish
|
3 |
+
great white shark
|
4 |
+
tiger shark
|
5 |
+
hammerhead
|
6 |
+
electric ray
|
7 |
+
stingray
|
8 |
+
cock
|
9 |
+
hen
|
10 |
+
ostrich
|
11 |
+
brambling
|
12 |
+
goldfinch
|
13 |
+
house finch
|
14 |
+
junco
|
15 |
+
indigo bunting
|
16 |
+
robin
|
17 |
+
bulbul
|
18 |
+
jay
|
19 |
+
magpie
|
20 |
+
chickadee
|
21 |
+
water ouzel
|
22 |
+
kite
|
23 |
+
bald eagle
|
24 |
+
vulture
|
25 |
+
great grey owl
|
26 |
+
European fire salamander
|
27 |
+
common newt
|
28 |
+
eft
|
29 |
+
spotted salamander
|
30 |
+
axolotl
|
31 |
+
bullfrog
|
32 |
+
tree frog
|
33 |
+
tailed frog
|
34 |
+
loggerhead
|
35 |
+
leatherback turtle
|
36 |
+
mud turtle
|
37 |
+
terrapin
|
38 |
+
box turtle
|
39 |
+
banded gecko
|
40 |
+
common iguana
|
41 |
+
American chameleon
|
42 |
+
whiptail
|
43 |
+
agama
|
44 |
+
frilled lizard
|
45 |
+
alligator lizard
|
46 |
+
Gila monster
|
47 |
+
green lizard
|
48 |
+
African chameleon
|
49 |
+
Komodo dragon
|
50 |
+
African crocodile
|
51 |
+
American alligator
|
52 |
+
triceratops
|
53 |
+
thunder snake
|
54 |
+
ringneck snake
|
55 |
+
hognose snake
|
56 |
+
green snake
|
57 |
+
king snake
|
58 |
+
garter snake
|
59 |
+
water snake
|
60 |
+
vine snake
|
61 |
+
night snake
|
62 |
+
boa constrictor
|
63 |
+
rock python
|
64 |
+
Indian cobra
|
65 |
+
green mamba
|
66 |
+
sea snake
|
67 |
+
horned viper
|
68 |
+
diamondback
|
69 |
+
sidewinder
|
70 |
+
trilobite
|
71 |
+
harvestman
|
72 |
+
scorpion
|
73 |
+
black and gold garden spider
|
74 |
+
barn spider
|
75 |
+
garden spider
|
76 |
+
black widow
|
77 |
+
tarantula
|
78 |
+
wolf spider
|
79 |
+
tick
|
80 |
+
centipede
|
81 |
+
black grouse
|
82 |
+
ptarmigan
|
83 |
+
ruffed grouse
|
84 |
+
prairie chicken
|
85 |
+
peacock
|
86 |
+
quail
|
87 |
+
partridge
|
88 |
+
African grey
|
89 |
+
macaw
|
90 |
+
sulphur-crested cockatoo
|
91 |
+
lorikeet
|
92 |
+
coucal
|
93 |
+
bee eater
|
94 |
+
hornbill
|
95 |
+
hummingbird
|
96 |
+
jacamar
|
97 |
+
toucan
|
98 |
+
drake
|
99 |
+
red-breasted merganser
|
100 |
+
goose
|
101 |
+
black swan
|
102 |
+
tusker
|
103 |
+
echidna
|
104 |
+
platypus
|
105 |
+
wallaby
|
106 |
+
koala
|
107 |
+
wombat
|
108 |
+
jellyfish
|
109 |
+
sea anemone
|
110 |
+
brain coral
|
111 |
+
flatworm
|
112 |
+
nematode
|
113 |
+
conch
|
114 |
+
snail
|
115 |
+
slug
|
116 |
+
sea slug
|
117 |
+
chiton
|
118 |
+
chambered nautilus
|
119 |
+
Dungeness crab
|
120 |
+
rock crab
|
121 |
+
fiddler crab
|
122 |
+
king crab
|
123 |
+
American lobster
|
124 |
+
spiny lobster
|
125 |
+
crayfish
|
126 |
+
hermit crab
|
127 |
+
isopod
|
128 |
+
white stork
|
129 |
+
black stork
|
130 |
+
spoonbill
|
131 |
+
flamingo
|
132 |
+
little blue heron
|
133 |
+
American egret
|
134 |
+
bittern
|
135 |
+
crane
|
136 |
+
limpkin
|
137 |
+
European gallinule
|
138 |
+
American coot
|
139 |
+
bustard
|
140 |
+
ruddy turnstone
|
141 |
+
red-backed sandpiper
|
142 |
+
redshank
|
143 |
+
dowitcher
|
144 |
+
oystercatcher
|
145 |
+
pelican
|
146 |
+
king penguin
|
147 |
+
albatross
|
148 |
+
grey whale
|
149 |
+
killer whale
|
150 |
+
dugong
|
151 |
+
sea lion
|
152 |
+
Chihuahua
|
153 |
+
Japanese spaniel
|
154 |
+
Maltese dog
|
155 |
+
Pekinese
|
156 |
+
Shih-Tzu
|
157 |
+
Blenheim spaniel
|
158 |
+
papillon
|
159 |
+
toy terrier
|
160 |
+
Rhodesian ridgeback
|
161 |
+
Afghan hound
|
162 |
+
basset
|
163 |
+
beagle
|
164 |
+
bloodhound
|
165 |
+
bluetick
|
166 |
+
black-and-tan coonhound
|
167 |
+
Walker hound
|
168 |
+
English foxhound
|
169 |
+
redbone
|
170 |
+
borzoi
|
171 |
+
Irish wolfhound
|
172 |
+
Italian greyhound
|
173 |
+
whippet
|
174 |
+
Ibizan hound
|
175 |
+
Norwegian elkhound
|
176 |
+
otterhound
|
177 |
+
Saluki
|
178 |
+
Scottish deerhound
|
179 |
+
Weimaraner
|
180 |
+
Staffordshire bullterrier
|
181 |
