Yuantao Feng
commited on
Commit
·
bd0a204
1
Parent(s):
9e1d36f
add qrcode detector and parser from wechat (#12)
Browse files* add qrcode detector and parser from wechat
* add a link to download qrcode data
* add model
* add visualize
* imporve visualize in demo
* benchmark impl
* update benchmark results for wechatqrcode
* update readme
* correct upload time
- README.md +2 -0
- benchmark/config/qrcode_wechatqrcode.yaml +21 -0
- benchmark/download_data.py +5 -1
- models/__init__.py +2 -0
- models/qrcode_wechatqrcode/LICENSE +202 -0
- models/qrcode_wechatqrcode/README.md +26 -0
- models/qrcode_wechatqrcode/demo.py +110 -0
- models/qrcode_wechatqrcode/detect_2021nov.prototxt +2716 -0
- models/qrcode_wechatqrcode/sr_2021nov.prototxt +403 -0
- models/qrcode_wechatqrcode/wechatqrcode.py +34 -0
README.md
CHANGED
|
@@ -24,6 +24,7 @@ Hardware Setup:
|
|
| 24 |
- The time data that shown on the following table is the median of 10 runs. Different metrics may be applied to some specific models.
|
| 25 |
- Batch size is 1 for all benchmark results.
|
| 26 |
- View [benchmark/config](./benchmark/config) for more details on benchmarking different models.
|
|
|
|
| 27 |
|
| 28 |
| Model | Input Size | CPU x86_64 (ms) | CPU ARM (ms) | GPU CUDA (ms) |
|
| 29 |
|-------|------------|-----------------|--------------|---------------|
|
|
@@ -34,6 +35,7 @@ Hardware Setup:
|
|
| 34 |
| [SFace](./models/face_recognition_sface) | 112x112 | 8.65 | 99.20 | 24.88 |
|
| 35 |
| [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58 | 98.64 |
|
| 36 |
| [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 | 67.97 |
|
|
|
|
| 37 |
|
| 38 |
## License
|
| 39 |
|
|
|
|
| 24 |
- The time data that shown on the following table is the median of 10 runs. Different metrics may be applied to some specific models.
|
| 25 |
- Batch size is 1 for all benchmark results.
|
| 26 |
- View [benchmark/config](./benchmark/config) for more details on benchmarking different models.
|
| 27 |
+
- `---` means this model is not availble to run on the device.
|
| 28 |
|
| 29 |
| Model | Input Size | CPU x86_64 (ms) | CPU ARM (ms) | GPU CUDA (ms) |
|
| 30 |
|-------|------------|-----------------|--------------|---------------|
|
|
|
|
| 35 |
| [SFace](./models/face_recognition_sface) | 112x112 | 8.65 | 99.20 | 24.88 |
|
| 36 |
| [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58 | 98.64 |
|
| 37 |
| [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 | 67.97 |
|
| 38 |
+
| [WeChatQRCode](./models/qrcode_wechatqrcode) | 100x100 | 7.04 | 37.68 | --- |
|
| 39 |
|
| 40 |
## License
|
| 41 |
|
benchmark/config/qrcode_wechatqrcode.yaml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Benchmark:
|
| 2 |
+
name: "QRCode Detection and Decoding Benchmark"
|
| 3 |
+
data:
|
| 4 |
+
path: "benchmark/data/qrcode"
|
| 5 |
+
files: ["opencv.png", "opencv_zoo.png"]
|
| 6 |
+
metric:
|
| 7 |
+
sizes:
|
| 8 |
+
- [100, 100]
|
| 9 |
+
- [300, 300]
|
| 10 |
+
warmup: 3
|
| 11 |
+
repeat: 10
|
| 12 |
+
reduction: "median"
|
| 13 |
+
backend: "default"
|
| 14 |
+
target: "cpu"
|
| 15 |
+
|
| 16 |
+
Model:
|
| 17 |
+
name: "WeChatQRCode"
|
| 18 |
+
detect_prototxt_path: "models/qrcode_wechatqrcode/detect_2021sep.prototxt"
|
| 19 |
+
detect_model_path: "models/qrcode_wechatqrcode/detect_2021sep.caffemodel"
|
| 20 |
+
sr_prototxt_path: "models/qrcode_wechatqrcode/sr_2021sep.prototxt"
|
| 21 |
+
sr_model_path: "models/qrcode_wechatqrcode/sr_2021sep.caffemodel"
|
benchmark/download_data.py
CHANGED
|
@@ -180,7 +180,11 @@ data_downloaders = dict(
|
|
| 180 |
human_segmentation=Downloader(name='human_segmentation',
|
| 181 |
url='https://drive.google.com/u/0/uc?id=1Kh0qXcAZCEaqwavbUZubhRwrn_8zY7IL&export=download',
|
| 182 |
sha='ac0eedfd8568570cad135acccd08a134257314d0',
|
| 183 |
-
filename='human_segmentation.zip')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
)
|
| 185 |
|
| 186 |
if __name__ == '__main__':
|
|
|
|
| 180 |
human_segmentation=Downloader(name='human_segmentation',
|
| 181 |
url='https://drive.google.com/u/0/uc?id=1Kh0qXcAZCEaqwavbUZubhRwrn_8zY7IL&export=download',
|
| 182 |
sha='ac0eedfd8568570cad135acccd08a134257314d0',
|
| 183 |
+
filename='human_segmentation.zip'),
|
| 184 |
+
qrcode=Downloader(name='qrcode',
|
| 185 |
+
url='https://drive.google.com/u/0/uc?id=1_OXB7eiCIYO335ewkT6EdAeXyriFlq_H&export=download',
|
| 186 |
+
sha='ac01c098934a353ca1545b5266de8bb4f176d1b3',
|
| 187 |
+
filename='qrcode.zip')
|
| 188 |
)
|
| 189 |
|
| 190 |
if __name__ == '__main__':
|
models/__init__.py
CHANGED
|
@@ -4,6 +4,7 @@ from .text_recognition_crnn.crnn import CRNN
|
|
| 4 |
from .face_recognition_sface.sface import SFace
|
| 5 |
from .image_classification_ppresnet.ppresnet import PPResNet
|
| 6 |
from .human_segmentation_pphumanseg.pphumanseg import PPHumanSeg
|
|
|
|
| 7 |
|
| 8 |
class Registery:
|
| 9 |
def __init__(self, name):
|
|
@@ -23,3 +24,4 @@ MODELS.register(CRNN)
|
|
| 23 |
MODELS.register(SFace)
|
| 24 |
MODELS.register(PPResNet)
|
| 25 |
MODELS.register(PPHumanSeg)
|
|
|
|
|
|
| 4 |
from .face_recognition_sface.sface import SFace
|
| 5 |
from .image_classification_ppresnet.ppresnet import PPResNet
|
| 6 |
from .human_segmentation_pphumanseg.pphumanseg import PPHumanSeg
|
| 7 |
+
from .qrcode_wechatqrcode.wechatqrcode import WeChatQRCode
|
| 8 |
|
| 9 |
class Registery:
|
| 10 |
def __init__(self, name):
|
|
|
|
| 24 |
MODELS.register(SFace)
|
| 25 |
MODELS.register(PPResNet)
|
| 26 |
MODELS.register(PPHumanSeg)
|
| 27 |
+
MODELS.register(WeChatQRCode)
|
models/qrcode_wechatqrcode/LICENSE
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
Apache License
|
| 3 |
+
Version 2.0, January 2004
|
| 4 |
+
http://www.apache.org/licenses/
|
| 5 |
+
|
| 6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 7 |
+
|
| 8 |
+
1. Definitions.
|
| 9 |
+
|
| 10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 12 |
+
|
| 13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 14 |
+
the copyright owner that is granting the License.
|
| 15 |
+
|
| 16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 17 |
+
other entities that control, are controlled by, or are under common
|
| 18 |
+
control with that entity. For the purposes of this definition,
|
| 19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 20 |
+
direction or management of such entity, whether by contract or
|
| 21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 23 |
+
|
| 24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 25 |
+
exercising permissions granted by this License.
|
| 26 |
+
|
| 27 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 28 |
+
including but not limited to software source code, documentation
|
| 29 |
+
source, and configuration files.
|
| 30 |
+
|
| 31 |
+
"Object" form shall mean any form resulting from mechanical
|
| 32 |
+
transformation or translation of a Source form, including but
|
| 33 |
+
not limited to compiled object code, generated documentation,
|
| 34 |
+
and conversions to other media types.
|
| 35 |
+
|
| 36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 37 |
+
Object form, made available under the License, as indicated by a
|
| 38 |
+
copyright notice that is included in or attached to the work
|
| 39 |
+
(an example is provided in the Appendix below).
|
| 40 |
+
|
| 41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 42 |
+
form, that is based on (or derived from) the Work and for which the
|
| 43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 45 |
+
of this License, Derivative Works shall not include works that remain
|
| 46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 47 |
+
the Work and Derivative Works thereof.
|
| 48 |
+
|
| 49 |
+
"Contribution" shall mean any work of authorship, including
|
| 50 |
+
the original version of the Work and any modifications or additions
|
| 51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 55 |
+
means any form of electronic, verbal, or written communication sent
|
| 56 |
+
to the Licensor or its representatives, including but not limited to
|
| 57 |
+
communication on electronic mailing lists, source code control systems,
|
| 58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 60 |
+
excluding communication that is conspicuously marked or otherwise
|
| 61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 62 |
+
|
| 63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 65 |
+
subsequently incorporated within the Work.
|
| 66 |
+
|
| 67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 72 |
+
Work and such Derivative Works in Source or Object form.
|
| 73 |
+
|
| 74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 77 |
+
(except as stated in this section) patent license to make, have made,
|
| 78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 79 |
+
where such license applies only to those patent claims licensable
|
| 80 |
+
by such Contributor that are necessarily infringed by their
|
| 81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 83 |
+
institute patent litigation against any entity (including a
|
| 84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 85 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 86 |
+
or contributory patent infringement, then any patent licenses
|
| 87 |
+
granted to You under this License for that Work shall terminate
|
| 88 |
+
as of the date such litigation is filed.
|
| 89 |
+
|
| 90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 91 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 92 |
+
modifications, and in Source or Object form, provided that You
|
| 93 |
+
meet the following conditions:
|
| 94 |
+
|
| 95 |
+
(a) You must give any other recipients of the Work or
|
| 96 |
+
Derivative Works a copy of this License; and
|
| 97 |
+
|
| 98 |
+
(b) You must cause any modified files to carry prominent notices
|
| 99 |
+
stating that You changed the files; and
|
| 100 |
+
|
| 101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 102 |
+
that You distribute, all copyright, patent, trademark, and
|
| 103 |
+
attribution notices from the Source form of the Work,
|
| 104 |
+
excluding those notices that do not pertain to any part of
|
| 105 |
+
the Derivative Works; and
|
| 106 |
+
|
| 107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 108 |
+
distribution, then any Derivative Works that You distribute must
|
| 109 |
+
include a readable copy of the attribution notices contained
|
| 110 |
+
within such NOTICE file, excluding those notices that do not
|
| 111 |
+
pertain to any part of the Derivative Works, in at least one
|
| 112 |
+
of the following places: within a NOTICE text file distributed
|
| 113 |
+
as part of the Derivative Works; within the Source form or
|
| 114 |
+
documentation, if provided along with the Derivative Works; or,
|
| 115 |
+
within a display generated by the Derivative Works, if and
|
| 116 |
+
wherever such third-party notices normally appear. The contents
|
| 117 |
+
of the NOTICE file are for informational purposes only and
|
| 118 |
+
do not modify the License. You may add Your own attribution
|
| 119 |
+
notices within Derivative Works that You distribute, alongside
|
| 120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 121 |
+
that such additional attribution notices cannot be construed
|
| 122 |
+
as modifying the License.
|
| 123 |
+
|
| 124 |
+
You may add Your own copyright statement to Your modifications and
|
| 125 |
+
may provide additional or different license terms and conditions
|
| 126 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 127 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 128 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 129 |
+
the conditions stated in this License.
|
| 130 |
+
|
| 131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 133 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 134 |
+
this License, without any additional terms or conditions.
|
| 135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 136 |
+
the terms of any separate license agreement you may have executed
|
| 137 |
+
with Licensor regarding such Contributions.
|
| 138 |
+
|
| 139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 141 |
+
except as required for reasonable and customary use in describing the
|
| 142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 143 |
+
|
| 144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 145 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 148 |
+
implied, including, without limitation, any warranties or conditions
|
| 149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 151 |
+
appropriateness of using or redistributing the Work and assume any
|
| 152 |
+
risks associated with Your exercise of permissions under this License.
|
| 153 |
+
|
| 154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 155 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 156 |
+
unless required by applicable law (such as deliberate and grossly
|
| 157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 158 |
+
liable to You for damages, including any direct, indirect, special,
|
| 159 |
+
incidental, or consequential damages of any character arising as a
|
| 160 |
+
result of this License or out of the use or inability to use the
|
| 161 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 162 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 163 |
+
other commercial damages or losses), even if such Contributor
|
| 164 |
+
has been advised of the possibility of such damages.
|
| 165 |
+
|
| 166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 169 |
+
or other liability obligations and/or rights consistent with this
|
| 170 |
+
License. However, in accepting such obligations, You may act only
|
| 171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 172 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 173 |
+
defend, and hold each Contributor harmless for any liability
|
| 174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 175 |
+
of your accepting any such warranty or additional liability.
|
| 176 |
+
|
| 177 |
+
END OF TERMS AND CONDITIONS
|
| 178 |
+
|
| 179 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 180 |
+
|
| 181 |
+
To apply the Apache License to your work, attach the following
|
| 182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 183 |
+
replaced with your own identifying information. (Don't include
|
| 184 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 185 |
+
comment syntax for the file format. We also recommend that a
|
| 186 |
+
file or class name and description of purpose be included on the
|
| 187 |
+
same "printed page" as the copyright notice for easier
|
| 188 |
+
identification within third-party archives.
|
| 189 |
+
|
| 190 |
+
Copyright [yyyy] [name of copyright owner]
|
| 191 |
+
|
| 192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 193 |
+
you may not use this file except in compliance with the License.
|
| 194 |
+
You may obtain a copy of the License at
|
| 195 |
+
|
| 196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 197 |
+
|
| 198 |
+
Unless required by applicable law or agreed to in writing, software
|
| 199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 201 |
+
See the License for the specific language governing permissions and
|
| 202 |
+
limitations under the License.
|
models/qrcode_wechatqrcode/README.md
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# WeChatQRCode
|
| 2 |
+
|
| 3 |
+
WeChatQRCode for detecting and parsing QR Code, contributed by [WeChat Computer Vision Team (WeChatCV)](https://github.com/WeChatCV). Visit [opencv/opencv_contrib/modules/wechat_qrcode](https://github.com/opencv/opencv_contrib/tree/master/modules/wechat_qrcode) for more details.
|
| 4 |
+
|
| 5 |
+
Notes:
|
| 6 |
+
- Model source: [opencv/opencv_3rdparty:wechat_qrcode_20210119](https://github.com/opencv/opencv_3rdparty/tree/wechat_qrcode_20210119)
|
| 7 |
+
- The APIs `cv::wechat_qrcode::WeChatQRCode` (C++) & `cv.wechat_qrcode_WeChatQRCode` (Python) are both designed to run on default backend (OpenCV) and target (CPU) only. Therefore, benchmark results of this model are only available on CPU devices, until the APIs are updated with setting backends and targets.
|
| 8 |
+
|
| 9 |
+
## Demo
|
| 10 |
+
|
| 11 |
+
Run the following command to try the demo:
|
| 12 |
+
```shell
|
| 13 |
+
# detect on camera input
|
| 14 |
+
python demo.py
|
| 15 |
+
# detect on an image
|
| 16 |
+
python demo.py --input /path/to/image
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
## License
|
| 20 |
+
|
| 21 |
+
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
| 22 |
+
|
| 23 |
+
## Reference:
|
| 24 |
+
|
| 25 |
+
- https://github.com/opencv/opencv_contrib/tree/master/modules/wechat_qrcode
|
| 26 |
+
- https://github.com/opencv/opencv_3rdparty/tree/wechat_qrcode_20210119
|
models/qrcode_wechatqrcode/demo.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file is part of OpenCV Zoo project.
|
| 2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
| 3 |
+
#
|
| 4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
| 5 |
+
# Third party copyrights are property of their respective owners.
|
| 6 |
+
|
| 7 |
+
import argparse
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import cv2 as cv
|
| 11 |
+
|
| 12 |
+
from wechatqrcode import WeChatQRCode
|
| 13 |
+
|
| 14 |
+
def str2bool(v):
|
| 15 |
+
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
|
| 16 |
+
return True
|
| 17 |
+
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
| 18 |
+
return False
|
| 19 |
+
else:
|
| 20 |
+
raise NotImplementedError
|
| 21 |
+
|
| 22 |
+
parser = argparse.ArgumentParser(
|
| 23 |
+
description="WeChat QR code detector for detecting and parsing QR code (https://github.com/opencv/opencv_contrib/tree/master/modules/wechat_qrcode)")
|
| 24 |
+
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
|
| 25 |
+
parser.add_argument('--detect_prototxt_path', type=str, default='detect_2021sep.prototxt', help='Path to detect.prototxt.')
|
| 26 |
+
parser.add_argument('--detect_model_path', type=str, default='detect_2021sep.caffemodel', help='Path to detect.caffemodel.')
|
| 27 |
+
parser.add_argument('--sr_prototxt_path', type=str, default='sr_2021sep.prototxt', help='Path to sr.prototxt.')
|
| 28 |
+
parser.add_argument('--sr_model_path', type=str, default='sr_2021sep.caffemodel', help='Path to sr.caffemodel.')
|
| 29 |
+
parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.')
|
| 30 |
+
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
|
| 31 |
+
args = parser.parse_args()
|
| 32 |
+
|
| 33 |
+
def visualize(image, res, points, points_color=(0, 255, 0), text_color=(0, 255, 0), fps=None):
|
| 34 |
+
output = image.copy()
|
| 35 |
+
h, w, _ = output.shape
|
| 36 |
+
|
| 37 |
+
if fps is not None:
|
| 38 |
+
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)
|
| 39 |
+
|
| 40 |
+
fontScale = 0.5
|
| 41 |
+
fontSize = 1
|
| 42 |
+
for r, p in zip(res, points):
|
| 43 |
+
p = p.astype(np.int32)
|
| 44 |
+
for _p in p:
|
| 45 |
+
cv.circle(output, _p, 10, points_color, -1)
|
| 46 |
+
|
| 47 |
+
qrcode_center_x = int((p[0][0] + p[2][0]) / 2)
|
| 48 |
+
qrcode_center_y = int((p[0][1] + p[2][1]) / 2)
|
| 49 |
+
|
| 50 |
+
text_size, baseline = cv.getTextSize(r, cv.FONT_HERSHEY_DUPLEX, fontScale, fontSize)
|
| 51 |
+
text_x = qrcode_center_x - int(text_size[0] / 2)
|
| 52 |
+
text_y = qrcode_center_y - int(text_size[1] / 2)
|
| 53 |
+
cv.putText(output, '{}'.format(r), (text_x, text_y), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize)
|
| 54 |
+
|
| 55 |
+
return output
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
if __name__ == '__main__':
|
| 59 |
+
# Instantiate WeChatQRCode
|
| 60 |
+
model = WeChatQRCode(args.detect_prototxt_path,
|
| 61 |
+
args.detect_model_path,
|
| 62 |
+
args.sr_prototxt_path,
|
| 63 |
+
args.sr_model_path)
|
| 64 |
+
|
| 65 |
+
# If input is an image:
|
| 66 |
+
if args.input is not None:
|
| 67 |
+
image = cv.imread(args.input)
|
| 68 |
+
res, points = model.infer(image)
|
| 69 |
+
|
| 70 |
+
# Print results:
|
| 71 |
+
print(res)
|
| 72 |
+
print(points)
|
| 73 |
+
|
| 74 |
+
# Draw results on the input image
|
| 75 |
+
image = visualize(image, res, points)
|
| 76 |
+
|
| 77 |
+
# Save results if save is true
|
| 78 |
+
if args.save:
|
| 79 |
+
print('Results saved to result.jpg\n')
|
| 80 |
+
cv.imwrite('result.jpg', image)
|
| 81 |
+
|
| 82 |
+
# Visualize results in a new window
|
| 83 |
+
if args.vis:
|
| 84 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
| 85 |
+
cv.imshow(args.input, image)
|
| 86 |
+
cv.waitKey(0)
|
| 87 |
+
else: # Omit input to call default camera
|
| 88 |
+
deviceId = 0
|
| 89 |
+
cap = cv.VideoCapture(deviceId)
|
| 90 |
+
|
| 91 |
+
tm = cv.TickMeter()
|
| 92 |
+
while cv.waitKey(1) < 0:
|
| 93 |
+
hasFrame, frame = cap.read()
|
| 94 |
+
if not hasFrame:
|
| 95 |
+
print('No frames grabbed!')
