Merge pull request #109 fengyuentau:fix_yolox_issues
Browse filesResolves #108:
- Renamed `YoloX.py` to `yolox.py` for import.
- Reimplemented batched-nms.
- Put anchor generation in the initialization stage to avoid re-generating in inference.
models/object_detection_yolox/YoloX.py
CHANGED
|
@@ -17,6 +17,8 @@ class YoloX:
|
|
| 17 |
self.net.setPreferableBackend(self.backendId)
|
| 18 |
self.net.setPreferableTarget(self.targetId)
|
| 19 |
|
|
|
|
|
|
|
| 20 |
@property
|
| 21 |
def name(self):
|
| 22 |
return self.__class__.__name__
|
|
@@ -43,51 +45,45 @@ class YoloX:
|
|
| 43 |
return predictions
|
| 44 |
|
| 45 |
def postprocess(self, outputs):
|
| 46 |
-
|
| 47 |
-
expanded_strides = []
|
| 48 |
-
hsizes = [self.input_size[0] // stride for stride in self.strides]
|
| 49 |
-
wsizes = [self.input_size[1] // stride for stride in self.strides]
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
| 54 |
-
grids.append(grid)
|
| 55 |
-
shape = grid.shape[:2]
|
| 56 |
-
expanded_strides.append(np.full((*shape, 1), stride))
|
| 57 |
-
|
| 58 |
-
grids = np.concatenate(grids, 1)
|
| 59 |
-
expanded_strides = np.concatenate(expanded_strides, 1)
|
| 60 |
-
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
| 61 |
-
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
| 62 |
-
|
| 63 |
-
predictions = outputs[0]
|
| 64 |
-
|
| 65 |
-
boxes = predictions[:, :4]
|
| 66 |
-
scores = predictions[:, 4:5] * predictions[:, 5:]
|
| 67 |
|
|
|
|
|
|
|
| 68 |
boxes_xyxy = np.ones_like(boxes)
|
| 69 |
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
| 70 |
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
| 71 |
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
| 72 |
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
| 73 |
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
self.net.setPreferableBackend(self.backendId)
|
| 18 |
self.net.setPreferableTarget(self.targetId)
|
| 19 |
|
| 20 |
+
self.generateAnchors()
|
| 21 |
+
|
| 22 |
@property
|
| 23 |
def name(self):
|
| 24 |
return self.__class__.__name__
|
|
|
|
| 45 |
return predictions
|
| 46 |
|
| 47 |
def postprocess(self, outputs):
|
| 48 |
+
dets = outputs[0]
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
dets[:, :2] = (dets[:, :2] + self.grids) * self.expanded_strides
|
| 51 |
+
dets[:, 2:4] = np.exp(dets[:, 2:4]) * self.expanded_strides
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
# get boxes
|
| 54 |
+
boxes = dets[:, :4]
|
| 55 |
boxes_xyxy = np.ones_like(boxes)
|
| 56 |
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
| 57 |
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
| 58 |
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
| 59 |
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
| 60 |
|
| 61 |
+
# get scores and class indices
|
| 62 |
+
scores = dets[:, 4:5] * dets[:, 5:]
|
| 63 |
+
max_scores = np.amax(scores, axis=1)
|
| 64 |
+
max_scores_idx = np.argmax(scores, axis=1)
|
| 65 |
+
|
| 66 |
+
# batched-nms, TODO: replace with cv2.dnn.NMSBoxesBatched when OpenCV 4.7.0 is released
|
| 67 |
+
max_coord = boxes_xyxy.max()
|
| 68 |
+
offsets = max_scores_idx * (max_coord + 1)
|
| 69 |
+
boxes_for_nms = boxes_xyxy + offsets[:, None]
|
| 70 |
+
keep = cv2.dnn.NMSBoxes(boxes_for_nms.tolist(), max_scores.tolist(), self.confThreshold, self.nmsThreshold)
|
| 71 |
+
|
| 72 |
+
candidates = np.concatenate([boxes_xyxy, max_scores[:, None], max_scores_idx[:, None]], axis=1)
|
| 73 |
+
return candidates[keep]
|
| 74 |
+
|
| 75 |
+
def generateAnchors(self):
|
| 76 |
+
self.grids = []
|
| 77 |
+
self.expanded_strides = []
|
| 78 |
+
hsizes = [self.input_size[0] // stride for stride in self.strides]
|
| 79 |
+
wsizes = [self.input_size[1] // stride for stride in self.strides]
|
| 80 |
+
|
| 81 |
+
for hsize, wsize, stride in zip(hsizes, wsizes, self.strides):
|
| 82 |
+
xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize))
|
| 83 |
+
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
| 84 |
+
self.grids.append(grid)
|
| 85 |
+
shape = grid.shape[:2]
|
| 86 |
+