+
American Staffordshire terrier
|
182 |
+
Bedlington terrier
|
183 |
+
Border terrier
|
184 |
+
Kerry blue terrier
|
185 |
+
Irish terrier
|
186 |
+
Norfolk terrier
|
187 |
+
Norwich terrier
|
188 |
+
Yorkshire terrier
|
189 |
+
wire-haired fox terrier
|
190 |
+
Lakeland terrier
|
191 |
+
Sealyham terrier
|
192 |
+
Airedale
|
193 |
+
cairn
|
194 |
+
Australian terrier
|
195 |
+
Dandie Dinmont
|
196 |
+
Boston bull
|
197 |
+
miniature schnauzer
|
198 |
+
giant schnauzer
|
199 |
+
standard schnauzer
|
200 |
+
Scotch terrier
|
201 |
+
Tibetan terrier
|
202 |
+
silky terrier
|
203 |
+
soft-coated wheaten terrier
|
204 |
+
West Highland white terrier
|
205 |
+
Lhasa
|
206 |
+
flat-coated retriever
|
207 |
+
curly-coated retriever
|
208 |
+
golden retriever
|
209 |
+
Labrador retriever
|
210 |
+
Chesapeake Bay retriever
|
211 |
+
German short-haired pointer
|
212 |
+
vizsla
|
213 |
+
English setter
|
214 |
+
Irish setter
|
215 |
+
Gordon setter
|
216 |
+
Brittany spaniel
|
217 |
+
clumber
|
218 |
+
English springer
|
219 |
+
Welsh springer spaniel
|
220 |
+
cocker spaniel
|
221 |
+
Sussex spaniel
|
222 |
+
Irish water spaniel
|
223 |
+
kuvasz
|
224 |
+
schipperke
|
225 |
+
groenendael
|
226 |
+
malinois
|
227 |
+
briard
|
228 |
+
kelpie
|
229 |
+
komondor
|
230 |
+
Old English sheepdog
|
231 |
+
Shetland sheepdog
|
232 |
+
collie
|
233 |
+
Border collie
|
234 |
+
Bouvier des Flandres
|
235 |
+
Rottweiler
|
236 |
+
German shepherd
|
237 |
+
Doberman
|
238 |
+
miniature pinscher
|
239 |
+
Greater Swiss Mountain dog
|
240 |
+
Bernese mountain dog
|
241 |
+
Appenzeller
|
242 |
+
EntleBucher
|
243 |
+
boxer
|
244 |
+
bull mastiff
|
245 |
+
Tibetan mastiff
|
246 |
+
French bulldog
|
247 |
+
Great Dane
|
248 |
+
Saint Bernard
|
249 |
+
Eskimo dog
|
250 |
+
malamute
|
251 |
+
Siberian husky
|
252 |
+
dalmatian
|
253 |
+
affenpinscher
|
254 |
+
basenji
|
255 |
+
pug
|
256 |
+
Leonberg
|
257 |
+
Newfoundland
|
258 |
+
Great Pyrenees
|
259 |
+
Samoyed
|
260 |
+
Pomeranian
|
261 |
+
chow
|
262 |
+
keeshond
|
263 |
+
Brabancon griffon
|
264 |
+
Pembroke
|
265 |
+
Cardigan
|
266 |
+
toy poodle
|
267 |
+
miniature poodle
|
268 |
+
standard poodle
|
269 |
+
Mexican hairless
|
270 |
+
timber wolf
|
271 |
+
white wolf
|
272 |
+
red wolf
|
273 |
+
coyote
|
274 |
+
dingo
|
275 |
+
dhole
|
276 |
+
African hunting dog
|
277 |
+
hyena
|
278 |
+
red fox
|
279 |
+
kit fox
|
280 |
+
Arctic fox
|
281 |
+
grey fox
|
282 |
+
tabby
|
283 |
+
tiger cat
|
284 |
+
Persian cat
|
285 |
+
Siamese cat
|
286 |
+
Egyptian cat
|
287 |
+
cougar
|
288 |
+
lynx
|
289 |
+
leopard
|
290 |
+
snow leopard
|
291 |
+
jaguar
|
292 |
+
lion
|
293 |
+
tiger
|
294 |
+
cheetah
|
295 |
+
brown bear
|
296 |
+
American black bear
|
297 |
+
ice bear
|
298 |
+
sloth bear
|
299 |
+
mongoose
|
300 |
+
meerkat
|
301 |
+
tiger beetle
|
302 |
+
ladybug
|
303 |
+
ground beetle
|
304 |
+
long-horned beetle
|
305 |
+
leaf beetle
|
306 |
+
dung beetle
|
307 |
+
rhinoceros beetle
|
308 |
+
weevil
|
309 |
+
fly
|
310 |
+
bee
|
311 |
+
ant
|
312 |
+
grasshopper
|
313 |
+
cricket
|
314 |
+
walking stick
|
315 |
+
cockroach
|
316 |
+
mantis
|
317 |
+
cicada
|
318 |
+
leafhopper
|
319 |
+
lacewing
|
320 |
+
dragonfly
|
321 |
+
damselfly
|
322 |
+
admiral
|
323 |
+
ringlet
|
324 |
+
monarch
|
325 |
+
cabbage butterfly
|
326 |
+
sulphur butterfly
|
327 |
+
lycaenid
|
328 |
+
starfish
|
329 |
+
sea urchin
|
330 |
+
sea cucumber
|
331 |
+
wood rabbit
|
332 |
+
hare
|
333 |
+
Angora
|
334 |
+
hamster
|
335 |
+
porcupine
|
336 |
+
fox squirrel
|
337 |
+
marmot
|
338 |
+
beaver
|
339 |
+
guinea pig
|
340 |
+
sorrel
|
341 |
+
zebra
|
342 |
+
hog
|
343 |
+
wild boar
|
344 |
+
warthog
|
345 |
+
hippopotamus
|
346 |
+
ox
|
347 |
+
water buffalo
|
348 |
+
bison
|
349 |
+