|
| 96 |
+
break
|
| 97 |
+
|
| 98 |
+
# Inference
|
| 99 |
+
tm.start()
|
| 100 |
+
res, points = model.infer(frame)
|
| 101 |
+
tm.stop()
|
| 102 |
+
fps = tm.getFPS()
|
| 103 |
+
|
| 104 |
+
# Draw results on the input image
|
| 105 |
+
frame = visualize(frame, res, points, fps=fps)
|
| 106 |
+
|
| 107 |
+
# Visualize results in a new window
|
| 108 |
+
cv.imshow('WeChatQRCode Demo', frame)
|
| 109 |
+
|
| 110 |
+
tm.reset()
|
models/qrcode_wechatqrcode/detect_2021nov.prototxt
ADDED
|
@@ -0,0 +1,2716 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
layer {
|
| 2 |
+
name: "data"
|
| 3 |
+
type: "Input"
|
| 4 |
+
top: "data"
|
| 5 |
+
input_param {
|
| 6 |
+
shape {
|
| 7 |
+
dim: 1
|
| 8 |
+
dim: 1
|
| 9 |
+
dim: 384
|
| 10 |
+
dim: 384
|
| 11 |
+
}
|
| 12 |
+
}
|
| 13 |
+
}
|
| 14 |
+
layer {
|
| 15 |
+
name: "data/bn"
|
| 16 |
+
type: "BatchNorm"
|
| 17 |
+
bottom: "data"
|
| 18 |
+
top: "data"
|
| 19 |
+
param {
|
| 20 |
+
lr_mult: 0.0
|
| 21 |
+
decay_mult: 0.0
|
| 22 |
+
}
|
| 23 |
+
param {
|
| 24 |
+
lr_mult: 0.0
|
| 25 |
+
decay_mult: 0.0
|
| 26 |
+
}
|
| 27 |
+
param {
|
| 28 |
+
lr_mult: 0.0
|
| 29 |
+
decay_mult: 0.0
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
layer {
|
| 33 |
+
name: "data/bn/scale"
|
| 34 |
+
type: "Scale"
|
| 35 |
+
bottom: "data"
|
| 36 |
+
top: "data"
|
| 37 |
+
param {
|
| 38 |
+
lr_mult: 1.0
|
| 39 |
+
decay_mult: 0.0
|
| 40 |
+
}
|
| 41 |
+
param {
|
| 42 |
+
lr_mult: 1.0
|
| 43 |
+
decay_mult: 0.0
|
| 44 |
+
}
|
| 45 |
+
scale_param {
|
| 46 |
+
filler {
|
| 47 |
+
type: "constant"
|
| 48 |
+
value: 1.0
|
| 49 |
+
}
|
| 50 |
+
bias_term: true
|
| 51 |
+
bias_filler {
|
| 52 |
+
type: "constant"
|
| 53 |
+
value: 0.0
|
| 54 |
+
}
|
| 55 |
+
}
|
| 56 |
+
}
|
| 57 |
+
layer {
|
| 58 |
+
name: "stage1"
|
| 59 |
+
type: "Convolution"
|
| 60 |
+
bottom: "data"
|
| 61 |
+
top: "stage1"
|
| 62 |
+
param {
|
| 63 |
+
lr_mult: 1.0
|
| 64 |
+
decay_mult: 1.0
|
| 65 |
+
}
|
| 66 |
+
param {
|
| 67 |
+
lr_mult: 1.0
|
| 68 |
+
decay_mult: 0.0
|
| 69 |
+
}
|
| 70 |
+
convolution_param {
|
| 71 |
+
num_output: 24
|
| 72 |
+
bias_term: true
|
| 73 |
+
pad: 1
|
| 74 |
+
kernel_size: 3
|
| 75 |
+
group: 1
|
| 76 |
+
stride: 2
|
| 77 |
+
weight_filler {
|
| 78 |
+
type: "msra"
|
| 79 |
+
}
|
| 80 |
+
dilation: 1
|
| 81 |
+
}
|
| 82 |
+
}
|
| 83 |
+
layer {
|
| 84 |
+
name: "stage1/bn"
|
| 85 |
+
type: "BatchNorm"
|
| 86 |
+
bottom: "stage1"
|
| 87 |
+
top: "stage1"
|
| 88 |
+
param {
|
| 89 |
+
lr_mult: 0.0
|
| 90 |
+
decay_mult: 0.0
|
| 91 |
+
}
|
| 92 |
+
param {
|
| 93 |
+
lr_mult: 0.0
|
| 94 |
+
decay_mult: 0.0
|
| 95 |
+
}
|
| 96 |
+
param {
|
| 97 |
+
lr_mult: 0.0
|
| 98 |
+
decay_mult: 0.0
|
| 99 |
+
}
|
| 100 |
+
}
|
| 101 |
+
layer {
|
| 102 |
+
name: "stage1/bn/scale"
|
| 103 |
+
type: "Scale"
|
| 104 |
+
bottom: "stage1"
|
| 105 |
+
top: "stage1"
|
| 106 |
+
param {
|
| 107 |
+
lr_mult: 1.0
|
| 108 |
+
decay_mult: 0.0
|
| 109 |
+
}
|
| 110 |
+
param {
|
| 111 |
+
lr_mult: 1.0
|
| 112 |
+
decay_mult: 0.0
|
| 113 |
+
}
|
| 114 |
+
scale_param {
|
| 115 |
+
filler {
|
| 116 |
+
type: "constant"
|
| 117 |
+
value: 1.0
|
| 118 |
+
}
|
| 119 |
+
bias_term: true
|
| 120 |
+
bias_filler {
|
| 121 |
+
type: "constant"
|
| 122 |
+
value: 0.0
|
| 123 |
+
}
|
| 124 |
+
}
|
| 125 |
+
}
|
| 126 |
+
layer {
|
| 127 |
+
name: "stage1/relu"
|
| 128 |
+
type: "ReLU"
|
| 129 |
+
bottom: "stage1"
|
| 130 |
+
top: "stage1"
|
| 131 |
+
}
|
| 132 |
+
layer {
|
| 133 |
+
name: "stage2"
|
| 134 |
+
type: "Pooling"
|
| 135 |
+
bottom: "stage1"
|
| 136 |
+
top: "stage2"
|
| 137 |
+
pooling_param {
|
| 138 |
+
pool: MAX
|
| 139 |
+
kernel_size: 3
|
| 140 |
+
stride: 2
|
| 141 |
+
pad: 0
|
| 142 |
+
}
|
| 143 |
+
}
|
| 144 |
+
layer {
|
| 145 |
+
name: "stage3_1/conv1"
|
| 146 |
+
type: "Convolution"
|
| 147 |
+
bottom: "stage2"
|
| 148 |
+
top: "stage3_1/conv1"
|
| 149 |
+
param {
|
| 150 |
+
lr_mult: 1.0
|
| 151 |
+
decay_mult: 1.0
|
| 152 |
+
}
|
| 153 |
+
convolution_param {
|
| 154 |
+
num_output: 16
|
| 155 |
+
pad: 0
|
| 156 |
+
kernel_size: 1
|
| 157 |
+
group: 1
|
| 158 |
+
stride: 1
|
| 159 |
+
weight_filler {
|
| 160 |
+
type: "msra"
|
| 161 |
+
}
|
| 162 |
+
dilation: 1
|
| 163 |
+
}
|
| 164 |
+
}
|
| 165 |
+
layer {
|
| 166 |
+
name: "stage3_1/conv1/relu"
|
| 167 |
+
type: "ReLU"
|
| 168 |
+
bottom: "stage3_1/conv1"
|
| 169 |
+
top: "stage3_1/conv1"
|
| 170 |
+
}
|
| 171 |
+
layer {
|
| 172 |
+
name: "stage3_1/conv2"
|
| 173 |
+
type: "Convolution"
|
| 174 |
+
bottom: "stage3_1/conv1"
|
| 175 |
+
top: "stage3_1/conv2"
|
| 176 |
+
param {
|
| 177 |
+
lr_mult: 1.0
|
| 178 |
+
decay_mult: 1.0
|
| 179 |
+
}
|
| 180 |
+
convolution_param {
|
| 181 |
+
num_output: 16
|
| 182 |
+
pad: 1
|
| 183 |
+
kernel_size: 3
|
| 184 |
+
group: 16
|
| 185 |
+
stride: 2
|
| 186 |
+
weight_filler {
|
| 187 |
+
type: "msra"
|
| 188 |
+
}
|
| 189 |
+
dilation: 1
|
| 190 |
+
}
|
| 191 |
+
}
|
| 192 |
+
layer {
|
| 193 |
+
name: "stage3_1/conv3"
|
| 194 |
+
type: "Convolution"
|
| 195 |
+
bottom: "stage3_1/conv2"
|
| 196 |
+
top: "stage3_1/conv3"
|
| 197 |
+
param {
|
| 198 |
+
lr_mult: 1.0
|
| 199 |
+
decay_mult: 1.0
|
| 200 |
+
}
|
| 201 |
+
convolution_param {
|
| 202 |
+
num_output: 64
|
| 203 |
+
pad: 0
|
| 204 |
+
kernel_size: 1
|
| 205 |
+
group: 1
|
| 206 |
+
stride: 1
|
| 207 |
+
weight_filler {
|
| 208 |
+
type: "msra"
|
| 209 |
+
}
|
| 210 |
+
dilation: 1
|
| 211 |
+
}
|
| 212 |
+
}
|
| 213 |
+
layer {
|
| 214 |
+
name: "stage3_1/relu"
|
| 215 |
+
type: "ReLU"
|
| 216 |
+
bottom: "stage3_1/conv3"
|
| 217 |
+
top: "stage3_1/conv3"
|
| 218 |
+
}
|
| 219 |
+
layer {
|
| 220 |
+
name: "stage3_2/conv1"
|
| 221 |
+
type: "Convolution"
|
| 222 |
+
bottom: "stage3_1/conv3"
|
| 223 |
+
top: "stage3_2/conv1"
|
| 224 |
+
param {
|
| 225 |
+
lr_mult: 1.0
|
| 226 |
+
decay_mult: 1.0
|
| 227 |
+
}
|
| 228 |
+
convolution_param {
|
| 229 |
+
num_output: 16
|
| 230 |
+
pad: 0
|
| 231 |
+
kernel_size: 1
|
| 232 |
+
group: 1
|
| 233 |
+
stride: 1
|
| 234 |
+
weight_filler {
|
| 235 |
+
type: "msra"
|
| 236 |
+
}
|
| 237 |
+
dilation: 1
|
| 238 |
+
}
|
| 239 |
+
}
|
| 240 |
+
layer {
|
| 241 |
+
name: "stage3_2/conv1/relu"
|
| 242 |
+
type: "ReLU"
|
| 243 |
+
bottom: "stage3_2/conv1"
|
| 244 |
+
top: "stage3_2/conv1"
|
| 245 |
+
}
|
| 246 |
+
layer {
|
| 247 |
+
name: "stage3_2/conv2"
|
| 248 |
+
type: "Convolution"
|
| 249 |
+
bottom: "stage3_2/conv1"
|
| 250 |
+
top: "stage3_2/conv2"
|
| 251 |
+
param {
|
| 252 |
+
lr_mult: 1.0
|
| 253 |
+
decay_mult: 1.0
|
| 254 |
+
}
|
| 255 |
+
convolution_param {
|
| 256 |
+
num_output: 16
|
| 257 |
+
pad: 1
|
| 258 |
+
kernel_size: 3
|
| 259 |
+
group: 16
|
| 260 |
+
stride: 1
|
| 261 |
+
weight_filler {
|
| 262 |
+
type: "msra"
|
| 263 |
+
}
|
| 264 |
+
dilation: 1
|
| 265 |
+
}
|
| 266 |
+
}
|
| 267 |
+
layer {
|
| 268 |
+
name: "stage3_2/conv3"
|
| 269 |
+
type: "Convolution"
|
| 270 |
+
bottom: "stage3_2/conv2"
|
| 271 |
+
top: "stage3_2/conv3"
|
| 272 |
+
param {
|
| 273 |
+
lr_mult: 1.0
|
| 274 |
+
decay_mult: 1.0
|
| 275 |
+
}
|
| 276 |
+
convolution_param {
|
| 277 |
+
num_output: 64
|
| 278 |
+
pad: 0
|
| 279 |
+
kernel_size: 1
|
| 280 |
+
group: 1
|
| 281 |
+
stride: 1
|
| 282 |
+
weight_filler {
|
| 283 |
+
type: "msra"
|
| 284 |
+
}
|
| 285 |
+
dilation: 1
|
| 286 |
+
}
|
| 287 |
+
}
|
| 288 |
+
layer {
|
| 289 |
+
name: "stage3_2/sum"
|
| 290 |
+
type: "Eltwise"
|
| 291 |
+
bottom: "stage3_1/conv3"
|
| 292 |
+
bottom: "stage3_2/conv3"
|
| 293 |
+
top: "stage3_2/sum"
|
| 294 |
+
eltwise_param {
|
| 295 |
+
operation: SUM
|
| 296 |
+
}
|
| 297 |
+
}
|
| 298 |
+
layer {
|
| 299 |
+
name: "stage3_2/relu"
|
| 300 |
+
type: "ReLU"
|
| 301 |
+
bottom: "stage3_2/sum"
|
| 302 |
+
top: "stage3_2/sum"
|
| 303 |
+
}
|
| 304 |
+
layer {
|
| 305 |
+
name: "stage3_3/conv1"
|
| 306 |
+
type: "Convolution"
|
| 307 |
+
bottom: "stage3_2/sum"
|
| 308 |
+
top: "stage3_3/conv1"
|
| 309 |
+
param {
|
| 310 |
+
lr_mult: 1.0
|
| 311 |
+
decay_mult: 1.0
|
| 312 |
+
}
|
| 313 |
+
convolution_param {
|
| 314 |
+
num_output: 16
|
| 315 |
+
pad: 0
|
| 316 |
+
kernel_size: 1
|
| 317 |
+
group: 1
|
| 318 |
+
stride: 1
|
| 319 |
+
weight_filler {
|
| 320 |
+
type: "msra"
|
| 321 |
+
}
|
| 322 |
+
dilation: 1
|
| 323 |
+
}
|
| 324 |
+
}
|
| 325 |
+
layer {
|
| 326 |
+
name: "stage3_3/conv1/relu"
|
| 327 |
+
type: "ReLU"
|
| 328 |
+
bottom: "stage3_3/conv1"
|
| 329 |
+
top: "stage3_3/conv1"
|
| 330 |
+
}
|
| 331 |
+
layer {
|
| 332 |
+
name: "stage3_3/conv2"
|
| 333 |
+
type: "Convolution"
|
| 334 |
+
bottom: "stage3_3/conv1"
|
| 335 |
+
top: "stage3_3/conv2"
|
| 336 |
+
param {
|
| 337 |
+
lr_mult: 1.0
|
| 338 |
+
decay_mult: 1.0
|
| 339 |
+
}
|
| 340 |
+
convolution_param {
|
| 341 |
+
num_output: 16
|
| 342 |
+
pad: 1
|
| 343 |
+
kernel_size: 3
|
| 344 |
+
group: 16
|
| 345 |
+
stride: 1
|
| 346 |
+
weight_filler {
|
| 347 |
+
type: "msra"
|
| 348 |
+
}
|
| 349 |
+
dilation: 1
|
| 350 |
+
}
|
| 351 |
+
}
|
| 352 |
+
layer {
|
| 353 |
+
name: "stage3_3/conv3"
|
| 354 |
+
type: "Convolution"
|
| 355 |
+
bottom: "stage3_3/conv2"
|
| 356 |
+
top: "stage3_3/conv3"
|
| 357 |
+
param {
|
| 358 |
+
lr_mult: 1.0
|
| 359 |
+
decay_mult: 1.0
|
| 360 |
+
}
|
| 361 |
+
convolution_param {
|
| 362 |
+
num_output: 64
|
| 363 |
+
pad: 0
|
| 364 |
+
kernel_size: 1
|
| 365 |
+
group: 1
|
| 366 |
+
stride: 1
|
| 367 |
+
weight_filler {
|
| 368 |
+
type: "msra"
|
| 369 |
+
}
|
| 370 |
+
dilation: 1
|
| 371 |
+
}
|
| 372 |
+
}
|
| 373 |
+
layer {
|
| 374 |
+
name: "stage3_3/sum"
|
| 375 |
+
type: "Eltwise"
|
| 376 |
+
bottom: "stage3_2/sum"
|
| 377 |
+
bottom: "stage3_3/conv3"
|
| 378 |
+
top: "stage3_3/sum"
|
| 379 |
+
eltwise_param {
|
| 380 |
+
operation: SUM
|
| 381 |
+
}
|
| 382 |
+
}
|
| 383 |
+
layer {
|
| 384 |
+
name: "stage3_3/relu"
|
| 385 |
+
type: "ReLU"
|
| 386 |
+
bottom: "stage3_3/sum"
|
| 387 |
+
top: "stage3_3/sum"
|
| 388 |
+
}
|
| 389 |
+
layer {
|
| 390 |
+
name: "stage3_4/conv1"
|
| 391 |
+
type: "Convolution"
|
| 392 |
+
bottom: "stage3_3/sum"
|
| 393 |
+
top: "stage3_4/conv1"
|
| 394 |
+
param {
|
| 395 |
+
lr_mult: 1.0
|
| 396 |
+
decay_mult: 1.0
|
| 397 |
+
}
|
| 398 |
+
convolution_param {
|
| 399 |
+
num_output: 16
|
| 400 |
+
pad: 0
|
| 401 |
+
kernel_size: 1
|
| 402 |
+
group: 1
|
| 403 |
+
stride: 1
|
| 404 |
+
weight_filler {
|
| 405 |
+
type: "msra"
|
| 406 |
+
}
|
| 407 |
+
dilation: 1
|
| 408 |
+
}
|
| 409 |
+
}
|
| 410 |
+
layer {
|
| 411 |
+
name: "stage3_4/conv1/relu"
|
| 412 |
+
type: "ReLU"
|
| 413 |
+
bottom: "stage3_4/conv1"
|
| 414 |
+
top: "stage3_4/conv1"
|
| 415 |
+
}
|
| 416 |
+
layer {
|
| 417 |
+
name: "stage3_4/conv2"
|
| 418 |
+
type: "Convolution"
|
| 419 |
+
bottom: "stage3_4/conv1"
|
| 420 |
+
top: "stage3_4/conv2"
|
| 421 |
+
param {
|
| 422 |
+
lr_mult: 1.0
|
| 423 |
+
decay_mult: 1.0
|
| 424 |
+
}
|
| 425 |
+
convolution_param {
|
| 426 |
+
num_output: 16
|
| 427 |
+
pad: 1
|
| 428 |
+
kernel_size: 3
|
| 429 |
+
group: 16
|
| 430 |
+
stride: 1
|
| 431 |
+
weight_filler {
|
| 432 |
+
type: "msra"
|
| 433 |
+
}
|
| 434 |
+
dilation: 1
|
| 435 |
+
}
|
| 436 |
+
}
|
| 437 |
+
layer {
|
| 438 |
+
name: "stage3_4/conv3"
|
| 439 |
+
type: "Convolution"
|
| 440 |
+
bottom: "stage3_4/conv2"
|
| 441 |
+
top: "stage3_4/conv3"
|
| 442 |
+
param {
|
| 443 |
+
lr_mult: 1.0
|
| 444 |
+
decay_mult: 1.0
|
| 445 |
+
}
|
| 446 |
+
convolution_param {
|
| 447 |
+
num_output: 64
|
| 448 |
+
pad: 0
|
| 449 |
+
kernel_size: 1
|
| 450 |
+
group: 1
|
| 451 |
+
stride: 1
|
| 452 |
+
weight_filler {
|
| 453 |
+
type: "msra"
|
| 454 |
+
}
|
| 455 |
+
dilation: 1
|
| 456 |
+
}
|
| 457 |
+
}
|
| 458 |
+
layer {
|
| 459 |
+
name: "stage3_4/sum"
|
| 460 |
+
type: "Eltwise"
|
| 461 |
+
bottom: "stage3_3/sum"
|
| 462 |