self.expanded_strides.append(np.full((*shape, 1), stride))
|
| 87 |
+
|
| 88 |
+
self.grids = np.concatenate(self.grids, 1)
|
| 89 |
+
self.expanded_strides = np.concatenate(self.expanded_strides, 1)
|
models/object_detection_yolox/yolox.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
|
| 4 |
+
class YoloX:
|
| 5 |
+
def __init__(self, modelPath, confThreshold=0.35, nmsThreshold=0.5, objThreshold=0.5, backendId=0, targetId=0):
|
| 6 |
+
self.num_classes = 80
|
| 7 |
+
self.net = cv2.dnn.readNet(modelPath)
|
| 8 |
+
self.input_size = (640, 640)
|
| 9 |
+
self.mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 1, 3)
|
| 10 |
+
self.std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 1, 3)
|
| 11 |
+
self.strides = [8, 16, 32]
|
| 12 |
+
self.confThreshold = confThreshold
|
| 13 |
+
self.nmsThreshold = nmsThreshold
|
| 14 |
+
self.objThreshold = objThreshold
|
| 15 |
+
self.backendId = backendId
|
| 16 |
+
self.targetId = targetId
|
| 17 |
+
self.net.setPreferableBackend(self.backendId)
|
| 18 |
+
self.net.setPreferableTarget(self.targetId)
|
| 19 |
+
|
| 20 |
+
self.generateAnchors()
|
| 21 |
+
|
| 22 |
+
@property
|
| 23 |
+
def name(self):
|
| 24 |
+
return self.__class__.__name__
|
| 25 |
+
|
| 26 |
+
def setBackend(self, backenId):
|
| 27 |
+
self.backendId = backendId
|
| 28 |
+
self.net.setPreferableBackend(self.backendId)
|
| 29 |
+
|
| 30 |
+
def setTarget(self, targetId):
|
| 31 |
+
self.targetId = targetId
|
| 32 |
+
self.net.setPreferableTarget(self.targetId)
|
| 33 |
+
|
| 34 |
+
def preprocess(self, img):
|
| 35 |
+
blob = np.transpose(img, (2, 0, 1))
|
| 36 |
+
return blob[np.newaxis, :, :, :]
|
| 37 |
+
|
| 38 |
+
def infer(self, srcimg):
|
| 39 |
+
input_blob = self.preprocess(srcimg)
|
| 40 |
+
|
| 41 |
+
self.net.setInput(input_blob)
|
| 42 |
+
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
|
| 43 |
+
|
| 44 |
+
predictions = self.postprocess(outs[0])
|
| 45 |
+
return predictions
|
| 46 |
+
|
| 47 |
+
def postprocess(self, outputs):
|
| 48 |
+
dets = outputs[0]
|
| 49 |
+
|
| 50 |
+
dets[:, :2] = (dets[:, :2] + self.grids) * self.expanded_strides
|
| 51 |
+
dets[:, 2:4] = np.exp(dets[:, 2:4]) * self.expanded_strides
|
| 52 |
+
|
| 53 |
+
# get boxes
|
| 54 |
+
boxes = dets[:, :4]
|
| 55 |
+
boxes_xyxy = np.ones_like(boxes)
|
| 56 |
+
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
| 57 |
+
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
| 58 |
+
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
| 59 |
+
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
| 60 |
+
|
| 61 |
+
# get scores and class indices
|
| 62 |
+
scores = dets[:, 4:5] * dets[:, 5:]
|
| 63 |
+
max_scores = np.amax(scores, axis=1)
|
| 64 |
+
max_scores_idx = np.argmax(scores, axis=1)
|
| 65 |
+
|
| 66 |
+
# batched-nms, TODO: replace with cv2.dnn.NMSBoxesBatched when OpenCV 4.7.0 is released
|
| 67 |
+
max_coord = boxes_xyxy.max()
|
| 68 |
+
offsets = max_scores_idx * (max_coord + 1)
|
| 69 |
+
boxes_for_nms = boxes_xyxy + offsets[:, None]
|
| 70 |
+
keep = cv2.dnn.NMSBoxes(boxes_for_nms.tolist(), max_scores.tolist(), self.confThreshold, self.nmsThreshold)
|
| 71 |
+
|
| 72 |
+
candidates = np.concatenate([boxes_xyxy, max_scores[:, None], max_scores_idx[:, None]], axis=1)
|
| 73 |
+
return candidates[keep]
|
| 74 |
+
|
| 75 |
+
def generateAnchors(self):
|
| 76 |
+
self.grids = []
|
| 77 |
+
self.expanded_strides = []
|
| 78 |
+
hsizes = [self.input_size[0] // stride for stride in self.strides]
|
| 79 |
+
wsizes = [self.input_size[1] // stride for stride in self.strides]
|
| 80 |
+
|
| 81 |
+
for hsize, wsize, stride in zip(hsizes, wsizes, self.strides):
|
| 82 |
+
xv, yv = np.meshgrid(np.arange(hsize), np.arange(wsize))
|
| 83 |
+
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
| 84 |
+
self.grids.append(grid)
|
| 85 |
+
shape = grid.shape[:2]
|
| 86 |
+
self.expanded_strides.append(np.full((*shape, 1), stride))
|
| 87 |
+
|
| 88 |
+
self.grids = np.concatenate(self.grids, 1)
|
| 89 |
+
self.expanded_strides = np.concatenate(self.expanded_strides, 1)
|