ram
|
350 |
+
bighorn
|
351 |
+
ibex
|
352 |
+
hartebeest
|
353 |
+
impala
|
354 |
+
gazelle
|
355 |
+
Arabian camel
|
356 |
+
llama
|
357 |
+
weasel
|
358 |
+
mink
|
359 |
+
polecat
|
360 |
+
black-footed ferret
|
361 |
+
otter
|
362 |
+
skunk
|
363 |
+
badger
|
364 |
+
armadillo
|
365 |
+
three-toed sloth
|
366 |
+
orangutan
|
367 |
+
gorilla
|
368 |
+
chimpanzee
|
369 |
+
gibbon
|
370 |
+
siamang
|
371 |
+
guenon
|
372 |
+
patas
|
373 |
+
baboon
|
374 |
+
macaque
|
375 |
+
langur
|
376 |
+
colobus
|
377 |
+
proboscis monkey
|
378 |
+
marmoset
|
379 |
+
capuchin
|
380 |
+
howler monkey
|
381 |
+
titi
|
382 |
+
spider monkey
|
383 |
+
squirrel monkey
|
384 |
+
Madagascar cat
|
385 |
+
indri
|
386 |
+
Indian elephant
|
387 |
+
African elephant
|
388 |
+
lesser panda
|
389 |
+
giant panda
|
390 |
+
barracouta
|
391 |
+
eel
|
392 |
+
coho
|
393 |
+
rock beauty
|
394 |
+
anemone fish
|
395 |
+
sturgeon
|
396 |
+
gar
|
397 |
+
lionfish
|
398 |
+
puffer
|
399 |
+
abacus
|
400 |
+
abaya
|
401 |
+
academic gown
|
402 |
+
accordion
|
403 |
+
acoustic guitar
|
404 |
+
aircraft carrier
|
405 |
+
airliner
|
406 |
+
airship
|
407 |
+
altar
|
408 |
+
ambulance
|
409 |
+
amphibian
|
410 |
+
analog clock
|
411 |
+
apiary
|
412 |
+
apron
|
413 |
+
ashcan
|
414 |
+
assault rifle
|
415 |
+
backpack
|
416 |
+
bakery
|
417 |
+
balance beam
|
418 |
+
balloon
|
419 |
+
ballpoint
|
420 |
+
Band Aid
|
421 |
+
banjo
|
422 |
+
bannister
|
423 |
+
barbell
|
424 |
+
barber chair
|
425 |
+
barbershop
|
426 |
+
barn
|
427 |
+
barometer
|
428 |
+
barrel
|
429 |
+
barrow
|
430 |
+
baseball
|
431 |
+
basketball
|
432 |
+
bassinet
|
433 |
+
bassoon
|
434 |
+
bathing cap
|
435 |
+
bath towel
|
436 |
+
bathtub
|
437 |
+
beach wagon
|
438 |
+
beacon
|
439 |
+
beaker
|
440 |
+
bearskin
|
441 |
+
beer bottle
|
442 |
+
beer glass
|
443 |
+
bell cote
|
444 |
+
bib
|
445 |
+
bicycle-built-for-two
|
446 |
+
bikini
|
447 |
+
binder
|
448 |
+
binoculars
|
449 |
+
birdhouse
|
450 |
+
boathouse
|
451 |
+
bobsled
|
452 |
+
bolo tie
|
453 |
+
bonnet
|
454 |
+
bookcase
|
455 |
+
bookshop
|
456 |
+
bottlecap
|
457 |
+
bow
|
458 |
+
bow tie
|
459 |
+
brass
|
460 |
+
brassiere
|
461 |
+
breakwater
|
462 |
+
breastplate
|
463 |
+
broom
|
464 |
+
bucket
|
465 |
+
buckle
|
466 |
+
bulletproof vest
|
467 |
+
bullet train
|
468 |
+
butcher shop
|
469 |
+
cab
|
470 |
+
caldron
|
471 |
+
candle
|
472 |
+
cannon
|
473 |
+
canoe
|
474 |
+
can opener
|
475 |
+
cardigan
|
476 |
+
car mirror
|
477 |
+
carousel
|
478 |
+
carpenters kit
|
479 |
+
carton
|
480 |
+
car wheel
|
481 |
+
cash machine
|
482 |
+
cassette
|
483 |
+
cassette player
|
484 |
+
castle
|
485 |
+
catamaran
|
486 |
+
CD player
|
487 |
+
cello
|
488 |
+
cellular telephone
|
489 |
+
chain
|
490 |
+
chainlink fence
|
491 |
+
chain mail
|
492 |
+
chain saw
|
493 |
+
chest
|
494 |
+
chiffonier
|
495 |
+
chime
|
496 |
+
china cabinet
|
497 |
+
Christmas stocking
|
498 |
+
church
|
499 |
+
cinema
|
500 |
+
cleaver
|
501 |
+
cliff dwelling
|
502 |
+
cloak
|
503 |
+
clog
|
504 |
+
cocktail shaker
|
505 |
+
coffee mug
|
506 |
+
coffeepot
|
507 |
+
coil
|
508 |
+
combination lock
|
509 |
+
computer keyboard
|
510 |
+
confectionery
|
511 |
+
container ship
|
512 |
+
convertible
|
513 |
+
corkscrew
|
514 |
+
cornet
|
515 |
+
cowboy boot
|
516 |
+
cowboy hat
|
517 |
+
cradle
|
518 |
+
crane
|
519 |
+
crash helmet
|
520 |
+
crate
|
521 |
+
crib
|
522 |
+
Crock Pot
|
523 |
+
croquet ball
|
524 |
+
crutch
|
525 |
+
cuirass
|
526 |
+
dam
|
527 |
+
desk
|
528 |
+
desktop computer
|
529 |
+
dial telephone
|
530 |
+
diaper
|
531 |
+
digital clock
|
532 |
+
digital watch
|
533 |
+
dining table
|
534 |
+
dishrag
|
535 |
+
dishwasher
|
536 |
+
disk brake
|
537 |
+
dock
|
538 |
+
dogsled
|
539 |
+
dome
|
540 |