+
bottom: "stage3_4/conv3"
|
| 463 |
+
top: "stage3_4/sum"
|
| 464 |
+
eltwise_param {
|
| 465 |
+
operation: SUM
|
| 466 |
+
}
|
| 467 |
+
}
|
| 468 |
+
layer {
|
| 469 |
+
name: "stage3_4/relu"
|
| 470 |
+
type: "ReLU"
|
| 471 |
+
bottom: "stage3_4/sum"
|
| 472 |
+
top: "stage3_4/sum"
|
| 473 |
+
}
|
| 474 |
+
layer {
|
| 475 |
+
name: "stage4_1/conv1"
|
| 476 |
+
type: "Convolution"
|
| 477 |
+
bottom: "stage3_4/sum"
|
| 478 |
+
top: "stage4_1/conv1"
|
| 479 |
+
param {
|
| 480 |
+
lr_mult: 1.0
|
| 481 |
+
decay_mult: 1.0
|
| 482 |
+
}
|
| 483 |
+
convolution_param {
|
| 484 |
+
num_output: 32
|
| 485 |
+
pad: 0
|
| 486 |
+
kernel_size: 1
|
| 487 |
+
group: 1
|
| 488 |
+
stride: 1
|
| 489 |
+
weight_filler {
|
| 490 |
+
type: "msra"
|
| 491 |
+
}
|
| 492 |
+
dilation: 1
|
| 493 |
+
}
|
| 494 |
+
}
|
| 495 |
+
layer {
|
| 496 |
+
name: "stage4_1/conv1/relu"
|
| 497 |
+
type: "ReLU"
|
| 498 |
+
bottom: "stage4_1/conv1"
|
| 499 |
+
top: "stage4_1/conv1"
|
| 500 |
+
}
|
| 501 |
+
layer {
|
| 502 |
+
name: "stage4_1/conv2"
|
| 503 |
+
type: "Convolution"
|
| 504 |
+
bottom: "stage4_1/conv1"
|
| 505 |
+
top: "stage4_1/conv2"
|
| 506 |
+
param {
|
| 507 |
+
lr_mult: 1.0
|
| 508 |
+
decay_mult: 1.0
|
| 509 |
+
}
|
| 510 |
+
convolution_param {
|
| 511 |
+
num_output: 32
|
| 512 |
+
pad: 1
|
| 513 |
+
kernel_size: 3
|
| 514 |
+
group: 32
|
| 515 |
+
stride: 2
|
| 516 |
+
weight_filler {
|
| 517 |
+
type: "msra"
|
| 518 |
+
}
|
| 519 |
+
dilation: 1
|
| 520 |
+
}
|
| 521 |
+
}
|
| 522 |
+
layer {
|
| 523 |
+
name: "stage4_1/conv3"
|
| 524 |
+
type: "Convolution"
|
| 525 |
+
bottom: "stage4_1/conv2"
|
| 526 |
+
top: "stage4_1/conv3"
|
| 527 |
+
param {
|
| 528 |
+
lr_mult: 1.0
|
| 529 |
+
decay_mult: 1.0
|
| 530 |
+
}
|
| 531 |
+
convolution_param {
|
| 532 |
+
num_output: 128
|
| 533 |
+
pad: 0
|
| 534 |
+
kernel_size: 1
|
| 535 |
+
group: 1
|
| 536 |
+
stride: 1
|
| 537 |
+
weight_filler {
|
| 538 |
+
type: "msra"
|
| 539 |
+
}
|
| 540 |
+
dilation: 1
|
| 541 |
+
}
|
| 542 |
+
}
|
| 543 |
+
layer {
|
| 544 |
+
name: "stage4_1/relu"
|
| 545 |
+
type: "ReLU"
|
| 546 |
+
bottom: "stage4_1/conv3"
|
| 547 |
+
top: "stage4_1/conv3"
|
| 548 |
+
}
|
| 549 |
+
layer {
|
| 550 |
+
name: "stage4_2/conv1"
|
| 551 |
+
type: "Convolution"
|
| 552 |
+
bottom: "stage4_1/conv3"
|
| 553 |
+
top: "stage4_2/conv1"
|
| 554 |
+
param {
|
| 555 |
+
lr_mult: 1.0
|
| 556 |
+
decay_mult: 1.0
|
| 557 |
+
}
|
| 558 |
+
convolution_param {
|
| 559 |
+
num_output: 32
|
| 560 |
+
pad: 0
|
| 561 |
+
kernel_size: 1
|
| 562 |
+
group: 1
|
| 563 |
+
stride: 1
|
| 564 |
+
weight_filler {
|
| 565 |
+
type: "msra"
|
| 566 |
+
}
|
| 567 |
+
dilation: 1
|
| 568 |
+
}
|
| 569 |
+
}
|
| 570 |
+
layer {
|
| 571 |
+
name: "stage4_2/conv1/relu"
|
| 572 |
+
type: "ReLU"
|
| 573 |
+
bottom: "stage4_2/conv1"
|
| 574 |
+
top: "stage4_2/conv1"
|
| 575 |
+
}
|
| 576 |
+
layer {
|
| 577 |
+
name: "stage4_2/conv2"
|
| 578 |
+
type: "Convolution"
|
| 579 |
+
bottom: "stage4_2/conv1"
|
| 580 |
+
top: "stage4_2/conv2"
|
| 581 |
+
param {
|
| 582 |
+
lr_mult: 1.0
|
| 583 |
+
decay_mult: 1.0
|
| 584 |
+
}
|
| 585 |
+
convolution_param {
|
| 586 |
+
num_output: 32
|
| 587 |
+
pad: 1
|
| 588 |
+
kernel_size: 3
|
| 589 |
+
group: 32
|
| 590 |
+
stride: 1
|
| 591 |
+
weight_filler {
|
| 592 |
+
type: "msra"
|
| 593 |
+
}
|
| 594 |
+
dilation: 1
|
| 595 |
+
}
|
| 596 |
+
}
|
| 597 |
+
layer {
|
| 598 |
+
name: "stage4_2/conv3"
|
| 599 |
+
type: "Convolution"
|
| 600 |
+
bottom: "stage4_2/conv2"
|
| 601 |
+
top: "stage4_2/conv3"
|
| 602 |
+
param {
|
| 603 |
+
lr_mult: 1.0
|
| 604 |
+
decay_mult: 1.0
|
| 605 |
+
}
|
| 606 |
+
convolution_param {
|
| 607 |
+
num_output: 128
|
| 608 |
+
pad: 0
|
| 609 |
+
kernel_size: 1
|
| 610 |
+
group: 1
|
| 611 |
+
stride: 1
|
| 612 |
+
weight_filler {
|
| 613 |
+
type: "msra"
|
| 614 |
+
}
|
| 615 |
+
dilation: 1
|
| 616 |
+
}
|
| 617 |
+
}
|
| 618 |
+
layer {
|
| 619 |
+
name: "stage4_2/sum"
|
| 620 |
+
type: "Eltwise"
|
| 621 |
+
bottom: "stage4_1/conv3"
|
| 622 |
+
bottom: "stage4_2/conv3"
|
| 623 |
+
top: "stage4_2/sum"
|
| 624 |
+
eltwise_param {
|
| 625 |
+
operation: SUM
|
| 626 |
+
}
|
| 627 |
+
}
|
| 628 |
+
layer {
|
| 629 |
+
name: "stage4_2/relu"
|
| 630 |
+
type: "ReLU"
|
| 631 |
+
bottom: "stage4_2/sum"
|
| 632 |
+
top: "stage4_2/sum"
|
| 633 |
+
}
|
| 634 |
+
layer {
|
| 635 |
+
name: "stage4_3/conv1"
|
| 636 |
+
type: "Convolution"
|
| 637 |
+
bottom: "stage4_2/sum"
|
| 638 |
+
top: "stage4_3/conv1"
|
| 639 |
+
param {
|
| 640 |
+
lr_mult: 1.0
|
| 641 |
+
decay_mult: 1.0
|
| 642 |
+
}
|
| 643 |
+
convolution_param {
|
| 644 |
+
num_output: 32
|
| 645 |
+
pad: 0
|
| 646 |
+
kernel_size: 1
|
| 647 |
+
group: 1
|
| 648 |
+
stride: 1
|
| 649 |
+
weight_filler {
|
| 650 |
+
type: "msra"
|
| 651 |
+
}
|
| 652 |
+
dilation: 1
|
| 653 |
+
}
|
| 654 |
+
}
|
| 655 |
+
layer {
|
| 656 |
+
name: "stage4_3/conv1/relu"
|
| 657 |
+
type: "ReLU"
|
| 658 |
+
bottom: "stage4_3/conv1"
|
| 659 |
+
top: "stage4_3/conv1"
|
| 660 |
+
}
|
| 661 |
+
layer {
|
| 662 |
+
name: "stage4_3/conv2"
|
| 663 |
+
type: "Convolution"
|
| 664 |
+
bottom: "stage4_3/conv1"
|
| 665 |
+
top: "stage4_3/conv2"
|
| 666 |
+
param {
|
| 667 |
+
lr_mult: 1.0
|
| 668 |
+
decay_mult: 1.0
|
| 669 |
+
}
|
| 670 |
+
convolution_param {
|
| 671 |
+
num_output: 32
|
| 672 |
+
pad: 1
|
| 673 |
+
kernel_size: 3
|
| 674 |
+
group: 32
|
| 675 |
+
stride: 1
|
| 676 |
+
weight_filler {
|
| 677 |
+
type: "msra"
|
| 678 |
+
}
|
| 679 |
+
dilation: 1
|
| 680 |
+
}
|
| 681 |
+
}
|
| 682 |
+
layer {
|
| 683 |
+
name: "stage4_3/conv3"
|
| 684 |
+
type: "Convolution"
|
| 685 |
+
bottom: "stage4_3/conv2"
|
| 686 |
+
top: "stage4_3/conv3"
|
| 687 |
+
param {
|
| 688 |
+
lr_mult: 1.0
|
| 689 |
+
decay_mult: 1.0
|
| 690 |
+
}
|
| 691 |
+
convolution_param {
|
| 692 |
+
num_output: 128
|
| 693 |
+
pad: 0
|
| 694 |
+
kernel_size: 1
|
| 695 |
+
group: 1
|
| 696 |
+
stride: 1
|
| 697 |
+
weight_filler {
|
| 698 |
+
type: "msra"
|
| 699 |
+
}
|
| 700 |
+
dilation: 1
|
| 701 |
+
}
|
| 702 |
+
}
|
| 703 |
+
layer {
|
| 704 |
+
name: "stage4_3/sum"
|
| 705 |
+
type: "Eltwise"
|
| 706 |
+
bottom: "stage4_2/sum"
|
| 707 |
+
bottom: "stage4_3/conv3"
|
| 708 |
+
top: "stage4_3/sum"
|
| 709 |
+
eltwise_param {
|
| 710 |
+
operation: SUM
|
| 711 |
+
}
|
| 712 |
+
}
|
| 713 |
+
layer {
|
| 714 |
+
name: "stage4_3/relu"
|
| 715 |
+
type: "ReLU"
|
| 716 |
+
bottom: "stage4_3/sum"
|
| 717 |
+
top: "stage4_3/sum"
|
| 718 |
+
}
|
| 719 |
+
layer {
|
| 720 |
+
name: "stage4_4/conv1"
|
| 721 |
+
type: "Convolution"
|
| 722 |
+
bottom: "stage4_3/sum"
|
| 723 |
+
top: "stage4_4/conv1"
|
| 724 |
+
param {
|
| 725 |
+
lr_mult: 1.0
|
| 726 |
+
decay_mult: 1.0
|
| 727 |
+
}
|
| 728 |
+
convolution_param {
|
| 729 |
+
num_output: 32
|
| 730 |
+
pad: 0
|
| 731 |
+
kernel_size: 1
|
| 732 |
+
group: 1
|
| 733 |
+
stride: 1
|
| 734 |
+
weight_filler {
|
| 735 |
+
type: "msra"
|
| 736 |
+
}
|
| 737 |
+
dilation: 1
|
| 738 |
+
}
|
| 739 |
+
}
|
| 740 |
+
layer {
|
| 741 |
+
name: "stage4_4/conv1/relu"
|
| 742 |
+
type: "ReLU"
|
| 743 |
+
bottom: "stage4_4/conv1"
|
| 744 |
+
top: "stage4_4/conv1"
|
| 745 |
+
}
|
| 746 |
+
layer {
|
| 747 |
+
name: "stage4_4/conv2"
|
| 748 |
+
type: "Convolution"
|
| 749 |
+
bottom: "stage4_4/conv1"
|
| 750 |
+
top: "stage4_4/conv2"
|
| 751 |
+
param {
|
| 752 |
+
lr_mult: 1.0
|
| 753 |
+
decay_mult: 1.0
|
| 754 |
+
}
|
| 755 |
+
convolution_param {
|
| 756 |
+
num_output: 32
|
| 757 |
+
pad: 1
|
| 758 |
+
kernel_size: 3
|
| 759 |
+
group: 32
|
| 760 |
+
stride: 1
|
| 761 |
+
weight_filler {
|
| 762 |
+
type: "msra"
|
| 763 |
+
}
|
| 764 |
+
dilation: 1
|
| 765 |
+
}
|
| 766 |
+
}
|
| 767 |
+
layer {
|
| 768 |
+
name: "stage4_4/conv3"
|
| 769 |
+
type: "Convolution"
|
| 770 |
+
bottom: "stage4_4/conv2"
|
| 771 |
+
top: "stage4_4/conv3"
|
| 772 |
+
param {
|
| 773 |
+
lr_mult: 1.0
|
| 774 |
+
decay_mult: 1.0
|
| 775 |
+
}
|
| 776 |
+
convolution_param {
|
| 777 |
+
num_output: 128
|
| 778 |
+
pad: 0
|
| 779 |
+
kernel_size: 1
|
| 780 |
+
group: 1
|
| 781 |
+
stride: 1
|
| 782 |
+
weight_filler {
|
| 783 |
+
type: "msra"
|
| 784 |
+
}
|
| 785 |
+
dilation: 1
|
| 786 |
+
}
|
| 787 |
+
}
|
| 788 |
+
layer {
|
| 789 |
+
name: "stage4_4/sum"
|
| 790 |
+
type: "Eltwise"
|
| 791 |
+
bottom: "stage4_3/sum"
|
| 792 |
+
bottom: "stage4_4/conv3"
|
| 793 |
+
top: "stage4_4/sum"
|
| 794 |
+
eltwise_param {
|
| 795 |
+
operation: SUM
|
| 796 |
+
}
|
| 797 |
+
}
|
| 798 |
+
layer {
|
| 799 |
+
name: "stage4_4/relu"
|
| 800 |
+
type: "ReLU"
|
| 801 |
+
bottom: "stage4_4/sum"
|
| 802 |
+
top: "stage4_4/sum"
|
| 803 |
+
}
|
| 804 |
+
layer {
|
| 805 |
+
name: "stage4_5/conv1"
|
| 806 |
+
type: "Convolution"
|
| 807 |
+
bottom: "stage4_4/sum"
|
| 808 |
+
top: "stage4_5/conv1"
|
| 809 |
+
param {
|
| 810 |
+
lr_mult: 1.0
|
| 811 |
+
decay_mult: 1.0
|
| 812 |
+
}
|
| 813 |
+
convolution_param {
|
| 814 |
+
num_output: 32
|
| 815 |
+
pad: 0
|
| 816 |
+
kernel_size: 1
|
| 817 |
+
group: 1
|
| 818 |
+
stride: 1
|
| 819 |
+
weight_filler {
|
| 820 |
+
type: "msra"
|
| 821 |
+
}
|
| 822 |
+
dilation: 1
|
| 823 |
+
}
|
| 824 |
+
}
|
| 825 |
+
layer {
|
| 826 |
+
name: "stage4_5/conv1/relu"
|
| 827 |
+
type: "ReLU"
|
| 828 |
+
bottom: "stage4_5/conv1"
|
| 829 |
+
top: "stage4_5/conv1"
|
| 830 |
+
}
|
| 831 |
+
layer {
|
| 832 |
+
name: "stage4_5/conv2"
|
| 833 |
+
type: "Convolution"
|
| 834 |
+
bottom: "stage4_5/conv1"
|
| 835 |
+
top: "stage4_5/conv2"
|
| 836 |
+
param {
|
| 837 |
+
lr_mult: 1.0
|
| 838 |
+
decay_mult: 1.0
|
| 839 |
+
}
|
| 840 |
+
convolution_param {
|
| 841 |
+
num_output: 32
|
| 842 |
+
pad: 1
|
| 843 |
+
kernel_size: 3
|
| 844 |
+
group: 32
|
| 845 |
+
stride: 1
|
| 846 |
+
weight_filler {
|
| 847 |
+
type: "msra"
|
| 848 |
+
}
|
| 849 |
+
dilation: 1
|
| 850 |
+
}
|
| 851 |
+
}
|
| 852 |
+
layer {
|
| 853 |
+
name: "stage4_5/conv3"
|
| 854 |
+
type: "Convolution"
|
| 855 |
+
bottom: "stage4_5/conv2"
|
| 856 |
+
top: "stage4_5/conv3"
|
| 857 |
+
param {
|
| 858 |
+
lr_mult: 1.0
|
| 859 |
+
decay_mult: 1.0
|
| 860 |
+
}
|
| 861 |
+
convolution_param {
|
| 862 |
+
num_output: 128
|
| 863 |
+
pad: 0
|
| 864 |
+
kernel_size: 1
|
| 865 |
+
group: 1
|
| 866 |
+
stride: 1
|
| 867 |
+
weight_filler {
|
| 868 |
+
type: "msra"
|
| 869 |
+
}
|
| 870 |
+
dilation: 1
|
| 871 |
+
}
|
| 872 |
+
}
|
| 873 |
+
layer {
|
| 874 |
+
name: "stage4_5/sum"
|
| 875 |
+
type: "Eltwise"
|
| 876 |
+
bottom: "stage4_4/sum"
|
| 877 |
+
bottom: "stage4_5/conv3"
|
| 878 |
+
top: "stage4_5/sum"
|
| 879 |
+
eltwise_param {
|
| 880 |
+
operation: SUM
|
| 881 |
+
}
|
| 882 |
+
}
|
| 883 |
+
layer {
|
| 884 |
+
name: "stage4_5/relu"
|
| 885 |
+
type: "ReLU"
|
| 886 |
+
bottom: "stage4_5/sum"
|
| 887 |
+
top: "stage4_5/sum"
|
| 888 |
+
}
|
| 889 |
+
layer {
|
| 890 |
+
name: "stage4_6/conv1"
|
| 891 |
+
type: "Convolution"
|
| 892 |
+
bottom: "stage4_5/sum"
|
| 893 |
+
top: "stage4_6/conv1"
|
| 894 |
+
param {
|
| 895 |
+
lr_mult: 1.0
|
| 896 |
+
decay_mult: 1.0
|
| 897 |
+
}
|
| 898 |
+
convolution_param {
|
| 899 |
+
num_output: 32
|
| 900 |
+
pad: 0
|
| 901 |
+
kernel_size: 1
|
| 902 |
+
group: 1
|
| 903 |
+
stride: 1
|
| 904 |
+
weight_filler {
|
| 905 |
+
type: "msra"
|
| 906 |
+
}
|
| 907 |
+
dilation: 1
|
| 908 |
+
}
|
| 909 |
+
}
|
| 910 |
+
layer {
|
| 911 |
+
name: "stage4_6/conv1/relu"
|
| 912 |
+
type: "ReLU"
|
| 913 |
+
bottom: "stage4_6/conv1"
|
| 914 |
+
top: "stage4_6/conv1"
|
| 915 |
+
}
|
| 916 |
+
layer {
|
| 917 |
+
name: "stage4_6/conv2"
|
| 918 |
+
type: "Convolution"
|
| 919 |
+
bottom: "stage4_6/conv1"
|
| 920 |
+
top: "stage4_6/conv2"
|
| 921 |
+
param {
|
| 922 |
+
lr_mult: 1.0
|
| 923 |
+
decay_mult: 1.0
|
| 924 |
+
}
|
| 925 |
+
convolution_param {