+
doormat
|
541 |
+
drilling platform
|
542 |
+
drum
|
543 |
+
drumstick
|
544 |
+
dumbbell
|
545 |
+
Dutch oven
|
546 |
+
electric fan
|
547 |
+
electric guitar
|
548 |
+
electric locomotive
|
549 |
+
entertainment center
|
550 |
+
envelope
|
551 |
+
espresso maker
|
552 |
+
face powder
|
553 |
+
feather boa
|
554 |
+
file
|
555 |
+
fireboat
|
556 |
+
fire engine
|
557 |
+
fire screen
|
558 |
+
flagpole
|
559 |
+
flute
|
560 |
+
folding chair
|
561 |
+
football helmet
|
562 |
+
forklift
|
563 |
+
fountain
|
564 |
+
fountain pen
|
565 |
+
four-poster
|
566 |
+
freight car
|
567 |
+
French horn
|
568 |
+
frying pan
|
569 |
+
fur coat
|
570 |
+
garbage truck
|
571 |
+
gasmask
|
572 |
+
gas pump
|
573 |
+
goblet
|
574 |
+
go-kart
|
575 |
+
golf ball
|
576 |
+
golfcart
|
577 |
+
gondola
|
578 |
+
gong
|
579 |
+
gown
|
580 |
+
grand piano
|
581 |
+
greenhouse
|
582 |
+
grille
|
583 |
+
grocery store
|
584 |
+
guillotine
|
585 |
+
hair slide
|
586 |
+
hair spray
|
587 |
+
half track
|
588 |
+
hammer
|
589 |
+
hamper
|
590 |
+
hand blower
|
591 |
+
hand-held computer
|
592 |
+
handkerchief
|
593 |
+
hard disc
|
594 |
+
harmonica
|
595 |
+
harp
|
596 |
+
harvester
|
597 |
+
hatchet
|
598 |
+
holster
|
599 |
+
home theater
|
600 |
+
honeycomb
|
601 |
+
hook
|
602 |
+
hoopskirt
|
603 |
+
horizontal bar
|
604 |
+
horse cart
|
605 |
+
hourglass
|
606 |
+
iPod
|
607 |
+
iron
|
608 |
+
jack-o-lantern
|
609 |
+
jean
|
610 |
+
jeep
|
611 |
+
jersey
|
612 |
+
jigsaw puzzle
|
613 |
+
jinrikisha
|
614 |
+
joystick
|
615 |
+
kimono
|
616 |
+
knee pad
|
617 |
+
knot
|
618 |
+
lab coat
|
619 |
+
ladle
|
620 |
+
lampshade
|
621 |
+
laptop
|
622 |
+
lawn mower
|
623 |
+
lens cap
|
624 |
+
letter opener
|
625 |
+
library
|
626 |
+
lifeboat
|
627 |
+
lighter
|
628 |
+
limousine
|
629 |
+
liner
|
630 |
+
lipstick
|
631 |
+
Loafer
|
632 |
+
lotion
|
633 |
+
loudspeaker
|
634 |
+
loupe
|
635 |
+
lumbermill
|
636 |
+
magnetic compass
|
637 |
+
mailbag
|
638 |
+
mailbox
|
639 |
+
maillot
|
640 |
+
maillot
|
641 |
+
manhole cover
|
642 |
+
maraca
|
643 |
+
marimba
|
644 |
+
mask
|
645 |
+
matchstick
|
646 |
+
maypole
|
647 |
+
maze
|
648 |
+
measuring cup
|
649 |
+
medicine chest
|
650 |
+
megalith
|
651 |
+
microphone
|
652 |
+
microwave
|
653 |
+
military uniform
|
654 |
+
milk can
|
655 |
+
minibus
|
656 |
+
miniskirt
|
657 |
+
minivan
|
658 |
+
missile
|
659 |
+
mitten
|
660 |
+
mixing bowl
|
661 |
+
mobile home
|
662 |
+
Model T
|
663 |
+
modem
|
664 |
+
monastery
|
665 |
+
monitor
|
666 |
+
moped
|
667 |
+
mortar
|
668 |
+
mortarboard
|
669 |
+
mosque
|
670 |
+
mosquito net
|
671 |
+
motor scooter
|
672 |
+
mountain bike
|
673 |
+
mountain tent
|
674 |
+
mouse
|
675 |
+
mousetrap
|
676 |
+
moving van
|
677 |
+
muzzle
|
678 |
+
nail
|
679 |
+
neck brace
|
680 |
+
necklace
|
681 |
+
nipple
|
682 |
+
notebook
|
683 |
+
obelisk
|
684 |
+
oboe
|
685 |
+
ocarina
|
686 |
+
odometer
|
687 |
+
oil filter
|
688 |
+
organ
|
689 |
+
oscilloscope
|
690 |
+
overskirt
|
691 |
+
oxcart
|
692 |
+
oxygen mask
|
693 |
+
packet
|
694 |
+
paddle
|
695 |
+
paddlewheel
|
696 |
+
padlock
|
697 |
+
paintbrush
|
698 |
+
pajama
|
699 |
+
palace
|
700 |
+
panpipe
|
701 |
+
paper towel
|
702 |
+
parachute
|
703 |
+
parallel bars
|
704 |
+
park bench
|
705 |
+
parking meter
|
706 |
+
passenger car
|
707 |
+
patio
|
708 |
+
pay-phone
|
709 |
+
pedestal
|
710 |
+
pencil box
|
711 |
+
pencil sharpener
|
712 |
+
perfume
|
713 |
+
Petri dish
|
714 |
+
photocopier
|
715 |
+
pick
|
716 |
+
pickelhaube
|
717 |
+
picket fence
|
718 |
+
pickup
|
719 |
+
pier
|
720 |
+
piggy bank
|
721 |
+
pill bottle
|
722 |
+
pillow
|
723 |
+
ping-pong ball
|
724 |
+
pinwheel
|
725 |
+
pirate
|
726 |
+
pitcher
|
727 |
+
plane
|
728 |
+
planetarium
|
729 |
+
plastic bag
|
730 |
+
plate rack
|
731 |
+
plow
|
732 |
+
plunger
|
733 |
+
Polaroid camera
|
734 |
+
pole
|
735 |
+
police van
|
736 |
+
poncho
|
737 |
+
pool table
|
738 |
+
pop bottle
|
739 |
+
pot
|
740 |
+
potters wheel
|
741 |
+
power drill
|
742 |
+
prayer rug
|
743 |
+
printer
|
744 |
+
prison
|
745 |
+
projectile
|
746 |
+
projector
|
747 |
+
puck
|
748 |
+
punching bag
|
749 |
+
purse
|
750 |
+
quill
|
751 |
+
quilt
|
752 |
+
racer
|
753 |
+
racket
|
754 |
+
radiator
|
755 |
+
radio
|
756 |
+
radio telescope
|
757 |
+
rain barrel
|
758 |
+
recreational vehicle
|
759 |
+
reel
|
760 |
+
reflex camera
|
761 |
+
refrigerator
|
762 |
+
remote control
|
763 |
+
restaurant
|
764 |
+
revolver
|
765 |
+
rifle
|
766 |
+
rocking chair
|
767 |
+
rotisserie
|
768 |
+
rubber eraser
|
769 |
+
rugby ball
|
770 |
+
rule
|
771 |
+
running shoe
|
772 |
+
safe
|
773 |
+
safety pin
|
774 |
+
saltshaker
|
775 |
+
sandal
|
776 |
+
sarong
|
777 |
+
sax
|
778 |
+
scabbard
|
779 |
+
scale
|
780 |
+
school bus
|
781 |
+
schooner
|
782 |
+
scoreboard
|
783 |
+
screen
|
784 |
+
screw
|
785 |
+
screwdriver
|
786 |
+
seat belt
|
787 |
+
sewing machine
|
788 |
+
shield
|
789 |
+
shoe shop
|
790 |
+
shoji
|
791 |
+
shopping basket
|
792 |
+
shopping cart
|
793 |
+
shovel
|
794 |
+
shower cap
|
795 |
+
shower curtain
|
796 |
+
ski
|
797 |
+
ski mask
|
798 |
+
sleeping bag
|
799 |
+
slide rule
|
800 |
+
sliding door
|
801 |
+
slot
|
802 |
+
snorkel
|
803 |
+
snowmobile
|
804 |
+
snowplow
|
805 |
+
soap dispenser
|
806 |
+
soccer ball
|
807 |
+
sock
|
808 |
+
solar dish
|
809 |
+
sombrero
|
810 |
+
soup bowl
|
811 |
+
space bar
|
812 |
+
space heater
|
813 |
+
space shuttle
|
814 |
+
spatula
|
815 |
+
speedboat
|
816 |
+
spider web
|
817 |
+
spindle
|
818 |
+
sports car
|
819 |
+
spotlight
|
820 |
+
stage
|
821 |
+
steam locomotive
|
822 |
+
steel arch bridge
|
823 |
+
steel drum
|
824 |
+
stethoscope
|
825 |
+
stole
|
826 |
+
stone wall
|
827 |
+
stopwatch
|
828 |
+
stove
|
829 |
+
strainer
|
830 |
+
streetcar
|
831 |
+
stretcher
|
832 |
+
studio couch
|
833 |
+
stupa
|
834 |
+
submarine
|
835 |
+
suit
|
836 |
+
sundial
|
837 |
+
sunglass
|
838 |
+
sunglasses
|
839 |
+
sunscreen
|
840 |
+
suspension bridge
|
841 |
+
swab
|
842 |
+
sweatshirt
|
843 |
+
swimming trunks
|
844 |
+
swing
|
845 |
+
switch
|
846 |
+
syringe
|
847 |
+
table lamp
|
848 |
+
tank
|
849 |
+
tape player
|
850 |
+
teapot
|
851 |
+
teddy
|
852 |
+
television
|
853 |
+
tennis ball
|
854 |
+
thatch
|
855 |
+
theater curtain
|
856 |
+
thimble
|
857 |
+
thresher
|
858 |
+
throne
|
859 |
+
tile roof
|
860 |
+
toaster
|
861 |
+
tobacco shop
|
862 |
+
toilet seat
|
863 |
+
torch
|
864 |
+
totem pole
|
865 |
+
tow truck
|
866 |
+
toyshop
|
867 |
+
tractor
|
868 |
+
trailer truck
|
869 |
+
tray
|
870 |
+
trench coat
|
871 |
+
tricycle
|
872 |
+
trimaran
|
873 |
+
tripod
|
874 |
+
triumphal arch
|
875 |
+
trolleybus
|
876 |
+
trombone
|
877 |
+
tub
|
878 |
+
turnstile
|
879 |
+
typewriter keyboard
|
880 |
+
umbrella
|
881 |
+
unicycle
|
882 |
+
upright
|
883 |
+
vacuum
|
884 |
+
vase
|
885 |
+
vault
|
886 |
+
velvet
|
887 |
+
vending machine
|
888 |
+
vestment
|
889 |
+
viaduct
|
890 |
+
violin
|
891 |
+
volleyball
|
892 |
+
waffle iron
|
893 |
+
wall clock
|
894 |
+
wallet
|
895 |
+
wardrobe
|
896 |
+
warplane
|
897 |
+
washbasin
|
898 |
+
washer
|
899 |
+
water bottle
|
900 |
+
water jug
|
901 |
+
water tower
|
902 |
+
whiskey jug
|
903 |
+
whistle
|
904 |
+
wig
|
905 |
+
window screen
|
906 |
+
window shade
|
907 |
+
Windsor tie
|
908 |
+
wine bottle
|
909 |
+
wing
|
910 |
+
wok
|
911 |
+
wooden spoon
|
912 |
+
wool
|
913 |
+
worm fence
|
914 |
+
wreck
|
915 |
+
yawl
|
916 |
+
yurt
|
917 |
+
web site
|
918 |
+
comic book
|
919 |
+
crossword puzzle
|
920 |