|
| 926 |
+
num_output: 32
|
| 927 |
+
pad: 1
|
| 928 |
+
kernel_size: 3
|
| 929 |
+
group: 32
|
| 930 |
+
stride: 1
|
| 931 |
+
weight_filler {
|
| 932 |
+
type: "msra"
|
| 933 |
+
}
|
| 934 |
+
dilation: 1
|
| 935 |
+
}
|
| 936 |
+
}
|
| 937 |
+
layer {
|
| 938 |
+
name: "stage4_6/conv3"
|
| 939 |
+
type: "Convolution"
|
| 940 |
+
bottom: "stage4_6/conv2"
|
| 941 |
+
top: "stage4_6/conv3"
|
| 942 |
+
param {
|
| 943 |
+
lr_mult: 1.0
|
| 944 |
+
decay_mult: 1.0
|
| 945 |
+
}
|
| 946 |
+
convolution_param {
|
| 947 |
+
num_output: 128
|
| 948 |
+
pad: 0
|
| 949 |
+
kernel_size: 1
|
| 950 |
+
group: 1
|
| 951 |
+
stride: 1
|
| 952 |
+
weight_filler {
|
| 953 |
+
type: "msra"
|
| 954 |
+
}
|
| 955 |
+
dilation: 1
|
| 956 |
+
}
|
| 957 |
+
}
|
| 958 |
+
layer {
|
| 959 |
+
name: "stage4_6/sum"
|
| 960 |
+
type: "Eltwise"
|
| 961 |
+
bottom: "stage4_5/sum"
|
| 962 |
+
bottom: "stage4_6/conv3"
|
| 963 |
+
top: "stage4_6/sum"
|
| 964 |
+
eltwise_param {
|
| 965 |
+
operation: SUM
|
| 966 |
+
}
|
| 967 |
+
}
|
| 968 |
+
layer {
|
| 969 |
+
name: "stage4_6/relu"
|
| 970 |
+
type: "ReLU"
|
| 971 |
+
bottom: "stage4_6/sum"
|
| 972 |
+
top: "stage4_6/sum"
|
| 973 |
+
}
|
| 974 |
+
layer {
|
| 975 |
+
name: "stage4_7/conv1"
|
| 976 |
+
type: "Convolution"
|
| 977 |
+
bottom: "stage4_6/sum"
|
| 978 |
+
top: "stage4_7/conv1"
|
| 979 |
+
param {
|
| 980 |
+
lr_mult: 1.0
|
| 981 |
+
decay_mult: 1.0
|
| 982 |
+
}
|
| 983 |
+
convolution_param {
|
| 984 |
+
num_output: 32
|
| 985 |
+
pad: 0
|
| 986 |
+
kernel_size: 1
|
| 987 |
+
group: 1
|
| 988 |
+
stride: 1
|
| 989 |
+
weight_filler {
|
| 990 |
+
type: "msra"
|
| 991 |
+
}
|
| 992 |
+
dilation: 1
|
| 993 |
+
}
|
| 994 |
+
}
|
| 995 |
+
layer {
|
| 996 |
+
name: "stage4_7/conv1/relu"
|
| 997 |
+
type: "ReLU"
|
| 998 |
+
bottom: "stage4_7/conv1"
|
| 999 |
+
top: "stage4_7/conv1"
|
| 1000 |
+
}
|
| 1001 |
+
layer {
|
| 1002 |
+
name: "stage4_7/conv2"
|
| 1003 |
+
type: "Convolution"
|
| 1004 |
+
bottom: "stage4_7/conv1"
|
| 1005 |
+
top: "stage4_7/conv2"
|
| 1006 |
+
param {
|
| 1007 |
+
lr_mult: 1.0
|
| 1008 |
+
decay_mult: 1.0
|
| 1009 |
+
}
|
| 1010 |
+
convolution_param {
|
| 1011 |
+
num_output: 32
|
| 1012 |
+
pad: 1
|
| 1013 |
+
kernel_size: 3
|
| 1014 |
+
group: 32
|
| 1015 |
+
stride: 1
|
| 1016 |
+
weight_filler {
|
| 1017 |
+
type: "msra"
|
| 1018 |
+
}
|
| 1019 |
+
dilation: 1
|
| 1020 |
+
}
|
| 1021 |
+
}
|
| 1022 |
+
layer {
|
| 1023 |
+
name: "stage4_7/conv3"
|
| 1024 |
+
type: "Convolution"
|
| 1025 |
+
bottom: "stage4_7/conv2"
|
| 1026 |
+
top: "stage4_7/conv3"
|
| 1027 |
+
param {
|
| 1028 |
+
lr_mult: 1.0
|
| 1029 |
+
decay_mult: 1.0
|
| 1030 |
+
}
|
| 1031 |
+
convolution_param {
|
| 1032 |
+
num_output: 128
|
| 1033 |
+
pad: 0
|
| 1034 |
+
kernel_size: 1
|
| 1035 |
+
group: 1
|
| 1036 |
+
stride: 1
|
| 1037 |
+
weight_filler {
|
| 1038 |
+
type: "msra"
|
| 1039 |
+
}
|
| 1040 |
+
dilation: 1
|
| 1041 |
+
}
|
| 1042 |
+
}
|
| 1043 |
+
layer {
|
| 1044 |
+
name: "stage4_7/sum"
|
| 1045 |
+
type: "Eltwise"
|
| 1046 |
+
bottom: "stage4_6/sum"
|
| 1047 |
+
bottom: "stage4_7/conv3"
|
| 1048 |
+
top: "stage4_7/sum"
|
| 1049 |
+
eltwise_param {
|
| 1050 |
+
operation: SUM
|
| 1051 |
+
}
|
| 1052 |
+
}
|
| 1053 |
+
layer {
|
| 1054 |
+
name: "stage4_7/relu"
|
| 1055 |
+
type: "ReLU"
|
| 1056 |
+
bottom: "stage4_7/sum"
|
| 1057 |
+
top: "stage4_7/sum"
|
| 1058 |
+
}
|
| 1059 |
+
layer {
|
| 1060 |
+
name: "stage4_8/conv1"
|
| 1061 |
+
type: "Convolution"
|
| 1062 |
+
bottom: "stage4_7/sum"
|
| 1063 |
+
top: "stage4_8/conv1"
|
| 1064 |
+
param {
|
| 1065 |
+
lr_mult: 1.0
|
| 1066 |
+
decay_mult: 1.0
|
| 1067 |
+
}
|
| 1068 |
+
convolution_param {
|
| 1069 |
+
num_output: 32
|
| 1070 |
+
pad: 0
|
| 1071 |
+
kernel_size: 1
|
| 1072 |
+
group: 1
|
| 1073 |
+
stride: 1
|
| 1074 |
+
weight_filler {
|
| 1075 |
+
type: "msra"
|
| 1076 |
+
}
|
| 1077 |
+
dilation: 1
|
| 1078 |
+
}
|
| 1079 |
+
}
|
| 1080 |
+
layer {
|
| 1081 |
+
name: "stage4_8/conv1/relu"
|
| 1082 |
+
type: "ReLU"
|
| 1083 |
+
bottom: "stage4_8/conv1"
|
| 1084 |
+
top: "stage4_8/conv1"
|
| 1085 |
+
}
|
| 1086 |
+
layer {
|
| 1087 |
+
name: "stage4_8/conv2"
|
| 1088 |
+
type: "Convolution"
|
| 1089 |
+
bottom: "stage4_8/conv1"
|
| 1090 |
+
top: "stage4_8/conv2"
|
| 1091 |
+
param {
|
| 1092 |
+
lr_mult: 1.0
|
| 1093 |
+
decay_mult: 1.0
|
| 1094 |
+
}
|
| 1095 |
+
convolution_param {
|
| 1096 |
+
num_output: 32
|
| 1097 |
+
pad: 1
|
| 1098 |
+
kernel_size: 3
|
| 1099 |
+
group: 32
|
| 1100 |
+
stride: 1
|
| 1101 |
+
weight_filler {
|
| 1102 |
+
type: "msra"
|
| 1103 |
+
}
|
| 1104 |
+
dilation: 1
|
| 1105 |
+
}
|
| 1106 |
+
}
|
| 1107 |
+
layer {
|
| 1108 |
+
name: "stage4_8/conv3"
|
| 1109 |
+
type: "Convolution"
|
| 1110 |
+
bottom: "stage4_8/conv2"
|
| 1111 |
+
top: "stage4_8/conv3"
|
| 1112 |
+
param {
|
| 1113 |
+
lr_mult: 1.0
|
| 1114 |
+
decay_mult: 1.0
|
| 1115 |
+
}
|
| 1116 |
+
convolution_param {
|
| 1117 |
+
num_output: 128
|
| 1118 |
+
pad: 0
|
| 1119 |
+
kernel_size: 1
|
| 1120 |
+
group: 1
|
| 1121 |
+
stride: 1
|
| 1122 |
+
weight_filler {
|
| 1123 |
+
type: "msra"
|
| 1124 |
+
}
|
| 1125 |
+
dilation: 1
|
| 1126 |
+
}
|
| 1127 |
+
}
|
| 1128 |
+
layer {
|
| 1129 |
+
name: "stage4_8/sum"
|
| 1130 |
+
type: "Eltwise"
|
| 1131 |
+
bottom: "stage4_7/sum"
|
| 1132 |
+
bottom: "stage4_8/conv3"
|
| 1133 |
+
top: "stage4_8/sum"
|
| 1134 |
+
eltwise_param {
|
| 1135 |
+
operation: SUM
|
| 1136 |
+
}
|
| 1137 |
+
}
|
| 1138 |
+
layer {
|
| 1139 |
+
name: "stage4_8/relu"
|
| 1140 |
+
type: "ReLU"
|
| 1141 |
+
bottom: "stage4_8/sum"
|
| 1142 |
+
top: "stage4_8/sum"
|
| 1143 |
+
}
|
| 1144 |
+
layer {
|
| 1145 |
+
name: "stage5_1/conv1"
|
| 1146 |
+
type: "Convolution"
|
| 1147 |
+
bottom: "stage4_8/sum"
|
| 1148 |
+
top: "stage5_1/conv1"
|
| 1149 |
+
param {
|
| 1150 |
+
lr_mult: 1.0
|
| 1151 |
+
decay_mult: 1.0
|
| 1152 |
+
}
|
| 1153 |
+
convolution_param {
|
| 1154 |
+
num_output: 32
|
| 1155 |
+
pad: 0
|
| 1156 |
+
kernel_size: 1
|
| 1157 |
+
group: 1
|
| 1158 |
+
stride: 1
|
| 1159 |
+
weight_filler {
|
| 1160 |
+
type: "msra"
|
| 1161 |
+
}
|
| 1162 |
+
dilation: 1
|
| 1163 |
+
}
|
| 1164 |
+
}
|
| 1165 |
+
layer {
|
| 1166 |
+
name: "stage5_1/conv1/relu"
|
| 1167 |
+
type: "ReLU"
|
| 1168 |
+
bottom: "stage5_1/conv1"
|
| 1169 |
+
top: "stage5_1/conv1"
|
| 1170 |
+
}
|
| 1171 |
+
layer {
|
| 1172 |
+
name: "stage5_1/conv2"
|
| 1173 |
+
type: "Convolution"
|
| 1174 |
+
bottom: "stage5_1/conv1"
|
| 1175 |
+
top: "stage5_1/conv2"
|
| 1176 |
+
param {
|
| 1177 |
+
lr_mult: 1.0
|
| 1178 |
+
decay_mult: 1.0
|
| 1179 |
+
}
|
| 1180 |
+
convolution_param {
|
| 1181 |
+
num_output: 32
|
| 1182 |
+
pad: 2
|
| 1183 |
+
kernel_size: 3
|
| 1184 |
+
group: 32
|
| 1185 |
+
stride: 2
|
| 1186 |
+
weight_filler {
|
| 1187 |
+
type: "msra"
|
| 1188 |
+
}
|
| 1189 |
+
dilation: 2
|
| 1190 |
+
}
|
| 1191 |
+
}
|
| 1192 |
+
layer {
|
| 1193 |
+
name: "stage5_1/conv3"
|
| 1194 |
+
type: "Convolution"
|
| 1195 |
+
bottom: "stage5_1/conv2"
|
| 1196 |
+
top: "stage5_1/conv3"
|
| 1197 |
+
param {
|
| 1198 |
+
lr_mult: 1.0
|
| 1199 |
+
decay_mult: 1.0
|
| 1200 |
+
}
|
| 1201 |
+
convolution_param {
|
| 1202 |
+
num_output: 128
|
| 1203 |
+
pad: 0
|
| 1204 |
+
kernel_size: 1
|
| 1205 |
+
group: 1
|
| 1206 |
+
stride: 1
|
| 1207 |
+
weight_filler {
|
| 1208 |
+
type: "msra"
|
| 1209 |
+
}
|
| 1210 |
+
dilation: 1
|
| 1211 |
+
}
|
| 1212 |
+
}
|
| 1213 |
+
layer {
|
| 1214 |
+
name: "stage5_1/relu"
|
| 1215 |
+
type: "ReLU"
|
| 1216 |
+
bottom: "stage5_1/conv3"
|
| 1217 |
+
top: "stage5_1/conv3"
|
| 1218 |
+
}
|
| 1219 |
+
layer {
|
| 1220 |
+
name: "stage5_2/conv1"
|
| 1221 |
+
type: "Convolution"
|
| 1222 |
+
bottom: "stage5_1/conv3"
|
| 1223 |
+
top: "stage5_2/conv1"
|
| 1224 |
+
param {
|
| 1225 |
+
lr_mult: 1.0
|
| 1226 |
+
decay_mult: 1.0
|
| 1227 |
+
}
|
| 1228 |
+
convolution_param {
|
| 1229 |
+
num_output: 32
|
| 1230 |
+
pad: 0
|
| 1231 |
+
kernel_size: 1
|
| 1232 |
+
group: 1
|
| 1233 |
+
stride: 1
|
| 1234 |
+
weight_filler {
|
| 1235 |
+
type: "msra"
|
| 1236 |
+
}
|
| 1237 |
+
dilation: 1
|
| 1238 |
+
}
|
| 1239 |
+
}
|
| 1240 |
+
layer {
|
| 1241 |
+
name: "stage5_2/conv1/relu"
|
| 1242 |
+
type: "ReLU"
|
| 1243 |
+
bottom: "stage5_2/conv1"
|
| 1244 |
+
top: "stage5_2/conv1"
|
| 1245 |
+
}
|
| 1246 |
+
layer {
|
| 1247 |
+
name: "stage5_2/conv2"
|
| 1248 |
+
type: "Convolution"
|
| 1249 |
+
bottom: "stage5_2/conv1"
|
| 1250 |
+
top: "stage5_2/conv2"
|
| 1251 |
+
param {
|
| 1252 |
+
lr_mult: 1.0
|
| 1253 |
+
decay_mult: 1.0
|
| 1254 |
+
}
|
| 1255 |
+
convolution_param {
|
| 1256 |
+
num_output: 32
|
| 1257 |
+
pad: 2
|
| 1258 |
+
kernel_size: 3
|
| 1259 |
+
group: 32
|
| 1260 |
+
stride: 1
|
| 1261 |
+
weight_filler {
|
| 1262 |
+
type: "msra"
|
| 1263 |
+
}
|
| 1264 |
+
dilation: 2
|
| 1265 |
+
}
|
| 1266 |
+
}
|
| 1267 |
+
layer {
|
| 1268 |
+
name: "stage5_2/conv3"
|
| 1269 |
+
type: "Convolution"
|
| 1270 |
+
bottom: "stage5_2/conv2"
|
| 1271 |
+
top: "stage5_2/conv3"
|
| 1272 |
+
param {
|
| 1273 |
+
lr_mult: 1.0
|
| 1274 |
+
decay_mult: 1.0
|
| 1275 |
+
}
|
| 1276 |
+
convolution_param {
|
| 1277 |
+
num_output: 128
|
| 1278 |
+
pad: 0
|
| 1279 |
+
kernel_size: 1
|
| 1280 |
+
group: 1
|
| 1281 |
+
stride: 1
|
| 1282 |
+
weight_filler {
|
| 1283 |
+
type: "msra"
|
| 1284 |
+
}
|
| 1285 |
+
dilation: 1
|
| 1286 |
+
}
|
| 1287 |
+
}
|
| 1288 |
+
layer {
|
| 1289 |
+
name: "stage5_2/sum"
|
| 1290 |
+
type: "Eltwise"
|
| 1291 |
+
bottom: "stage5_1/conv3"
|
| 1292 |
+
bottom: "stage5_2/conv3"
|
| 1293 |
+
top: "stage5_2/sum"
|
| 1294 |
+
eltwise_param {
|
| 1295 |
+
operation: SUM
|
| 1296 |
+
}
|
| 1297 |
+
}
|
| 1298 |
+
layer {
|
| 1299 |
+
name: "stage5_2/relu"
|
| 1300 |
+
type: "ReLU"
|
| 1301 |
+
bottom: "stage5_2/sum"
|
| 1302 |
+
top: "stage5_2/sum"
|
| 1303 |
+
}
|
| 1304 |
+
layer {
|
| 1305 |
+
name: "stage5_3/conv1"
|
| 1306 |
+
type: "Convolution"
|
| 1307 |
+
bottom: "stage5_2/sum"
|
| 1308 |
+
top: "stage5_3/conv1"
|
| 1309 |
+
param {
|
| 1310 |
+
lr_mult: 1.0
|
| 1311 |
+
decay_mult: 1.0
|
| 1312 |
+
}
|
| 1313 |
+
convolution_param {
|
| 1314 |
+
num_output: 32
|
| 1315 |
+
pad: 0
|
| 1316 |
+
kernel_size: 1
|
| 1317 |
+
group: 1
|
| 1318 |
+
stride: 1
|
| 1319 |
+
weight_filler {
|
| 1320 |
+
type: "msra"
|
| 1321 |
+
}
|
| 1322 |
+
dilation: 1
|
| 1323 |
+
}
|
| 1324 |
+
}
|
| 1325 |
+
layer {
|
| 1326 |
+
name: "stage5_3/conv1/relu"
|
| 1327 |
+
type: "ReLU"
|
| 1328 |
+
bottom: "stage5_3/conv1"
|
| 1329 |
+
top: "stage5_3/conv1"
|
| 1330 |
+
}
|
| 1331 |
+
layer {
|
| 1332 |
+
name: "stage5_3/conv2"
|
| 1333 |
+
type: "Convolution"
|
| 1334 |
+
bottom: "stage5_3/conv1"
|
| 1335 |
+
top: "stage5_3/conv2"
|
| 1336 |
+
param {
|
| 1337 |
+
lr_mult: 1.0
|
| 1338 |
+
decay_mult: 1.0
|
| 1339 |
+
}
|
| 1340 |
+
convolution_param {
|
| 1341 |
+
num_output: 32
|
| 1342 |
+
pad: 2
|
| 1343 |
+
kernel_size: 3
|
| 1344 |
+
group: 32
|
| 1345 |
+
stride: 1
|
| 1346 |
+
weight_filler {
|
| 1347 |
+
type: "msra"
|
| 1348 |
+
}
|
| 1349 |
+
dilation: 2
|
| 1350 |
+
}
|
| 1351 |
+
}
|
| 1352 |
+
layer {
|
| 1353 |
+
name: "stage5_3/conv3"
|
| 1354 |
+
type: "Convolution"
|
| 1355 |
+
bottom: "stage5_3/conv2"
|
| 1356 |
+
top: "stage5_3/conv3"
|
| 1357 |
+
param {
|
| 1358 |
+
lr_mult: 1.0
|
| 1359 |
+
decay_mult: 1.0
|
| 1360 |
+
}
|
| 1361 |
+
convolution_param {
|
| 1362 |
+
num_output: 128
|
| 1363 |
+
pad: 0
|
| 1364 |
+
kernel_size: 1
|
| 1365 |
+
group: 1
|
| 1366 |
+
stride: 1
|
| 1367 |
+
weight_filler {
|
| 1368 |
+
type: "msra"
|
| 1369 |
+
}
|
| 1370 |
+
dilation: 1
|
| 1371 |
+
}
|
| 1372 |
+
}
|
| 1373 |
+
layer {
|
| 1374 |
+
name: "stage5_3/sum"
|
| 1375 |
+
type: "Eltwise"
|
| 1376 |
+
bottom: "stage5_2/sum"
|