+
street sign
|
921 |
+
traffic light
|
922 |
+
book jacket
|
923 |
+
menu
|
924 |
+
plate
|
925 |
+
guacamole
|
926 |
+
consomme
|
927 |
+
hot pot
|
928 |
+
trifle
|
929 |
+
ice cream
|
930 |
+
ice lolly
|
931 |
+
French loaf
|
932 |
+
bagel
|
933 |
+
pretzel
|
934 |
+
cheeseburger
|
935 |
+
hotdog
|
936 |
+
mashed potato
|
937 |
+
head cabbage
|
938 |
+
broccoli
|
939 |
+
cauliflower
|
940 |
+
zucchini
|
941 |
+
spaghetti squash
|
942 |
+
acorn squash
|
943 |
+
butternut squash
|
944 |
+
cucumber
|
945 |
+
artichoke
|
946 |
+
bell pepper
|
947 |
+
cardoon
|
948 |
+
mushroom
|
949 |
+
Granny Smith
|
950 |
+
strawberry
|
951 |
+
orange
|
952 |
+
lemon
|
953 |
+
fig
|
954 |
+
pineapple
|
955 |
+
banana
|
956 |
+
jackfruit
|
957 |
+
custard apple
|
958 |
+
pomegranate
|
959 |
+
hay
|
960 |
+
carbonara
|
961 |
+
chocolate sauce
|
962 |
+
dough
|
963 |
+
meat loaf
|
964 |
+
pizza
|
965 |
+
potpie
|
966 |
+
burrito
|
967 |
+
red wine
|
968 |
+
espresso
|
969 |
+
cup
|
970 |
+
eggnog
|
971 |
+
alp
|
972 |
+
bubble
|
973 |
+
cliff
|
974 |
+
coral reef
|
975 |
+
geyser
|
976 |
+
lakeside
|
977 |
+
promontory
|
978 |
+
sandbar
|
979 |
+
seashore
|
980 |
+
valley
|
981 |
+
volcano
|
982 |
+
ballplayer
|
983 |
+
groom
|
984 |
+
scuba diver
|
985 |
+
rapeseed
|
986 |
+
daisy
|
987 |
+
yellow ladys slipper
|
988 |
+
corn
|
989 |
+
acorn
|
990 |
+
hip
|
991 |
+
buckeye
|
992 |
+
coral fungus
|
993 |
+
agaric
|
994 |
+
gyromitra
|
995 |
+
stinkhorn
|
996 |
+
earthstar
|
997 |
+
hen-of-the-woods
|
998 |
+
bolete
|
999 |
+
ear
|
1000 |
+
toilet tissue
|
models/image_classification_mobilenet/mobilenet_v1.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2 as cv
|
3 |
+
|
4 |
+
class MobileNetV1:
|
5 |
+
def __init__(self, modelPath, labelPath, backendId=0, targetId=0):
|
6 |
+
self.model_path = modelPath
|
7 |
+
self.label_path = labelPath
|
8 |
+
self.backend_id = backendId
|
9 |
+
self.target_id = targetId
|
10 |
+
|
11 |
+
self.model = cv.dnn.readNet(self.model_path)
|
12 |
+
self.model.setPreferableBackend(self.backend_id)
|
13 |
+
self.model.setPreferableTarget(self.target_id)
|
14 |
+
|
15 |
+
self.input_names = ''
|
16 |
+
self.output_names = ''
|
17 |
+
self.input_size = [224, 224]
|
18 |
+
self.mean = [103.94,116.78,123.68]
|
19 |
+
self.scale = 0.017
|
20 |
+
|
21 |
+
# load labels
|
22 |
+
self.labels = self._load_labels()
|
23 |
+
|
24 |
+
def _load_labels(self):
|
25 |
+
labels = []
|
26 |
+
with open(self.label_path, 'r') as f:
|
27 |
+
for line in f:
|
28 |
+
labels.append(line.strip())
|
29 |
+
return labels
|
30 |
+
|
31 |
+
@property
|
32 |
+
def name(self):
|
33 |
+
return self.__class__.__name__
|
34 |
+
|
35 |
+
def setBackend(self, backendId):
|
36 |
+
self.backend_id = backendId
|
37 |
+
self.model.setPreferableBackend(self.backend_id)
|
38 |
+
|
39 |
+
def setTarget(self, targetId):
|
40 |
+
self.target_id = targetId
|
41 |
+
self.model.setPreferableTarget(self.target_id)
|
42 |
+
|
43 |
+
def _preprocess(self, image):
|
44 |
+
return cv.dnn.blobFromImage(image, scalefactor=self.scale, size=self.input_size, mean=self.mean)
|
45 |
+
|
46 |
+
def infer(self, image):
|
47 |
+
# Preprocess
|
48 |
+
input_blob = self._preprocess(image)
|
49 |
+
|
50 |
+
# Forward
|
51 |
+
self.model.setInput(input_blob, self.input_names)
|
52 |
+
output_blob = self.model.forward(self.output_names)
|
53 |
+
|
54 |
+
# Postprocess
|
55 |
+
results = self._postprocess(output_blob)
|
56 |
+
|
57 |
+
return results
|
58 |
+
|
59 |
+
def _postprocess(self, output_blob):
|
60 |
+
predicted_labels = []
|
61 |
+
for o in output_blob:
|
62 |
+
class_id = np.argmax(o)
|
63 |
+
predicted_labels.append(self.labels[class_id])
|
64 |
+
return predicted_labels
|
65 |
+
|
models/image_classification_mobilenet/mobilenet_v2.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2 as cv
|
3 |
+
|
4 |
+
class MobileNetV2:
|
5 |
+
def __init__(self, modelPath, labelPath, backendId=0, targetId=0):
|
6 |
+
self.model_path = modelPath
|
7 |
+
self.label_path = labelPath
|
8 |
+
self.backend_id = backendId
|
9 |
+
self.target_id = targetId
|
10 |
+
|
11 |
+
self.model = cv.dnn.readNet(self.model_path)
|
12 |
+
self.model.setPreferableBackend(self.backend_id)
|
13 |
+
self.model.setPreferableTarget(self.target_id)
|
14 |
+
|
15 |
+
self.input_names = ''
|
16 |
+
self.output_names = ''
|
17 |
+
self.input_size = [224, 224]
|
18 |
+
self.mean = [103.94,116.78,123.68]
|
19 |
+
self.scale = 0.017
|
20 |
+
|
21 |
+
# load labels
|
22 |
+
self.labels = self._load_labels()
|
23 |
+
|
24 |
+
def _load_labels(self):
|
25 |
+
labels = []
|
26 |
+
with open(self.label_path, 'r') as f:
|
27 |
+
for line in f:
|
28 |
+
labels.append(line.strip())
|
29 |
+
return labels
|
30 |
+
|
31 |
+
@property
|
32 |
+
def name(self):
|
33 |
+
return self.__class__.__name__
|
34 |
+
|
35 |
+
def setBackend(self, backendId):
|
36 |
+
self.backend_id = backendId
|
37 |
+
self.model.setPreferableBackend(self.backend_id)
|
38 |
+
|
39 |
+
def setTarget(self, targetId):
|
40 |
+
self.target_id = targetId
|
41 |
+
self.model.setPreferableTarget(self.target_id)
|
42 |
+
|
43 |
+
def _preprocess(self, image):
|
44 |
+
return cv.dnn.blobFromImage(image, scalefactor=self.scale, size=self.input_size, mean=self.mean)
|
45 |
+
|
46 |
+
def infer(self, image):
|
47 |
+
# Preprocess
|
48 |
+
input_blob = self._preprocess(image)
|
49 |
+
|
50 |
+
# Forward
|
51 |
+
self.model.setInput(input_blob, self.input_names)
|
52 |
+
output_blob = self.model.forward(self.output_names)
|
53 |
+
|
54 |
+
# Postprocess
|
55 |
+
results = self._postprocess(output_blob)
|
56 |
+
|
57 |
+
return results
|
58 |
+
|
59 |
+
def _postprocess(self, output_blob):
|
60 |
+
predicted_labels = []
|
61 |
+
for o in output_blob:
|
62 |
+
class_id = np.argmax(o)
|
63 |
+
predicted_labels.append(self.labels[class_id])
|
64 |
+
return predicted_labels
|
65 |
+
|
tools/quantize/quantize.py
CHANGED
@@ -14,7 +14,7 @@ from onnx import version_converter
|
|
14 |
import onnxruntime
|
15 |
from onnxruntime.quantization import quantize_static, CalibrationDataReader, QuantType
|
16 |
|
17 |
-
from transform import Compose, Resize, ColorConvert
|
18 |
|
19 |
class DataReader(CalibrationDataReader):
|
20 |
def __init__(self, model_path, image_dir, transforms):
|
@@ -30,13 +30,14 @@ class DataReader(CalibrationDataReader):
|
|
30 |
def get_calibration_data(self, image_dir):
|
31 |
blobs = []
|
32 |
for image_name in os.listdir(image_dir):
|
33 |
-
|
|
|
34 |
continue
|
35 |
img = cv.imread(os.path.join(image_dir, image_name))
|
36 |
img = self.transforms(img)
|
37 |
blob = cv.dnn.blobFromImage(img)
|
38 |
blobs.append(blob)
|
39 |
-
return blobs
|
40 |
|
41 |
class Quantize:
|
42 |
def __init__(self, model_path, calibration_image_dir, transforms=Compose(), per_channel=False, act_type='int8', wt_type='int8'):
|
@@ -90,6 +91,12 @@ models=dict(
|
|
90 |
ppresnet50=Quantize(model_path='../../models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx',
|
91 |
calibration_image_dir='../../benchmark/data/image_classification',
|
92 |
transforms=Compose([Resize(size=(224, 224))])),
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
# TBD: DaSiamRPN
|
94 |
youtureid=Quantize(model_path='../../models/person_reid_youtureid/person_reid_youtu_2021nov.onnx',
|
95 |
calibration_image_dir='../../benchmark/data/person_reid',
|
|
|
14 |
import onnxruntime
|
15 |
from onnxruntime.quantization import quantize_static, CalibrationDataReader, QuantType
|
16 |
|
17 |
+
from transform import Compose, Resize, CenterCrop, Normalize, ColorConvert