| 1377 |
+
bottom: "stage5_3/conv3"
|
| 1378 |
+
top: "stage5_3/sum"
|
| 1379 |
+
eltwise_param {
|
| 1380 |
+
operation: SUM
|
| 1381 |
+
}
|
| 1382 |
+
}
|
| 1383 |
+
layer {
|
| 1384 |
+
name: "stage5_3/relu"
|
| 1385 |
+
type: "ReLU"
|
| 1386 |
+
bottom: "stage5_3/sum"
|
| 1387 |
+
top: "stage5_3/sum"
|
| 1388 |
+
}
|
| 1389 |
+
layer {
|
| 1390 |
+
name: "stage5_4/conv1"
|
| 1391 |
+
type: "Convolution"
|
| 1392 |
+
bottom: "stage5_3/sum"
|
| 1393 |
+
top: "stage5_4/conv1"
|
| 1394 |
+
param {
|
| 1395 |
+
lr_mult: 1.0
|
| 1396 |
+
decay_mult: 1.0
|
| 1397 |
+
}
|
| 1398 |
+
convolution_param {
|
| 1399 |
+
num_output: 32
|
| 1400 |
+
pad: 0
|
| 1401 |
+
kernel_size: 1
|
| 1402 |
+
group: 1
|
| 1403 |
+
stride: 1
|
| 1404 |
+
weight_filler {
|
| 1405 |
+
type: "msra"
|
| 1406 |
+
}
|
| 1407 |
+
dilation: 1
|
| 1408 |
+
}
|
| 1409 |
+
}
|
| 1410 |
+
layer {
|
| 1411 |
+
name: "stage5_4/conv1/relu"
|
| 1412 |
+
type: "ReLU"
|
| 1413 |
+
bottom: "stage5_4/conv1"
|
| 1414 |
+
top: "stage5_4/conv1"
|
| 1415 |
+
}
|
| 1416 |
+
layer {
|
| 1417 |
+
name: "stage5_4/conv2"
|
| 1418 |
+
type: "Convolution"
|
| 1419 |
+
bottom: "stage5_4/conv1"
|
| 1420 |
+
top: "stage5_4/conv2"
|
| 1421 |
+
param {
|
| 1422 |
+
lr_mult: 1.0
|
| 1423 |
+
decay_mult: 1.0
|
| 1424 |
+
}
|
| 1425 |
+
convolution_param {
|
| 1426 |
+
num_output: 32
|
| 1427 |
+
pad: 2
|
| 1428 |
+
kernel_size: 3
|
| 1429 |
+
group: 32
|
| 1430 |
+
stride: 1
|
| 1431 |
+
weight_filler {
|
| 1432 |
+
type: "msra"
|
| 1433 |
+
}
|
| 1434 |
+
dilation: 2
|
| 1435 |
+
}
|
| 1436 |
+
}
|
| 1437 |
+
layer {
|
| 1438 |
+
name: "stage5_4/conv3"
|
| 1439 |
+
type: "Convolution"
|
| 1440 |
+
bottom: "stage5_4/conv2"
|
| 1441 |
+
top: "stage5_4/conv3"
|
| 1442 |
+
param {
|
| 1443 |
+
lr_mult: 1.0
|
| 1444 |
+
decay_mult: 1.0
|
| 1445 |
+
}
|
| 1446 |
+
convolution_param {
|
| 1447 |
+
num_output: 128
|
| 1448 |
+
pad: 0
|
| 1449 |
+
kernel_size: 1
|
| 1450 |
+
group: 1
|
| 1451 |
+
stride: 1
|
| 1452 |
+
weight_filler {
|
| 1453 |
+
type: "msra"
|
| 1454 |
+
}
|
| 1455 |
+
dilation: 1
|
| 1456 |
+
}
|
| 1457 |
+
}
|
| 1458 |
+
layer {
|
| 1459 |
+
name: "stage5_4/sum"
|
| 1460 |
+
type: "Eltwise"
|
| 1461 |
+
bottom: "stage5_3/sum"
|
| 1462 |
+
bottom: "stage5_4/conv3"
|
| 1463 |
+
top: "stage5_4/sum"
|
| 1464 |
+
eltwise_param {
|
| 1465 |
+
operation: SUM
|
| 1466 |
+
}
|
| 1467 |
+
}
|
| 1468 |
+
layer {
|
| 1469 |
+
name: "stage5_4/relu"
|
| 1470 |
+
type: "ReLU"
|
| 1471 |
+
bottom: "stage5_4/sum"
|
| 1472 |
+
top: "stage5_4/sum"
|
| 1473 |
+
}
|
| 1474 |
+
layer {
|
| 1475 |
+
name: "stage6_1/conv4"
|
| 1476 |
+
type: "Convolution"
|
| 1477 |
+
bottom: "stage5_4/sum"
|
| 1478 |
+
top: "stage6_1/conv4"
|
| 1479 |
+
param {
|
| 1480 |
+
lr_mult: 1.0
|
| 1481 |
+
decay_mult: 1.0
|
| 1482 |
+
}
|
| 1483 |
+
convolution_param {
|
| 1484 |
+
num_output: 128
|
| 1485 |
+
pad: 0
|
| 1486 |
+
kernel_size: 1
|
| 1487 |
+
group: 1
|
| 1488 |
+
stride: 1
|
| 1489 |
+
weight_filler {
|
| 1490 |
+
type: "msra"
|
| 1491 |
+
}
|
| 1492 |
+
dilation: 1
|
| 1493 |
+
}
|
| 1494 |
+
}
|
| 1495 |
+
layer {
|
| 1496 |
+
name: "stage6_1/conv1"
|
| 1497 |
+
type: "Convolution"
|
| 1498 |
+
bottom: "stage5_4/sum"
|
| 1499 |
+
top: "stage6_1/conv1"
|
| 1500 |
+
param {
|
| 1501 |
+
lr_mult: 1.0
|
| 1502 |
+
decay_mult: 1.0
|
| 1503 |
+
}
|
| 1504 |
+
convolution_param {
|
| 1505 |
+
num_output: 32
|
| 1506 |
+
pad: 0
|
| 1507 |
+
kernel_size: 1
|
| 1508 |
+
group: 1
|
| 1509 |
+
stride: 1
|
| 1510 |
+
weight_filler {
|
| 1511 |
+
type: "msra"
|
| 1512 |
+
}
|
| 1513 |
+
dilation: 1
|
| 1514 |
+
}
|
| 1515 |
+
}
|
| 1516 |
+
layer {
|
| 1517 |
+
name: "stage6_1/conv1/relu"
|
| 1518 |
+
type: "ReLU"
|
| 1519 |
+
bottom: "stage6_1/conv1"
|
| 1520 |
+
top: "stage6_1/conv1"
|
| 1521 |
+
}
|
| 1522 |
+
layer {
|
| 1523 |
+
name: "stage6_1/conv2"
|
| 1524 |
+
type: "Convolution"
|
| 1525 |
+
bottom: "stage6_1/conv1"
|
| 1526 |
+
top: "stage6_1/conv2"
|
| 1527 |
+
param {
|
| 1528 |
+
lr_mult: 1.0
|
| 1529 |
+
decay_mult: 1.0
|
| 1530 |
+
}
|
| 1531 |
+
convolution_param {
|
| 1532 |
+
num_output: 32
|
| 1533 |
+
pad: 2
|
| 1534 |
+
kernel_size: 3
|
| 1535 |
+
group: 32
|
| 1536 |
+
stride: 1
|
| 1537 |
+
weight_filler {
|
| 1538 |
+
type: "msra"
|
| 1539 |
+
}
|
| 1540 |
+
dilation: 2
|
| 1541 |
+
}
|
| 1542 |
+
}
|
| 1543 |
+
layer {
|
| 1544 |
+
name: "stage6_1/conv3"
|
| 1545 |
+
type: "Convolution"
|
| 1546 |
+
bottom: "stage6_1/conv2"
|
| 1547 |
+
top: "stage6_1/conv3"
|
| 1548 |
+
param {
|
| 1549 |
+
lr_mult: 1.0
|
| 1550 |
+
decay_mult: 1.0
|
| 1551 |
+
}
|
| 1552 |
+
convolution_param {
|
| 1553 |
+
num_output: 128
|
| 1554 |
+
pad: 0
|
| 1555 |
+
kernel_size: 1
|
| 1556 |
+
group: 1
|
| 1557 |
+
stride: 1
|
| 1558 |
+
weight_filler {
|
| 1559 |
+
type: "msra"
|
| 1560 |
+
}
|
| 1561 |
+
dilation: 1
|
| 1562 |
+
}
|
| 1563 |
+
}
|
| 1564 |
+
layer {
|
| 1565 |
+
name: "stage6_1/sum"
|
| 1566 |
+
type: "Eltwise"
|
| 1567 |
+
bottom: "stage6_1/conv4"
|
| 1568 |
+
bottom: "stage6_1/conv3"
|
| 1569 |
+
top: "stage6_1/sum"
|
| 1570 |
+
eltwise_param {
|
| 1571 |
+
operation: SUM
|
| 1572 |
+
}
|
| 1573 |
+
}
|
| 1574 |
+
layer {
|
| 1575 |
+
name: "stage6_1/relu"
|
| 1576 |
+
type: "ReLU"
|
| 1577 |
+
bottom: "stage6_1/sum"
|
| 1578 |
+
top: "stage6_1/sum"
|
| 1579 |
+
}
|
| 1580 |
+
layer {
|
| 1581 |
+
name: "stage6_2/conv1"
|
| 1582 |
+
type: "Convolution"
|
| 1583 |
+
bottom: "stage6_1/sum"
|
| 1584 |
+
top: "stage6_2/conv1"
|
| 1585 |
+
param {
|
| 1586 |
+
lr_mult: 1.0
|
| 1587 |
+
decay_mult: 1.0
|
| 1588 |
+
}
|
| 1589 |
+
convolution_param {
|
| 1590 |
+
num_output: 32
|
| 1591 |
+
pad: 0
|
| 1592 |
+
kernel_size: 1
|
| 1593 |
+
group: 1
|
| 1594 |
+
stride: 1
|
| 1595 |
+
weight_filler {
|
| 1596 |
+
type: "msra"
|
| 1597 |
+
}
|
| 1598 |
+
dilation: 1
|
| 1599 |
+
}
|
| 1600 |
+
}
|
| 1601 |
+
layer {
|
| 1602 |
+
name: "stage6_2/conv1/relu"
|
| 1603 |
+
type: "ReLU"
|
| 1604 |
+
bottom: "stage6_2/conv1"
|
| 1605 |
+
top: "stage6_2/conv1"
|
| 1606 |
+
}
|
| 1607 |
+
layer {
|
| 1608 |
+
name: "stage6_2/conv2"
|
| 1609 |
+
type: "Convolution"
|
| 1610 |
+
bottom: "stage6_2/conv1"
|
| 1611 |
+
top: "stage6_2/conv2"
|
| 1612 |
+
param {
|
| 1613 |
+
lr_mult: 1.0
|
| 1614 |
+
decay_mult: 1.0
|
| 1615 |
+
}
|
| 1616 |
+
convolution_param {
|
| 1617 |
+
num_output: 32
|
| 1618 |
+
pad: 2
|
| 1619 |
+
kernel_size: 3
|
| 1620 |
+
group: 32
|
| 1621 |
+
stride: 1
|
| 1622 |
+
weight_filler {
|
| 1623 |
+
type: "msra"
|
| 1624 |
+
}
|
| 1625 |
+
dilation: 2
|
| 1626 |
+
}
|
| 1627 |
+
}
|
| 1628 |
+
layer {
|
| 1629 |
+
name: "stage6_2/conv3"
|
| 1630 |
+
type: "Convolution"
|
| 1631 |
+
bottom: "stage6_2/conv2"
|
| 1632 |
+
top: "stage6_2/conv3"
|
| 1633 |
+
param {
|
| 1634 |
+
lr_mult: 1.0
|
| 1635 |
+
decay_mult: 1.0
|
| 1636 |
+
}
|
| 1637 |
+
convolution_param {
|
| 1638 |
+
num_output: 128
|
| 1639 |
+
pad: 0
|
| 1640 |
+
kernel_size: 1
|
| 1641 |
+
group: 1
|
| 1642 |
+
stride: 1
|
| 1643 |
+
weight_filler {
|
| 1644 |
+
type: "msra"
|
| 1645 |
+
}
|
| 1646 |
+
dilation: 1
|
| 1647 |
+
}
|
| 1648 |
+
}
|
| 1649 |
+
layer {
|
| 1650 |
+
name: "stage6_2/sum"
|
| 1651 |
+
type: "Eltwise"
|
| 1652 |
+
bottom: "stage6_1/sum"
|
| 1653 |
+
bottom: "stage6_2/conv3"
|
| 1654 |
+
top: "stage6_2/sum"
|
| 1655 |
+
eltwise_param {
|
| 1656 |
+
operation: SUM
|
| 1657 |
+
}
|
| 1658 |
+
}
|
| 1659 |
+
layer {
|
| 1660 |
+
name: "stage6_2/relu"
|
| 1661 |
+
type: "ReLU"
|
| 1662 |
+
bottom: "stage6_2/sum"
|
| 1663 |
+
top: "stage6_2/sum"
|
| 1664 |
+
}
|
| 1665 |
+
layer {
|
| 1666 |
+
name: "stage7_1/conv4"
|
| 1667 |
+
type: "Convolution"
|
| 1668 |
+
bottom: "stage6_2/sum"
|
| 1669 |
+
top: "stage7_1/conv4"
|
| 1670 |
+
param {
|
| 1671 |
+
lr_mult: 1.0
|
| 1672 |
+
decay_mult: 1.0
|
| 1673 |
+
}
|
| 1674 |
+
convolution_param {
|
| 1675 |
+
num_output: 128
|
| 1676 |
+
pad: 0
|
| 1677 |
+
kernel_size: 1
|
| 1678 |
+
group: 1
|
| 1679 |
+
stride: 1
|
| 1680 |
+
weight_filler {
|
| 1681 |
+
type: "msra"
|
| 1682 |
+
}
|
| 1683 |
+
dilation: 1
|
| 1684 |
+
}
|
| 1685 |
+
}
|
| 1686 |
+
layer {
|
| 1687 |
+
name: "stage7_1/conv1"
|
| 1688 |
+
type: "Convolution"
|
| 1689 |
+
bottom: "stage6_2/sum"
|
| 1690 |
+
top: "stage7_1/conv1"
|
| 1691 |
+
param {
|
| 1692 |
+
lr_mult: 1.0
|
| 1693 |
+
decay_mult: 1.0
|
| 1694 |
+
}
|
| 1695 |
+
convolution_param {
|
| 1696 |
+
num_output: 32
|
| 1697 |
+
pad: 0
|
| 1698 |
+
kernel_size: 1
|
| 1699 |
+
group: 1
|
| 1700 |
+
stride: 1
|
| 1701 |
+
weight_filler {
|
| 1702 |
+
type: "msra"
|
| 1703 |
+
}
|
| 1704 |
+
dilation: 1
|
| 1705 |
+
}
|
| 1706 |
+
}
|
| 1707 |
+
layer {
|
| 1708 |
+
name: "stage7_1/conv1/relu"
|
| 1709 |
+
type: "ReLU"
|
| 1710 |
+
bottom: "stage7_1/conv1"
|
| 1711 |
+
top: "stage7_1/conv1"
|
| 1712 |
+
}
|
| 1713 |
+
layer {
|
| 1714 |
+
name: "stage7_1/conv2"
|
| 1715 |
+
type: "Convolution"
|
| 1716 |
+
bottom: "stage7_1/conv1"
|
| 1717 |
+
top: "stage7_1/conv2"
|
| 1718 |
+
param {
|
| 1719 |
+
lr_mult: 1.0
|
| 1720 |
+
decay_mult: 1.0
|
| 1721 |
+
}
|
| 1722 |
+
convolution_param {
|
| 1723 |
+
num_output: 32
|
| 1724 |
+
pad: 2
|
| 1725 |
+
kernel_size: 3
|
| 1726 |
+
group: 32
|
| 1727 |
+
stride: 1
|
| 1728 |
+
weight_filler {
|
| 1729 |
+
type: "msra"
|
| 1730 |
+
}
|
| 1731 |
+
dilation: 2
|
| 1732 |
+
}
|
| 1733 |
+
}
|
| 1734 |
+
layer {
|
| 1735 |
+
name: "stage7_1/conv3"
|
| 1736 |
+
type: "Convolution"
|
| 1737 |
+
bottom: "stage7_1/conv2"
|
| 1738 |
+
top: "stage7_1/conv3"
|
| 1739 |
+
param {
|
| 1740 |
+
lr_mult: 1.0
|
| 1741 |
+
decay_mult: 1.0
|
| 1742 |
+
}
|
| 1743 |
+
convolution_param {
|
| 1744 |
+
num_output: 128
|
| 1745 |
+
pad: 0
|
| 1746 |
+
kernel_size: 1
|
| 1747 |
+
group: 1
|
| 1748 |
+
stride: 1
|
| 1749 |
+
weight_filler {
|
| 1750 |
+
type: "msra"
|
| 1751 |
+
}
|
| 1752 |
+
dilation: 1
|
| 1753 |
+
}
|
| 1754 |
+
}
|
| 1755 |
+
layer {
|
| 1756 |
+
name: "stage7_1/sum"
|
| 1757 |
+
type: "Eltwise"
|
| 1758 |
+
bottom: "stage7_1/conv4"
|
| 1759 |
+
bottom: "stage7_1/conv3"
|
| 1760 |
+
top: "stage7_1/sum"
|
| 1761 |
+
eltwise_param {
|
| 1762 |
+
operation: SUM
|
| 1763 |
+
}
|
| 1764 |
+
}
|
| 1765 |
+
layer {
|
| 1766 |
+
name: "stage7_1/relu"
|
| 1767 |
+
type: "ReLU"
|
| 1768 |
+
bottom: "stage7_1/sum"
|
| 1769 |
+
top: "stage7_1/sum"
|
| 1770 |
+
}
|
| 1771 |
+
layer {
|
| 1772 |
+
name: "stage7_2/conv1"
|
| 1773 |
+
type: "Convolution"
|
| 1774 |
+
bottom: "stage7_1/sum"
|
| 1775 |
+
top: "stage7_2/conv1"
|
| 1776 |
+
param {
|
| 1777 |
+
lr_mult: 1.0
|
| 1778 |
+
decay_mult: 1.0
|
| 1779 |
+
}
|
| 1780 |
+
convolution_param {
|
| 1781 |
+
num_output: 32
|
| 1782 |
+
pad: 0
|
| 1783 |
+
kernel_size: 1
|
| 1784 |
+
group: 1
|
| 1785 |
+
stride: 1
|
| 1786 |
+
weight_filler {
|
| 1787 |
+
type: "msra"
|
| 1788 |
+
}
|
| 1789 |
+
dilation: 1
|
| 1790 |
+
}
|
| 1791 |
+
}
|
| 1792 |
+
layer {
|
| 1793 |
+
name: "stage7_2/conv1/relu"
|
| 1794 |
+
type: "ReLU"
|
| 1795 |
+
bottom: "stage7_2/conv1"
|
| 1796 |
+
top: "stage7_2/conv1"
|
| 1797 |
+
}
|
| 1798 |
+
layer {
|
| 1799 |
+
name: "stage7_2/conv2"
|
| 1800 |
+
type: "Convolution"
|
| 1801 |
+
bottom: "stage7_2/conv1"
|
| 1802 |
+
top: "stage7_2/conv2"
|
| 1803 |
+
param {
|
| 1804 |
+
lr_mult: 1.0
|
| 1805 |
+
decay_mult: 1.0
|
| 1806 |
+
}
|
| 1807 |
+
convolution_param {
|
| 1808 |
+
num_output: 32
|
| 1809 |
+
pad: 2
|
| 1810 |
+
kernel_size: 3
|
| 1811 |
+
group: 32
|
| 1812 |
+
stride: 1
|
| 1813 |
+
weight_filler {
|
| 1814 |
+
type: "msra"
|
| 1815 |
+
}
|
| 1816 |
+
dilation: 2
|
| 1817 |
+
}
|
| 1818 |
+
}
|
| 1819 |
+
layer {
|
| 1820 |
+
name: "stage7_2/conv3"
|
| 1821 |
+
type: "Convolution"
|
| 1822 |
+
bottom: "stage7_2/conv2"
|
| 1823 |
+
top: "stage7_2/conv3"