|
18 |
|
19 |
class DataReader(CalibrationDataReader):
|
20 |
def __init__(self, model_path, image_dir, transforms):
|
|
|
30 |
def get_calibration_data(self, image_dir):
|
31 |
blobs = []
|
32 |
for image_name in os.listdir(image_dir):
|
33 |
+
image_name_suffix = image_name.split('.')[-1].lower()
|
34 |
+
if image_name_suffix == 'jpg' or image_name_suffix != 'jpeg':
|
35 |
continue
|
36 |
img = cv.imread(os.path.join(image_dir, image_name))
|
37 |
img = self.transforms(img)
|
38 |
blob = cv.dnn.blobFromImage(img)
|
39 |
blobs.append(blob)
|
40 |
+
return blobs[:100]
|
41 |
|
42 |
class Quantize:
|
43 |
def __init__(self, model_path, calibration_image_dir, transforms=Compose(), per_channel=False, act_type='int8', wt_type='int8'):
|
|
|
91 |
ppresnet50=Quantize(model_path='../../models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx',
|
92 |
calibration_image_dir='../../benchmark/data/image_classification',
|
93 |
transforms=Compose([Resize(size=(224, 224))])),
|
94 |
+
mobilenetv1=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx',
|
95 |
+
calibration_image_dir='../../benchmark/data/image_classification',
|
96 |
+
transforms=Compose([Resize(size=(256, 256)), CenterCrop(size=(224, 224)), Normalize(mean=[103.94, 116.78, 123.68], std=[0.017, 0.017, 0.017])])),
|
97 |
+
mobilenetv2=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx',
|
98 |
+
calibration_image_dir='../../benchmark/data/image_classification',
|
99 |
+
transforms=Compose([Resize(size=(256, 256)), CenterCrop(size=(224, 224)), Normalize(mean=[103.94, 116.78, 123.68], std=[0.017, 0.017, 0.017])])),
|
100 |
# TBD: DaSiamRPN
|
101 |
youtureid=Quantize(model_path='../../models/person_reid_youtureid/person_reid_youtu_2021nov.onnx',
|
102 |
calibration_image_dir='../../benchmark/data/person_reid',
|
tools/quantize/transform.py
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
# Third party copyrights are property of their respective owners.
|
6 |
|
|
|
7 |
import numpy as numpy
|
8 |
import cv2 as cv
|
9 |
|
@@ -24,9 +25,35 @@ class Resize:
|
|
24 |
def __call__(self, img):
|
25 |
return cv.resize(img, self.size)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class ColorConvert:
|
28 |
def __init__(self, ctype):
|
29 |
self.ctype = ctype
|
30 |
|
31 |
def __call__(self, img):
|
32 |
-
return cv.cvtColor(img, self.ctype)
|
|
|
4 |
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
5 |
# Third party copyrights are property of their respective owners.
|
6 |
|
7 |
+
import collections
|
8 |
import numpy as numpy
|
9 |
import cv2 as cv
|
10 |
|
|
|
25 |
def __call__(self, img):
|
26 |
return cv.resize(img, self.size)
|
27 |
|
28 |
+
class CenterCrop:
|
29 |
+
def __init__(self, size):
|
30 |
+
self.size = size # w, h
|
31 |
+
|
32 |
+
def __call__(self, img):
|
33 |
+
h, w, _ = img.shape
|
34 |
+
ws = int(w / 2 - self.size[0] / 2)
|
35 |
+
hs = int(h / 2 - self.size[1] / 2)
|
36 |
+
return img[hs:hs+self.size[1], ws:ws+self.size[0], :]
|
37 |
+
|
38 |
+
class Normalize:
|
39 |
+
def __init__(self, mean=None, std=None):
|
40 |
+
self.mean = mean
|
41 |
+
self.std = std
|
42 |
+
|
43 |
+
def __call__(self, img):
|
44 |
+
if self.mean is not None:
|
45 |
+
img[:, :, 0] = img[:, :, 0] - self.mean[0]
|
46 |
+
img[:, :, 1] = img[:, :, 1] - self.mean[1]
|
47 |
+
img[:, :, 2] = img[:, :, 2] - self.mean[2]
|
48 |
+
if self.std is not None:
|
49 |
+
img[:, :, 0] = img[:, :, 0] / self.std[0]
|
50 |
+
img[:, :, 1] = img[:, :, 1] / self.std[1]
|
51 |
+
img[:, :, 2] = img[:, :, 2] / self.std[2]
|
52 |
+
return img
|
53 |
+
|
54 |
class ColorConvert:
|
55 |
def __init__(self, ctype):
|
56 |
self.ctype = ctype
|
57 |
|
58 |
def __call__(self, img):
|
59 |
+
return cv.cvtColor(img, self.ctype)
|