|
| 1824 |
+
param {
|
| 1825 |
+
lr_mult: 1.0
|
| 1826 |
+
decay_mult: 1.0
|
| 1827 |
+
}
|
| 1828 |
+
convolution_param {
|
| 1829 |
+
num_output: 128
|
| 1830 |
+
pad: 0
|
| 1831 |
+
kernel_size: 1
|
| 1832 |
+
group: 1
|
| 1833 |
+
stride: 1
|
| 1834 |
+
weight_filler {
|
| 1835 |
+
type: "msra"
|
| 1836 |
+
}
|
| 1837 |
+
dilation: 1
|
| 1838 |
+
}
|
| 1839 |
+
}
|
| 1840 |
+
layer {
|
| 1841 |
+
name: "stage7_2/sum"
|
| 1842 |
+
type: "Eltwise"
|
| 1843 |
+
bottom: "stage7_1/sum"
|
| 1844 |
+
bottom: "stage7_2/conv3"
|
| 1845 |
+
top: "stage7_2/sum"
|
| 1846 |
+
eltwise_param {
|
| 1847 |
+
operation: SUM
|
| 1848 |
+
}
|
| 1849 |
+
}
|
| 1850 |
+
layer {
|
| 1851 |
+
name: "stage7_2/relu"
|
| 1852 |
+
type: "ReLU"
|
| 1853 |
+
bottom: "stage7_2/sum"
|
| 1854 |
+
top: "stage7_2/sum"
|
| 1855 |
+
}
|
| 1856 |
+
layer {
|
| 1857 |
+
name: "stage8_1/conv4"
|
| 1858 |
+
type: "Convolution"
|
| 1859 |
+
bottom: "stage7_2/sum"
|
| 1860 |
+
top: "stage8_1/conv4"
|
| 1861 |
+
param {
|
| 1862 |
+
lr_mult: 1.0
|
| 1863 |
+
decay_mult: 1.0
|
| 1864 |
+
}
|
| 1865 |
+
convolution_param {
|
| 1866 |
+
num_output: 128
|
| 1867 |
+
pad: 0
|
| 1868 |
+
kernel_size: 1
|
| 1869 |
+
group: 1
|
| 1870 |
+
stride: 1
|
| 1871 |
+
weight_filler {
|
| 1872 |
+
type: "msra"
|
| 1873 |
+
}
|
| 1874 |
+
dilation: 1
|
| 1875 |
+
}
|
| 1876 |
+
}
|
| 1877 |
+
layer {
|
| 1878 |
+
name: "stage8_1/conv1"
|
| 1879 |
+
type: "Convolution"
|
| 1880 |
+
bottom: "stage7_2/sum"
|
| 1881 |
+
top: "stage8_1/conv1"
|
| 1882 |
+
param {
|
| 1883 |
+
lr_mult: 1.0
|
| 1884 |
+
decay_mult: 1.0
|
| 1885 |
+
}
|
| 1886 |
+
convolution_param {
|
| 1887 |
+
num_output: 32
|
| 1888 |
+
pad: 0
|
| 1889 |
+
kernel_size: 1
|
| 1890 |
+
group: 1
|
| 1891 |
+
stride: 1
|
| 1892 |
+
weight_filler {
|
| 1893 |
+
type: "msra"
|
| 1894 |
+
}
|
| 1895 |
+
dilation: 1
|
| 1896 |
+
}
|
| 1897 |
+
}
|
| 1898 |
+
layer {
|
| 1899 |
+
name: "stage8_1/conv1/relu"
|
| 1900 |
+
type: "ReLU"
|
| 1901 |
+
bottom: "stage8_1/conv1"
|
| 1902 |
+
top: "stage8_1/conv1"
|
| 1903 |
+
}
|
| 1904 |
+
layer {
|
| 1905 |
+
name: "stage8_1/conv2"
|
| 1906 |
+
type: "Convolution"
|
| 1907 |
+
bottom: "stage8_1/conv1"
|
| 1908 |
+
top: "stage8_1/conv2"
|
| 1909 |
+
param {
|
| 1910 |
+
lr_mult: 1.0
|
| 1911 |
+
decay_mult: 1.0
|
| 1912 |
+
}
|
| 1913 |
+
convolution_param {
|
| 1914 |
+
num_output: 32
|
| 1915 |
+
pad: 2
|
| 1916 |
+
kernel_size: 3
|
| 1917 |
+
group: 32
|
| 1918 |
+
stride: 1
|
| 1919 |
+
weight_filler {
|
| 1920 |
+
type: "msra"
|
| 1921 |
+
}
|
| 1922 |
+
dilation: 2
|
| 1923 |
+
}
|
| 1924 |
+
}
|
| 1925 |
+
layer {
|
| 1926 |
+
name: "stage8_1/conv3"
|
| 1927 |
+
type: "Convolution"
|
| 1928 |
+
bottom: "stage8_1/conv2"
|
| 1929 |
+
top: "stage8_1/conv3"
|
| 1930 |
+
param {
|
| 1931 |
+
lr_mult: 1.0
|
| 1932 |
+
decay_mult: 1.0
|
| 1933 |
+
}
|
| 1934 |
+
convolution_param {
|
| 1935 |
+
num_output: 128
|
| 1936 |
+
pad: 0
|
| 1937 |
+
kernel_size: 1
|
| 1938 |
+
group: 1
|
| 1939 |
+
stride: 1
|
| 1940 |
+
weight_filler {
|
| 1941 |
+
type: "msra"
|
| 1942 |
+
}
|
| 1943 |
+
dilation: 1
|
| 1944 |
+
}
|
| 1945 |
+
}
|
| 1946 |
+
layer {
|
| 1947 |
+
name: "stage8_1/sum"
|
| 1948 |
+
type: "Eltwise"
|
| 1949 |
+
bottom: "stage8_1/conv4"
|
| 1950 |
+
bottom: "stage8_1/conv3"
|
| 1951 |
+
top: "stage8_1/sum"
|
| 1952 |
+
eltwise_param {
|
| 1953 |
+
operation: SUM
|
| 1954 |
+
}
|
| 1955 |
+
}
|
| 1956 |
+
layer {
|
| 1957 |
+
name: "stage8_1/relu"
|
| 1958 |
+
type: "ReLU"
|
| 1959 |
+
bottom: "stage8_1/sum"
|
| 1960 |
+
top: "stage8_1/sum"
|
| 1961 |
+
}
|
| 1962 |
+
layer {
|
| 1963 |
+
name: "stage8_2/conv1"
|
| 1964 |
+
type: "Convolution"
|
| 1965 |
+
bottom: "stage8_1/sum"
|
| 1966 |
+
top: "stage8_2/conv1"
|
| 1967 |
+
param {
|
| 1968 |
+
lr_mult: 1.0
|
| 1969 |
+
decay_mult: 1.0
|
| 1970 |
+
}
|
| 1971 |
+
convolution_param {
|
| 1972 |
+
num_output: 32
|
| 1973 |
+
pad: 0
|
| 1974 |
+
kernel_size: 1
|
| 1975 |
+
group: 1
|
| 1976 |
+
stride: 1
|
| 1977 |
+
weight_filler {
|
| 1978 |
+
type: "msra"
|
| 1979 |
+
}
|
| 1980 |
+
dilation: 1
|
| 1981 |
+
}
|
| 1982 |
+
}
|
| 1983 |
+
layer {
|
| 1984 |
+
name: "stage8_2/conv1/relu"
|
| 1985 |
+
type: "ReLU"
|
| 1986 |
+
bottom: "stage8_2/conv1"
|
| 1987 |
+
top: "stage8_2/conv1"
|
| 1988 |
+
}
|
| 1989 |
+
layer {
|
| 1990 |
+
name: "stage8_2/conv2"
|
| 1991 |
+
type: "Convolution"
|
| 1992 |
+
bottom: "stage8_2/conv1"
|
| 1993 |
+
top: "stage8_2/conv2"
|
| 1994 |
+
param {
|
| 1995 |
+
lr_mult: 1.0
|
| 1996 |
+
decay_mult: 1.0
|
| 1997 |
+
}
|
| 1998 |
+
convolution_param {
|
| 1999 |
+
num_output: 32
|
| 2000 |
+
pad: 2
|
| 2001 |
+
kernel_size: 3
|
| 2002 |
+
group: 32
|
| 2003 |
+
stride: 1
|
| 2004 |
+
weight_filler {
|
| 2005 |
+
type: "msra"
|
| 2006 |
+
}
|
| 2007 |
+
dilation: 2
|
| 2008 |
+
}
|
| 2009 |
+
}
|
| 2010 |
+
layer {
|
| 2011 |
+
name: "stage8_2/conv3"
|
| 2012 |
+
type: "Convolution"
|
| 2013 |
+
bottom: "stage8_2/conv2"
|
| 2014 |
+
top: "stage8_2/conv3"
|
| 2015 |
+
param {
|
| 2016 |
+
lr_mult: 1.0
|
| 2017 |
+
decay_mult: 1.0
|
| 2018 |
+
}
|
| 2019 |
+
convolution_param {
|
| 2020 |
+
num_output: 128
|
| 2021 |
+
pad: 0
|
| 2022 |
+
kernel_size: 1
|
| 2023 |
+
group: 1
|
| 2024 |
+
stride: 1
|
| 2025 |
+
weight_filler {
|
| 2026 |
+
type: "msra"
|
| 2027 |
+
}
|
| 2028 |
+
dilation: 1
|
| 2029 |
+
}
|
| 2030 |
+
}
|
| 2031 |
+
layer {
|
| 2032 |
+
name: "stage8_2/sum"
|
| 2033 |
+
type: "Eltwise"
|
| 2034 |
+
bottom: "stage8_1/sum"
|
| 2035 |
+
bottom: "stage8_2/conv3"
|
| 2036 |
+
top: "stage8_2/sum"
|
| 2037 |
+
eltwise_param {
|
| 2038 |
+
operation: SUM
|
| 2039 |
+
}
|
| 2040 |
+
}
|
| 2041 |
+
layer {
|
| 2042 |
+
name: "stage8_2/relu"
|
| 2043 |
+
type: "ReLU"
|
| 2044 |
+
bottom: "stage8_2/sum"
|
| 2045 |
+
top: "stage8_2/sum"
|
| 2046 |
+
}
|
| 2047 |
+
layer {
|
| 2048 |
+
name: "cls1/conv"
|
| 2049 |
+
type: "Convolution"
|
| 2050 |
+
bottom: "stage4_8/sum"
|
| 2051 |
+
top: "cls1/conv"
|
| 2052 |
+
param {
|
| 2053 |
+
lr_mult: 1.0
|
| 2054 |
+
decay_mult: 1.0
|
| 2055 |
+
}
|
| 2056 |
+
param {
|
| 2057 |
+
lr_mult: 1.0
|
| 2058 |
+
decay_mult: 0.0
|
| 2059 |
+
}
|
| 2060 |
+
convolution_param {
|
| 2061 |
+
num_output: 12
|
| 2062 |
+
bias_term: true
|
| 2063 |
+
pad: 0
|
| 2064 |
+
kernel_size: 1
|
| 2065 |
+
group: 1
|
| 2066 |
+
stride: 1
|
| 2067 |
+
weight_filler {
|
| 2068 |
+
type: "msra"
|
| 2069 |
+
}
|
| 2070 |
+
dilation: 1
|
| 2071 |
+
}
|
| 2072 |
+
}
|
| 2073 |
+
layer {
|
| 2074 |
+
name: "cls1/permute"
|
| 2075 |
+
type: "Permute"
|
| 2076 |
+
bottom: "cls1/conv"
|
| 2077 |
+
top: "cls1/permute"
|
| 2078 |
+
permute_param {
|
| 2079 |
+
order: 0
|
| 2080 |
+
order: 2
|
| 2081 |
+
order: 3
|
| 2082 |
+
order: 1
|
| 2083 |
+
}
|
| 2084 |
+
}
|
| 2085 |
+
layer {
|
| 2086 |
+
name: "cls1/flatten"
|
| 2087 |
+
type: "Flatten"
|
| 2088 |
+
bottom: "cls1/permute"
|
| 2089 |
+
top: "cls1/flatten"
|
| 2090 |
+
flatten_param {
|
| 2091 |
+
axis: 1
|
| 2092 |
+
}
|
| 2093 |
+
}
|
| 2094 |
+
layer {
|
| 2095 |
+
name: "loc1/conv"
|
| 2096 |
+
type: "Convolution"
|
| 2097 |
+
bottom: "stage4_8/sum"
|
| 2098 |
+
top: "loc1/conv"
|
| 2099 |
+
param {
|
| 2100 |
+
lr_mult: 1.0
|
| 2101 |
+
decay_mult: 1.0
|
| 2102 |
+
}
|
| 2103 |
+
param {
|
| 2104 |
+
lr_mult: 1.0
|
| 2105 |
+
decay_mult: 0.0
|
| 2106 |
+
}
|
| 2107 |
+
convolution_param {
|
| 2108 |
+
num_output: 24
|
| 2109 |
+
bias_term: true
|
| 2110 |
+
pad: 0
|
| 2111 |
+
kernel_size: 1
|
| 2112 |
+
group: 1
|
| 2113 |
+
stride: 1
|
| 2114 |
+
weight_filler {
|
| 2115 |
+
type: "msra"
|
| 2116 |
+
}
|
| 2117 |
+
dilation: 1
|
| 2118 |
+
}
|
| 2119 |
+
}
|
| 2120 |
+
layer {
|
| 2121 |
+
name: "loc1/permute"
|
| 2122 |
+
type: "Permute"
|
| 2123 |
+
bottom: "loc1/conv"
|
| 2124 |
+
top: "loc1/permute"
|
| 2125 |
+
permute_param {
|
| 2126 |
+
order: 0
|
| 2127 |
+
order: 2
|
| 2128 |
+
order: 3
|
| 2129 |
+
order: 1
|
| 2130 |
+
}
|
| 2131 |
+
}
|
| 2132 |
+
layer {
|
| 2133 |
+
name: "loc1/flatten"
|
| 2134 |
+
type: "Flatten"
|
| 2135 |
+
bottom: "loc1/permute"
|
| 2136 |
+
top: "loc1/flatten"
|
| 2137 |
+
flatten_param {
|
| 2138 |
+
axis: 1
|
| 2139 |
+
}
|
| 2140 |
+
}
|
| 2141 |
+
layer {
|
| 2142 |
+
name: "stage4_8/sum/prior_box"
|
| 2143 |
+
type: "PriorBox"
|
| 2144 |
+
bottom: "stage4_8/sum"
|
| 2145 |
+
bottom: "data"
|
| 2146 |
+
top: "stage4_8/sum/prior_box"
|
| 2147 |
+
prior_box_param {
|
| 2148 |
+
min_size: 50.0
|
| 2149 |
+
max_size: 100.0
|
| 2150 |
+
aspect_ratio: 2.0
|
| 2151 |
+
aspect_ratio: 0.5
|
| 2152 |
+
aspect_ratio: 3.0
|
| 2153 |
+
aspect_ratio: 0.3333333432674408
|
| 2154 |
+
flip: false
|
| 2155 |
+
clip: false
|
| 2156 |
+
variance: 0.10000000149011612
|
| 2157 |
+
variance: 0.10000000149011612
|
| 2158 |
+
variance: 0.20000000298023224
|
| 2159 |
+
variance: 0.20000000298023224
|
| 2160 |
+
step: 16.0
|
| 2161 |
+
}
|
| 2162 |
+
}
|
| 2163 |
+
layer {
|
| 2164 |
+
name: "cls2/conv"
|
| 2165 |
+
type: "Convolution"
|
| 2166 |
+
bottom: "stage5_4/sum"
|
| 2167 |
+
top: "cls2/conv"
|
| 2168 |
+
param {
|
| 2169 |
+
lr_mult: 1.0
|
| 2170 |
+
decay_mult: 1.0
|
| 2171 |
+
}
|
| 2172 |
+
param {
|
| 2173 |
+
lr_mult: 1.0
|
| 2174 |
+
decay_mult: 0.0
|
| 2175 |
+
}
|
| 2176 |
+
convolution_param {
|
| 2177 |
+
num_output: 12
|
| 2178 |
+
bias_term: true
|
| 2179 |
+
pad: 0
|
| 2180 |
+
kernel_size: 1
|
| 2181 |
+
group: 1
|
| 2182 |
+
stride: 1
|
| 2183 |
+
weight_filler {
|
| 2184 |
+
type: "msra"
|
| 2185 |
+
}
|
| 2186 |
+
dilation: 1
|
| 2187 |
+
}
|
| 2188 |
+
}
|
| 2189 |
+
layer {
|
| 2190 |
+
name: "cls2/permute"
|
| 2191 |
+
type: "Permute"
|
| 2192 |
+
bottom: "cls2/conv"
|
| 2193 |
+
top: "cls2/permute"
|
| 2194 |
+
permute_param {
|
| 2195 |
+
order: 0
|
| 2196 |
+
order: 2
|
| 2197 |
+
order: 3
|
| 2198 |
+
order: 1
|
| 2199 |
+
}
|
| 2200 |
+
}
|
| 2201 |
+
layer {
|
| 2202 |
+
name: "cls2/flatten"
|
| 2203 |
+
type: "Flatten"
|
| 2204 |
+
bottom: "cls2/permute"
|
| 2205 |
+
top: "cls2/flatten"
|
| 2206 |
+
flatten_param {
|
| 2207 |
+
axis: 1
|
| 2208 |
+
}
|
| 2209 |
+
}
|
| 2210 |
+
layer {
|
| 2211 |
+
name: "loc2/conv"
|
| 2212 |
+
type: "Convolution"
|
| 2213 |
+
bottom: "stage5_4/sum"
|
| 2214 |
+
top: "loc2/conv"
|
| 2215 |
+
param {
|
| 2216 |
+
lr_mult: 1.0
|
| 2217 |
+
decay_mult: 1.0
|
| 2218 |
+
}
|
| 2219 |
+
param {
|
| 2220 |
+
lr_mult: 1.0
|
| 2221 |
+
decay_mult: 0.0
|
| 2222 |
+
}
|
| 2223 |
+
convolution_param {
|
| 2224 |
+
num_output: 24
|
| 2225 |
+
bias_term: true
|
| 2226 |
+
pad: 0
|
| 2227 |
+
kernel_size: 1
|
| 2228 |
+
group: 1
|
| 2229 |
+
stride: 1
|
| 2230 |
+
weight_filler {
|
| 2231 |
+
type: "msra"
|
| 2232 |
+
}
|
| 2233 |
+
dilation: 1
|
| 2234 |
+
}
|
| 2235 |
+
}
|
| 2236 |
+
layer {
|
| 2237 |
+
name: "loc2/permute"
|
| 2238 |
+
type: "Permute"
|
| 2239 |
+
bottom: "loc2/conv"
|
| 2240 |
+
top: "loc2/permute"
|
| 2241 |
+
permute_param {
|
| 2242 |
+
order: 0
|
| 2243 |
+
order: 2
|
| 2244 |
+
order: 3
|
| 2245 |
+
order: 1
|
| 2246 |
+
}
|
| 2247 |
+
}
|
| 2248 |
+
layer {
|
| 2249 |
+
name: "loc2/flatten"
|
| 2250 |
+
type: "Flatten"
|
| 2251 |
+
bottom: "loc2/permute"
|
| 2252 |
+
top: "loc2/flatten"
|
| 2253 |
+
flatten_param {
|
| 2254 |
+
axis: 1
|
| 2255 |
+
}
|
| 2256 |
+
}
|
| 2257 |
+
layer {
|
| 2258 |
+
name: "stage5_4/sum/prior_box"
|
| 2259 |
+
type: "PriorBox"
|
| 2260 |
+
bottom: "stage5_4/sum"
|
| 2261 |
+
bottom: "data"
|
| 2262 |
+
top: "stage5_4/sum/prior_box"
|
| 2263 |
+
prior_box_param {
|
| 2264 |
+
min_size: 100.0
|
| 2265 |
+
max_size: 150.0
|
| 2266 |
+
aspect_ratio: 2.0
|
| 2267 |
+
aspect_ratio: 0.5
|
| 2268 |
+
aspect_ratio: 3.0
|
| 2269 |
+
aspect_ratio: 0.3333333432674408
|
| 2270 |
+
flip: false
|
| 2271 |
+
clip: false
|
| 2272 |
+
variance: 0.10000000149011612
|
| 2273 |
+
variance: 0.10000000149011612
|
| 2274 |
+
variance: 0.20000000298023224
|
| 2275 |
+
variance: 0.20000000298023224
|
| 2276 |
+
step: 32.0
|
| 2277 |
+
}
|
| 2278 |
+
}
|
| 2279 |
+
layer {
|
| 2280 |
+
name: "cls3/conv"
|
| 2281 |
+
type: "Convolution"
|
| 2282 |
+
bottom: "stage6_2/sum"
|
| 2283 |
+
top: "cls3/conv"
|
| 2284 |
+
param {
|
| 2285 |
+
lr_mult: 1.0
|
| 2286 |
+
decay_mult: 1.0
|
| 2287 |
+
}
|
| 2288 |
+
param {
|
| 2289 |
+
lr_mult: 1.0
|
| 2290 |
+
decay_mult: 0.0
|
| 2291 |
+
}
|
| 2292 |
+
convolution_param {
|
| 2293 |
+
num_output: 12
|
| 2294 |
+
bias_term: true
|
| 2295 |
+
pad: 0
|
| 2296 |
+
kernel_size: 1
|
| 2297 |
+
group: 1
|
| 2298 |
+
stride: 1
|
| 2299 |
+
weight_filler {
|
| 2300 |
+
type: "msra"
|
| 2301 |
+
}
|
| 2302 |
+
dilation: 1
|
| 2303 |
+
}
|
| 2304 |
+
}
|
| 2305 |
+
layer {
|
| 2306 |
+
name: "cls3/permute"
|
| 2307 |
+
type: "Permute"
|
| 2308 |
+
bottom: "cls3/conv"
|
| 2309 |
+
top: "cls3/permute"
|
| 2310 |
+
permute_param {
|
| 2311 |
+
order: 0
|
| 2312 |
+
order: 2
|
| 2313 |
+
order: 3
|
| 2314 |
+
order: 1
|
| 2315 |
+
}
|
| 2316 |
+
}
|
| 2317 |
+
layer {
|
| 2318 |
+
name: "cls3/flatten"
|
| 2319 |
+
type: "Flatten"
|
| 2320 |
+
bottom: "cls3/permute"
|
| 2321 |
+
top: "cls3/flatten"
|
| 2322 |
+
flatten_param {
|
| 2323 |
+
axis: 1
|
| 2324 |
+
}
|
| 2325 |
+
}
|
| 2326 |
+
layer {
|
| 2327 |
+
name: "loc3/conv"
|
| 2328 |
+
type: "Convolution"
|
| 2329 |
+
bottom: "stage6_2/sum"
|
| 2330 |
+
top: "loc3/conv"
|
| 2331 |
+
param {
|
| 2332 |
+
lr_mult: 1.0
|
| 2333 |
+
decay_mult: 1.0
|
| 2334 |
+
}
|
| 2335 |
+
param {
|
| 2336 |
+
lr_mult: 1.0
|
| 2337 |
+
decay_mult: 0.0
|
| 2338 |
+
}
|
| 2339 |
+
convolution_param {
|
| 2340 |
+
num_output: 24
|
| 2341 |
+
bias_term: true
|
| 2342 |
+
pad: 0
|
| 2343 |
+
kernel_size: 1
|
| 2344 |
+
group: 1
|
| 2345 |
+
stride: 1
|
| 2346 |
+
weight_filler {
|
| 2347 |
+
type: "msra"
|
| 2348 |
+
}
|
| 2349 |
+
dilation: 1
|
| 2350 |
+
}
|
| 2351 |
+
}
|
| 2352 |
+
layer {
|
| 2353 |
+
name: "loc3/permute"
|
| 2354 |
+
type: "Permute"
|
| 2355 |
+
bottom: "loc3/conv"
|
| 2356 |
+
top: "loc3/permute"
|
| 2357 |
+
permute_param {
|
| 2358 |
+
order: 0
|
| 2359 |
+
order: 2
|
| 2360 |
+
order: 3
|
| 2361 |
+
order: 1
|
| 2362 |
+
}
|
| 2363 |
+
}
|
| 2364 |
+
layer {
|
| 2365 |
+
name: "loc3/flatten"
|
| 2366 |
+
type: "Flatten"
|
| 2367 |
+
bottom: "loc3/permute"
|
| 2368 |
+
top: "loc3/flatten"
|
| 2369 |
+
flatten_param {
|
| 2370 |
+
axis: 1
|
| 2371 |
+
}
|
| 2372 |
+
}
|
| 2373 |
+
layer {
|
| 2374 |
+
name: "stage6_2/sum/prior_box"
|
| 2375 |
+
type: "PriorBox"
|
| 2376 |
+
bottom: "stage6_2/sum"
|
| 2377 |
+
bottom: "data"
|
| 2378 |
+
top: "stage6_2/sum/prior_box"
|
| 2379 |
+
prior_box_param {
|
| 2380 |
+
min_size: 150.0
|
| 2381 |
+
max_size: 200.0
|
| 2382 |
+
aspect_ratio: 2.0
|
| 2383 |
+
aspect_ratio: 0.5
|
| 2384 |
+
aspect_ratio: 3.0
|
| 2385 |
+
aspect_ratio: 0.3333333432674408
|
| 2386 |
+
flip: false
|
| 2387 |
+
clip: false
|
| 2388 |
+
variance: 0.10000000149011612
|
| 2389 |
+
variance: 0.10000000149011612
|
| 2390 |
+
variance: 0.20000000298023224
|
| 2391 |
+
variance: 0.20000000298023224
|
| 2392 |
+
step: 32.0
|
| 2393 |
+
}
|
| 2394 |
+
}
|
| 2395 |
+
layer {
|
| 2396 |
+
name: "cls4/conv"
|
| 2397 |
+
type: "Convolution"
|
| 2398 |
+
bottom: "stage7_2/sum"
|
| 2399 |
+
top: "cls4/conv"
|
| 2400 |
+
param {
|
| 2401 |
+
lr_mult: 1.0
|
| 2402 |
+
decay_mult: 1.0
|
| 2403 |
+
}
|
| 2404 |
+
param {
|
| 2405 |
+
lr_mult: 1.0
|
| 2406 |
+
decay_mult: 0.0
|
| 2407 |
+
}
|
| 2408 |
+
convolution_param {
|
| 2409 |
+
num_output: 12
|
| 2410 |
+
bias_term: true
|
| 2411 |
+
pad: 0
|
| 2412 |
+
kernel_size: 1
|
| 2413 |
+
group: 1
|
| 2414 |
+
stride: 1
|
| 2415 |
+
weight_filler {
|
| 2416 |
+
type: "msra"
|
| 2417 |
+
}
|
| 2418 |
+
dilation: 1
|
| 2419 |
+
}
|
| 2420 |
+
}
|
| 2421 |
+
layer {
|
| 2422 |
+
name: "cls4/permute"
|
| 2423 |
+
type: "Permute"
|
| 2424 |
+
bottom: "cls4/conv"
|
| 2425 |
+
top: "cls4/permute"
|
| 2426 |
+
permute_param {
|
| 2427 |
+
order: 0
|
| 2428 |
+
order: 2
|
| 2429 |
+
order: 3
|
| 2430 |
+
order: 1
|
| 2431 |
+
}
|
| 2432 |
+
}
|
| 2433 |
+
layer {
|
| 2434 |
+
name: "cls4/flatten"
|
| 2435 |
+
type: "Flatten"
|
| 2436 |
+
bottom: "cls4/permute"
|
| 2437 |
+
top: "cls4/flatten"
|
| 2438 |
+
flatten_param {
|
| 2439 |
+
axis: 1
|
| 2440 |
+
}
|
| 2441 |
+
}
|
| 2442 |
+
layer {
|
| 2443 |
+
name: "loc4/conv"
|
| 2444 |
+
type: "Convolution"
|
| 2445 |
+
bottom: "stage7_2/sum"
|
| 2446 |
+
top: "loc4/conv"
|
| 2447 |
+
param {
|
| 2448 |
+
lr_mult: 1.0
|
| 2449 |
+
decay_mult: 1.0
|
| 2450 |
+
}
|
| 2451 |
+
param {
|
| 2452 |
+
lr_mult: 1.0
|
| 2453 |
+
decay_mult: 0.0
|
| 2454 |
+
}
|
| 2455 |
+
convolution_param {
|
| 2456 |
+
num_output: 24
|
| 2457 |
+
bias_term: true
|
| 2458 |
+
pad: 0
|
| 2459 |
+
kernel_size: 1
|
| 2460 |
+
group: 1
|
| 2461 |
+
stride: 1
|
| 2462 |
+
weight_filler {
|
| 2463 |
+
type: "msra"
|
| 2464 |
+
}
|
| 2465 |
+
dilation: 1
|
| 2466 |
+
}
|
| 2467 |
+
}
|
| 2468 |
+
layer {
|
| 2469 |
+
name: "loc4/permute"
|
| 2470 |
+
type: "Permute"
|
| 2471 |
+
bottom: "loc4/conv"
|
| 2472 |
+
top: "loc4/permute"
|
| 2473 |
+
permute_param {
|
| 2474 |
+
order: 0
|
| 2475 |
+
order: 2
|
| 2476 |
+
order: 3
|
| 2477 |
+
order: 1
|
| 2478 |
+
}
|
| 2479 |
+
}
|
| 2480 |
+
layer {
|
| 2481 |
+
name: "loc4/flatten"
|
| 2482 |
+
type: "Flatten"
|
| 2483 |
+
bottom: "loc4/permute"
|
| 2484 |
+
top: "loc4/flatten"
|
| 2485 |
+
flatten_param {
|
| 2486 |
+
axis: 1
|
| 2487 |
+
}
|
| 2488 |
+
}
|
| 2489 |
+
layer {
|
| 2490 |
+
name: "stage7_2/sum/prior_box"
|
| 2491 |
+
type: "PriorBox"
|
| 2492 |
+
bottom: "stage7_2/sum"
|
| 2493 |
+
bottom: "data"
|
| 2494 |
+
top: "stage7_2/sum/prior_box"
|
| 2495 |
+
prior_box_param {
|
| 2496 |
+
min_size: 200.0
|
| 2497 |
+
max_size: 300.0
|
| 2498 |
+
aspect_ratio: 2.0
|
| 2499 |
+
aspect_ratio: 0.5
|
| 2500 |
+
aspect_ratio: 3.0
|
| 2501 |
+
aspect_ratio: 0.3333333432674408
|
| 2502 |
+
flip: false
|
| 2503 |
+
clip: false
|
| 2504 |
+
variance: 0.10000000149011612
|
| 2505 |
+
variance: 0.10000000149011612
|
| 2506 |
+
variance: 0.20000000298023224
|
| 2507 |
+
variance: 0.20000000298023224
|
| 2508 |
+
step: 32.0
|
| 2509 |
+
}
|
| 2510 |
+
}
|
| 2511 |
+
layer {
|
| 2512 |
+
name: "cls5/conv"
|
| 2513 |
+
type: "Convolution"
|
| 2514 |
+
bottom: "stage8_2/sum"
|
| 2515 |
+
top: "cls5/conv"
|
| 2516 |
+
param {
|
| 2517 |
+
lr_mult: 1.0
|
| 2518 |
+
decay_mult: 1.0
|
| 2519 |
+
}
|
| 2520 |
+
param {
|
| 2521 |
+
lr_mult: 1.0
|
| 2522 |
+
decay_mult: 0.0
|
| 2523 |
+
}
|
| 2524 |
+
convolution_param {
|
| 2525 |
+
num_output: 12
|
| 2526 |
+
bias_term: true
|
| 2527 |
+
pad: 0
|
| 2528 |
+
kernel_size: 1
|
| 2529 |
+
group: 1
|
| 2530 |
+
stride: 1
|
| 2531 |
+
weight_filler {
|
| 2532 |
+
type: "msra"
|
| 2533 |
+
}
|
| 2534 |
+
dilation: 1
|
| 2535 |
+
}
|
| 2536 |
+
}
|
| 2537 |
+
layer {
|
| 2538 |
+
name: "cls5/permute"
|
| 2539 |
+
type: "Permute"
|
| 2540 |
+
bottom: "cls5/conv"
|
| 2541 |
+
top: "cls5/permute"
|
| 2542 |
+
permute_param {
|
| 2543 |
+
order: 0
|
| 2544 |
+
order: 2
|
| 2545 |
+
order: 3
|
| 2546 |
+
order: 1
|
| 2547 |
+
}
|
| 2548 |
+
}
|
| 2549 |
+
layer {
|
| 2550 |
+
name: "cls5/flatten"
|
| 2551 |
+
type: "Flatten"
|
| 2552 |
+
bottom: "cls5/permute"
|
| 2553 |
+
top: "cls5/flatten"
|
| 2554 |
+
flatten_param {
|
| 2555 |
+
axis: 1
|
| 2556 |
+
}
|
| 2557 |
+
}
|
| 2558 |
+
layer {
|
| 2559 |
+
name: "loc5/conv"
|
| 2560 |
+
type: "Convolution"
|
| 2561 |
+
bottom: "stage8_2/sum"
|
| 2562 |
+
top: "loc5/conv"
|
| 2563 |
+
param {
|
| 2564 |
+
lr_mult: 1.0
|
| 2565 |
+
decay_mult: 1.0
|
| 2566 |
+
}
|
| 2567 |
+
param {
|
| 2568 |
+
lr_mult: 1.0
|
| 2569 |
+
decay_mult: 0.0
|
| 2570 |
+
}
|
| 2571 |
+
convolution_param {
|
| 2572 |
+
num_output: 24
|
| 2573 |
+
bias_term: true
|
| 2574 |
+
pad: 0
|
| 2575 |
+
kernel_size: 1
|
| 2576 |
+
group: 1
|
| 2577 |
+
stride: 1
|
| 2578 |
+
weight_filler {
|
| 2579 |
+
type: "msra"
|
| 2580 |
+
}
|
| 2581 |
+
dilation: 1
|
| 2582 |
+
}
|
| 2583 |
+
}
|
| 2584 |
+
layer {
|
| 2585 |
+
name: "loc5/permute"
|
| 2586 |
+
type: "Permute"
|
| 2587 |
+
bottom: "loc5/conv"
|
| 2588 |
+
top: "loc5/permute"
|
| 2589 |
+
permute_param {
|
| 2590 |
+
order: 0
|
| 2591 |
+
order: 2
|
| 2592 |
+
order: 3
|
| 2593 |
+
order: 1
|
| 2594 |
+
}
|
| 2595 |
+
}
|
| 2596 |
+
layer {
|
| 2597 |
+
name: "loc5/flatten"
|
| 2598 |
+
type: "Flatten"
|
| 2599 |
+
bottom: "loc5/permute"
|
| 2600 |
+
top: "loc5/flatten"
|
| 2601 |
+
flatten_param {
|
| 2602 |
+
axis: 1
|
| 2603 |
+
}
|
| 2604 |
+
}
|
| 2605 |
+
layer {
|
| 2606 |
+
name: "stage8_2/sum/prior_box"
|
| 2607 |
+
type: "PriorBox"
|
| 2608 |
+
bottom: "stage8_2/sum"
|
| 2609 |
+
bottom: "data"
|
| 2610 |
+
top: "stage8_2/sum/prior_box"
|
| 2611 |
+
prior_box_param {
|
| 2612 |
+
min_size: 300.0
|
| 2613 |
+
max_size: 400.0
|
| 2614 |
+
aspect_ratio: 2.0
|
| 2615 |
+
aspect_ratio: 0.5
|
| 2616 |
+
aspect_ratio: 3.0
|
| 2617 |
+
aspect_ratio: 0.3333333432674408
|
| 2618 |
+
flip: false
|
| 2619 |
+
clip: false
|
| 2620 |
+
variance: 0.10000000149011612
|
| 2621 |
+
variance: 0.10000000149011612
|
| 2622 |
+
variance: 0.20000000298023224
|
| 2623 |
+
variance: 0.20000000298023224
|
| 2624 |
+
step: 32.0
|
| 2625 |
+
}
|
| 2626 |
+
}
|
| 2627 |
+
layer {
|
| 2628 |
+
name: "mbox_conf"
|
| 2629 |
+
type: "Concat"
|
| 2630 |
+
bottom: "cls1/flatten"
|
| 2631 |
+
bottom: "cls2/flatten"
|
| 2632 |
+
bottom: "cls3/flatten"
|
| 2633 |
+
bottom: "cls4/flatten"
|
| 2634 |
+
bottom: "cls5/flatten"
|
| 2635 |
+
top: "mbox_conf"
|
| 2636 |
+
concat_param {
|
| 2637 |
+
axis: 1
|
| 2638 |
+
}
|
| 2639 |
+
}
|
| 2640 |
+
layer {
|
| 2641 |
+
name: "mbox_loc"
|
| 2642 |
+
type: "Concat"
|
| 2643 |
+
bottom: "loc1/flatten"
|
| 2644 |
+
bottom: "loc2/flatten"
|
| 2645 |
+
bottom: "loc3/flatten"
|
| 2646 |
+
bottom: "loc4/flatten"
|
| 2647 |
+
bottom: "loc5/flatten"
|
| 2648 |
+
top: "mbox_loc"
|
| 2649 |
+
concat_param {
|
| 2650 |
+
axis: 1
|
| 2651 |
+
}
|
| 2652 |
+
}
|
| 2653 |
+
layer {
|
| 2654 |
+
name: "mbox_priorbox"
|
| 2655 |
+
type: "Concat"
|
| 2656 |
+
bottom: "stage4_8/sum/prior_box"
|
| 2657 |
+
bottom: "stage5_4/sum/prior_box"
|
| 2658 |
+
bottom: "stage6_2/sum/prior_box"
|
| 2659 |
+
bottom: "stage7_2/sum/prior_box"
|
| 2660 |
+
bottom: "stage8_2/sum/prior_box"
|
| 2661 |
+
top: "mbox_priorbox"
|
| 2662 |
+
concat_param {
|
| 2663 |
+
axis: 2
|
| 2664 |
+
}
|
| 2665 |
+
}
|
| 2666 |
+
layer {
|
| 2667 |
+
name: "mbox_conf_reshape"
|
| 2668 |
+
type: "Reshape"
|
| 2669 |
+
bottom: "mbox_conf"
|
| 2670 |
+
top: "mbox_conf_reshape"
|
| 2671 |
+
reshape_param {
|
| 2672 |
+
shape {
|
| 2673 |
+
dim: 0
|
| 2674 |
+
dim: -1
|
| 2675 |
+
dim: 2
|
| 2676 |
+
}
|
| 2677 |
+
}
|
| 2678 |
+
}
|
| 2679 |
+
layer {
|
| 2680 |
+
name: "mbox_conf_softmax"
|
| 2681 |
+
type: "Softmax"
|
| 2682 |
+
bottom: "mbox_conf_reshape"
|
| 2683 |
+
top: "mbox_conf_softmax"
|
| 2684 |
+
softmax_param {
|
| 2685 |
+
axis: 2
|
| 2686 |
+
}
|
| 2687 |
+
}
|
| 2688 |
+
layer {
|
| 2689 |
+
name: "mbox_conf_flatten"
|
| 2690 |
+
type: "Flatten"
|
| 2691 |
+
bottom: "mbox_conf_softmax"
|
| 2692 |
+
top: "mbox_conf_flatten"
|
| 2693 |
+
flatten_param {
|
| 2694 |
+
axis: 1
|
| 2695 |
+
}
|
| 2696 |
+
}
|
| 2697 |
+
layer {
|
| 2698 |
+
name: "detection_output"
|
| 2699 |
+
type: "DetectionOutput"
|
| 2700 |
+
bottom: "mbox_loc"
|
| 2701 |
+
bottom: "mbox_conf_flatten"
|
| 2702 |
+
bottom: "mbox_priorbox"
|
| 2703 |
+
top: "detection_output"
|
| 2704 |
+
detection_output_param {
|
| 2705 |
+
num_classes: 2
|
| 2706 |
+
share_location: true
|
| 2707 |
+
background_label_id: 0
|
| 2708 |
+
nms_param {
|
| 2709 |
+
nms_threshold: 0.44999998807907104
|
| 2710 |
+
top_k: 100
|
| 2711 |
+
}
|
| 2712 |
+
code_type: CENTER_SIZE
|
| 2713 |
+
keep_top_k: 100
|
| 2714 |
+
confidence_threshold: 0.20000000298023224
|
| 2715 |
+
}
|
| 2716 |
+
}
|
models/qrcode_wechatqrcode/sr_2021nov.prototxt
ADDED
|
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
layer {
|
| 2 |
+
name: "data"
|
| 3 |
+
type: "Input"
|
| 4 |
+
top: "data"
|
| 5 |
+
input_param {
|
| 6 |
+
shape {
|
| 7 |
+
dim: 1
|
| 8 |
+
dim: 1
|
| 9 |
+
dim: 224
|
| 10 |
+
dim: 224
|
| 11 |
+
}
|
| 12 |
+
}
|
| 13 |
+
}
|
| 14 |
+
layer {
|
| 15 |
+
name: "conv0"
|
| 16 |
+
type: "Convolution"
|
| 17 |
+
bottom: "data"
|
| 18 |
+
top: "conv0"
|
| 19 |
+
param {
|
| 20 |
+
lr_mult: 1.0
|
| 21 |
+
decay_mult: 1.0
|
| 22 |
+
}
|
| 23 |
+
param {
|
| 24 |
+
lr_mult: 1.0
|
| 25 |
+
decay_mult: 0.0
|
| 26 |
+
}
|
| 27 |
+
convolution_param {
|
| 28 |
+
num_output: 32
|
| 29 |
+
bias_term: true
|
| 30 |
+
pad: 1
|
| 31 |
+
kernel_size: 3
|
| 32 |
+
group: 1
|
| 33 |
+
stride: 1
|
| 34 |
+
weight_filler {
|
| 35 |
+
type: "msra"
|
| 36 |
+
}
|
| 37 |
+
}
|
| 38 |
+
}
|
| 39 |
+
layer {
|
| 40 |
+
name: "conv0/lrelu"
|
| 41 |
+
type: "ReLU"
|
| 42 |
+
bottom: "conv0"
|
| 43 |
+
top: "conv0"
|
| 44 |
+
relu_param {
|
| 45 |
+
negative_slope: 0.05000000074505806
|
| 46 |
+
}
|
| 47 |
+
}
|
| 48 |
+
layer {
|
| 49 |
+
name: "db1/reduce"
|
| 50 |
+
type: "Convolution"
|
| 51 |
+
bottom: "conv0"
|
| 52 |
+
top: "db1/reduce"
|
| 53 |
+
param {
|
| 54 |
+
lr_mult: 1.0
|
| 55 |
+
decay_mult: 1.0
|
| 56 |
+
}
|
| 57 |
+
param {
|
| 58 |
+
lr_mult: 1.0
|
| 59 |
+
decay_mult: 0.0
|
| 60 |
+
}
|
| 61 |
+
convolution_param {
|
| 62 |
+
num_output: 8
|
| 63 |
+
bias_term: true
|
| 64 |
+
pad: 0
|
| 65 |
+
kernel_size: 1
|
| 66 |
+
group: 1
|
| 67 |
+
stride: 1
|
| 68 |
+
weight_filler {
|
| 69 |
+
type: "msra"
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
}
|
| 73 |
+
layer {
|
| 74 |
+
name: "db1/reduce/lrelu"
|
| 75 |
+
type: "ReLU"
|
| 76 |
+
bottom: "db1/reduce"
|
| 77 |
+
top: "db1/reduce"
|
| 78 |
+
relu_param {
|
| 79 |
+
negative_slope: 0.05000000074505806
|
| 80 |
+
}
|
| 81 |
+
}
|
| 82 |
+
layer {
|
| 83 |
+
name: "db1/3x3"
|
| 84 |
+
type: "Convolution"
|
| 85 |
+
bottom: "db1/reduce"
|
| 86 |
+
top: "db1/3x3"
|
| 87 |
+
param {
|
| 88 |
+
lr_mult: 1.0
|
| 89 |
+
decay_mult: 1.0
|
| 90 |
+
}
|
| 91 |
+
param {
|
| 92 |
+
lr_mult: 1.0
|
| 93 |
+
decay_mult: 0.0
|
| 94 |
+
}
|
| 95 |
+
convolution_param {
|
| 96 |
+
num_output: 8
|
| 97 |
+
bias_term: true
|
| 98 |
+
pad: 1
|
| 99 |
+
kernel_size: 3
|
| 100 |
+
group: 8
|
| 101 |
+
stride: 1
|
| 102 |
+
weight_filler {
|
| 103 |
+
type: "msra"
|
| 104 |
+
}
|
| 105 |
+
}
|
| 106 |
+
}
|
| 107 |
+
layer {
|
| 108 |
+
name: "db1/3x3/lrelu"
|
| 109 |
+
type: "ReLU"
|
| 110 |
+
bottom: "db1/3x3"
|
| 111 |
+
top: "db1/3x3"
|
| 112 |
+
relu_param {
|
| 113 |
+
negative_slope: 0.05000000074505806
|
| 114 |
+
}
|
| 115 |
+
}
|
| 116 |
+
layer {
|
| 117 |
+
name: "db1/1x1"
|
| 118 |
+
type: "Convolution"
|
| 119 |
+
bottom: "db1/3x3"
|
| 120 |
+
top: "db1/1x1"
|
| 121 |
+
param {
|
| 122 |
+
lr_mult: 1.0
|
| 123 |
+
decay_mult: 1.0
|
| 124 |
+
}
|
| 125 |
+
param {
|
| 126 |
+
lr_mult: 1.0
|
| 127 |
+
decay_mult: 0.0
|
| 128 |
+
}
|
| 129 |
+
convolution_param {
|
| 130 |
+
num_output: 32
|
| 131 |
+
bias_term: true
|
| 132 |
+
pad: 0
|
| 133 |
+
kernel_size: 1
|
| 134 |
+
group: 1
|
| 135 |
+
stride: 1
|
| 136 |
+
weight_filler {
|
| 137 |
+
type: "msra"
|
| 138 |
+
}
|
| 139 |
+
}
|
| 140 |
+
}
|
| 141 |
+
layer {
|
| 142 |
+
name: "db1/1x1/lrelu"
|
| 143 |
+
type: "ReLU"
|
| 144 |
+
bottom: "db1/1x1"
|
| 145 |
+
top: "db1/1x1"
|
| 146 |
+
relu_param {
|
| 147 |
+
negative_slope: 0.05000000074505806
|
| 148 |
+
}
|
| 149 |
+
}
|
| 150 |
+
layer {
|
| 151 |
+
name: "db1/concat"
|
| 152 |
+
type: "Concat"
|
| 153 |
+
bottom: "conv0"
|
| 154 |
+
bottom: "db1/1x1"
|
| 155 |
+
top: "db1/concat"
|
| 156 |
+
concat_param {
|
| 157 |
+
axis: 1
|
| 158 |
+
}
|
| 159 |
+
}
|
| 160 |
+
layer {
|
| 161 |
+
name: "db2/reduce"
|
| 162 |
+
type: "Convolution"
|
| 163 |
+
bottom: "db1/concat"
|
| 164 |
+
top: "db2/reduce"
|
| 165 |
+
param {
|
| 166 |
+
lr_mult: 1.0
|
| 167 |
+
decay_mult: 1.0
|
| 168 |
+
}
|
| 169 |
+
param {
|
| 170 |
+
lr_mult: 1.0
|
| 171 |
+
decay_mult: 0.0
|
| 172 |
+
}
|
| 173 |
+
convolution_param {
|
| 174 |
+
num_output: 8
|
| 175 |
+
bias_term: true
|
| 176 |
+
pad: 0
|
| 177 |
+
kernel_size: 1
|
| 178 |
+
group: 1
|
| 179 |
+
stride: 1
|
| 180 |
+
weight_filler {
|
| 181 |
+
type: "msra"
|
| 182 |
+
}
|
| 183 |
+
}
|
| 184 |
+
}
|
| 185 |
+
layer {
|
| 186 |
+
name: "db2/reduce/lrelu"
|
| 187 |
+
type: "ReLU"
|
| 188 |
+
bottom: "db2/reduce"
|
| 189 |
+
top: "db2/reduce"
|
| 190 |
+
relu_param {
|
| 191 |
+
negative_slope: 0.05000000074505806
|
| 192 |
+
}
|
| 193 |
+
}
|
| 194 |
+
layer {
|
| 195 |
+
name: "db2/3x3"
|
| 196 |
+
type: "Convolution"
|
| 197 |
+
bottom: "db2/reduce"
|
| 198 |
+
top: "db2/3x3"
|
| 199 |
+
param {
|
| 200 |
+
lr_mult: 1.0
|
| 201 |
+
decay_mult: 1.0
|
| 202 |
+
}
|
| 203 |
+
param {
|
| 204 |
+
lr_mult: 1.0
|
| 205 |
+
decay_mult: 0.0
|
| 206 |
+
}
|
| 207 |
+
convolution_param {
|
| 208 |
+
num_output: 8
|
| 209 |
+
bias_term: true
|
| 210 |
+
pad: 1
|
| 211 |
+
kernel_size: 3
|
| 212 |
+
group: 8
|
| 213 |
+
stride: 1
|
| 214 |
+
weight_filler {
|
| 215 |
+
type: "msra"
|
| 216 |
+
}
|
| 217 |
+
}
|
| 218 |
+
}
|
| 219 |
+
layer {
|
| 220 |
+
name: "db2/3x3/lrelu"
|
| 221 |
+
type: "ReLU"
|
| 222 |
+
bottom: "db2/3x3"
|
| 223 |
+
top: "db2/3x3"
|
| 224 |
+
relu_param {
|
| 225 |
+
negative_slope: 0.05000000074505806
|
| 226 |
+
}
|
| 227 |
+
}
|
| 228 |
+
layer {
|
| 229 |
+
name: "db2/1x1"
|
| 230 |
+
type: "Convolution"
|
| 231 |
+
bottom: "db2/3x3"
|
| 232 |
+
top: "db2/1x1"
|
| 233 |
+
param {
|
| 234 |
+
lr_mult: 1.0
|
| 235 |
+
decay_mult: 1.0
|
| 236 |
+
}
|
| 237 |
+
param {
|
| 238 |
+
lr_mult: 1.0
|
| 239 |
+
decay_mult: 0.0
|
| 240 |
+
}
|
| 241 |
+
convolution_param {
|
| 242 |
+
num_output: 32
|
| 243 |
+
bias_term: true
|
| 244 |
+
pad: 0
|
| 245 |
+
kernel_size: 1
|
| 246 |
+
group: 1
|
| 247 |
+
stride: 1
|
| 248 |
+
weight_filler {
|
| 249 |
+
type: "msra"
|
| 250 |
+
}
|
| 251 |
+
}
|
| 252 |
+
}
|
| 253 |
+
layer {
|
| 254 |
+
name: "db2/1x1/lrelu"
|
| 255 |
+
type: "ReLU"
|
| 256 |
+
bottom: "db2/1x1"
|
| 257 |
+
top: "db2/1x1"
|
| 258 |
+
relu_param {
|
| 259 |
+
negative_slope: 0.05000000074505806
|
| 260 |
+
}
|
| 261 |
+
}
|
| 262 |
+
layer {
|
| 263 |
+
name: "db2/concat"
|
| 264 |
+
type: "Concat"
|
| 265 |
+
bottom: "db1/concat"
|
| 266 |
+
bottom: "db2/1x1"
|
| 267 |
+
top: "db2/concat"
|
| 268 |
+
concat_param {
|
| 269 |
+
axis: 1
|
| 270 |
+
}
|
| 271 |
+
}
|
| 272 |
+
layer {
|
| 273 |
+
name: "upsample/reduce"
|
| 274 |
+
type: "Convolution"
|
| 275 |
+
bottom: "db2/concat"
|
| 276 |
+
top: "upsample/reduce"
|
| 277 |
+
param {
|
| 278 |
+
lr_mult: 1.0
|
| 279 |
+
decay_mult: 1.0
|
| 280 |
+
}
|
| 281 |
+
param {
|
| 282 |
+
lr_mult: 1.0
|
| 283 |
+
decay_mult: 0.0
|
| 284 |
+
}
|
| 285 |
+
convolution_param {
|
| 286 |
+
num_output: 32
|
| 287 |
+
bias_term: true
|
| 288 |
+
pad: 0
|
| 289 |
+
kernel_size: 1
|
| 290 |
+
group: 1
|
| 291 |
+
stride: 1
|
| 292 |
+
weight_filler {
|
| 293 |
+
type: "msra"
|
| 294 |
+
}
|
| 295 |
+
}
|
| 296 |
+
}
|
| 297 |
+
layer {
|
| 298 |
+
name: "upsample/reduce/lrelu"
|
| 299 |
+
type: "ReLU"
|
| 300 |
+
bottom: "upsample/reduce"
|
| 301 |
+
top: "upsample/reduce"
|
| 302 |
+
relu_param {
|
| 303 |
+
negative_slope: 0.05000000074505806
|
| 304 |
+
}
|
| 305 |
+
}
|
| 306 |
+
layer {
|
| 307 |
+
name: "upsample/deconv"
|
| 308 |
+
type: "Deconvolution"
|
| 309 |
+
bottom: "upsample/reduce"
|
| 310 |
+
top: "upsample/deconv"
|
| 311 |
+
param {
|
| 312 |
+
lr_mult: 1.0
|
| 313 |
+
decay_mult: 1.0
|
| 314 |
+
}
|
| 315 |
+
param {
|
| 316 |
+
lr_mult: 1.0
|
| 317 |
+
decay_mult: 0.0
|
| 318 |
+
}
|
| 319 |
+
convolution_param {
|
| 320 |
+
num_output: 32
|
| 321 |
+
bias_term: true
|
| 322 |
+
pad: 1
|
| 323 |
+
kernel_size: 3
|
| 324 |
+
group: 32
|
| 325 |
+
stride: 2
|
| 326 |
+
weight_filler {
|
| 327 |
+
type: "msra"
|
| 328 |
+
}
|
| 329 |
+
}
|
| 330 |
+
}
|
| 331 |
+
layer {
|
| 332 |
+
name: "upsample/lrelu"
|
| 333 |
+
type: "ReLU"
|
| 334 |
+
bottom: "upsample/deconv"
|
| 335 |
+
top: "upsample/deconv"
|
| 336 |
+
relu_param {
|
| 337 |
+
negative_slope: 0.05000000074505806
|
| 338 |
+
}
|
| 339 |
+
}
|
| 340 |
+
layer {
|
| 341 |
+
name: "upsample/rec"
|
| 342 |
+
type: "Convolution"
|
| 343 |
+
bottom: "upsample/deconv"
|
| 344 |
+
top: "upsample/rec"
|
| 345 |
+
param {
|
| 346 |
+
lr_mult: 1.0
|
| 347 |
+
decay_mult: 1.0
|
| 348 |
+
}
|
| 349 |
+
param {
|
| 350 |
+
lr_mult: 1.0
|
| 351 |
+
decay_mult: 0.0
|
| 352 |
+
}
|
| 353 |
+
convolution_param {
|
| 354 |
+
num_output: 1
|
| 355 |
+
bias_term: true
|
| 356 |
+
pad: 0
|
| 357 |
+
kernel_size: 1
|
| 358 |
+
group: 1
|
| 359 |
+
stride: 1
|
| 360 |
+
weight_filler {
|
| 361 |
+
type: "msra"
|
| 362 |
+
}
|
| 363 |
+
}
|
| 364 |
+
}
|
| 365 |
+
layer {
|
| 366 |
+
name: "nearest"
|
| 367 |
+
type: "Deconvolution"
|
| 368 |
+
bottom: "data"
|
| 369 |
+
top: "nearest"
|
| 370 |
+
param {
|
| 371 |
+
lr_mult: 0.0
|
| 372 |
+
decay_mult: 0.0
|
| 373 |
+
}
|
| 374 |
+
convolution_param {
|
| 375 |
+
num_output: 1
|
| 376 |
+
bias_term: false
|
| 377 |
+
pad: 0
|
| 378 |
+
kernel_size: 2
|
| 379 |
+
group: 1
|
| 380 |
+
stride: 2
|
| 381 |
+
weight_filler {
|
| 382 |
+
type: "constant"
|
| 383 |
+
value: 1.0
|
| 384 |
+
}
|
| 385 |
+
}
|
| 386 |
+
}
|
| 387 |
+
layer {
|
| 388 |
+
name: "Crop1"
|
| 389 |
+
type: "Crop"
|
| 390 |
+
bottom: "nearest"
|
| 391 |
+
bottom: "upsample/rec"
|
| 392 |
+
top: "Crop1"
|
| 393 |
+
}
|
| 394 |
+
layer {
|
| 395 |
+
name: "fc"
|
| 396 |
+
type: "Eltwise"
|
| 397 |
+
bottom: "Crop1"
|
| 398 |
+
bottom: "upsample/rec"
|
| 399 |
+
top: "fc"
|
| 400 |
+
eltwise_param {
|
| 401 |
+
operation: SUM
|
| 402 |
+
}
|
| 403 |
+
}
|
models/qrcode_wechatqrcode/wechatqrcode.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file is part of OpenCV Zoo project.
|
| 2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
| 3 |
+
#
|
| 4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
| 5 |
+
# Third party copyrights are property of their respective owners.
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import cv2 as cv # needs to have cv.wechat_qrcode_WeChatQRCode, which requires compile from source with opencv_contrib/modules/wechat_qrcode
|
| 9 |
+
|
| 10 |
+
class WeChatQRCode:
|
| 11 |
+
def __init__(self, detect_prototxt_path, detect_model_path, sr_prototxt_path, sr_model_path):
|
| 12 |
+
self._model = cv.wechat_qrcode_WeChatQRCode(
|
| 13 |
+
detect_prototxt_path,
|
| 14 |
+
detect_model_path,
|
| 15 |
+
sr_prototxt_path,
|
| 16 |
+
sr_model_path
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
@property
|
| 20 |
+
def name(self):
|
| 21 |
+
return self.__class__.__name__
|
| 22 |
+
|
| 23 |
+
def setBackend(self, backend_id):
|
| 24 |
+
# self._model.setPreferableBackend(backend_id)
|
| 25 |
+
if backend_id != 0:
|
| 26 |
+
raise NotImplementedError("Backend {} is not supported by cv.wechat_qrcode_WeChatQRCode()")
|
| 27 |
+
|
| 28 |
+
def setTarget(self, target_id):
|
| 29 |
+
# self._model.setPreferableTarget(target_id)
|
| 30 |
+
if target_id != 0:
|
| 31 |
+
raise NotImplementedError("Target {} is not supported by cv.wechat_qrcode_WeChatQRCode()")
|
| 32 |
+
|
| 33 |
+
def infer(self, image):
|
| 34 |
+
return self._model.detectAndDecode(image)
|