Laurent Berger
commited on
Commit
·
cda4a9b
1
Parent(s):
c5ec220
Text Detection model DB (#175)
Browse files* Text Detection model DB
* review 1
models/text_detection_db/CMakeLists.txt
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required(VERSION 3.24)
|
2 |
+
set(project_name "opencv_zoo_text_detection_db")
|
3 |
+
|
4 |
+
PROJECT (${project_name})
|
5 |
+
|
6 |
+
set(OPENCV_VERSION "4.7.0")
|
7 |
+
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
8 |
+
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
9 |
+
# Find OpenCV, you may need to set OpenCV_DIR variable
|
10 |
+
# to the absolute path to the directory containing OpenCVConfig.cmake file
|
11 |
+
# via the command line or GUI
|
12 |
+
|
13 |
+
file(GLOB SourceFile
|
14 |
+
"demo.cpp")
|
15 |
+
# If the package has been found, several variables will
|
16 |
+
# be set, you can find the full list with descriptions
|
17 |
+
# in the OpenCVConfig.cmake file.
|
18 |
+
# Print some message showing some of them
|
19 |
+
message(STATUS "OpenCV library status:")
|
20 |
+
message(STATUS " config: ${OpenCV_DIR}")
|
21 |
+
message(STATUS " version: ${OpenCV_VERSION}")
|
22 |
+
message(STATUS " libraries: ${OpenCV_LIBS}")
|
23 |
+
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
|
24 |
+
|
25 |
+
# Declare the executable target built from your sources
|
26 |
+
add_executable(${project_name} ${SourceFile})
|
27 |
+
|
28 |
+
# Link your application with OpenCV libraries
|
29 |
+
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
|
models/text_detection_db/README.md
CHANGED
@@ -11,6 +11,8 @@ Note:
|
|
11 |
|
12 |
## Demo
|
13 |
|
|
|
|
|
14 |
Run the following command to try the demo:
|
15 |
|
16 |
```shell
|
@@ -23,6 +25,22 @@ python demo.py --input /path/to/image -v
|
|
23 |
python demo.py --help
|
24 |
```
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
### Example outputs
|
27 |
|
28 |

|
|
|
11 |
|
12 |
## Demo
|
13 |
|
14 |
+
### Python
|
15 |
+
|
16 |
Run the following command to try the demo:
|
17 |
|
18 |
```shell
|
|
|
25 |
python demo.py --help
|
26 |
```
|
27 |
|
28 |
+
### C++
|
29 |
+
|
30 |
+
Install latest OpenCV and CMake >= 3.24.0 to get started with:
|
31 |
+
|
32 |
+
```shell
|
33 |
+
# A typical and default installation path of OpenCV is /usr/local
|
34 |
+
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
35 |
+
cmake --build build
|
36 |
+
# detect on camera input
|
37 |
+
./build/opencv_zoo_text_detection_db -m=/path/to/model
|
38 |
+
# detect on an image
|
39 |
+
./build/opencv_zoo_text_detection_db -m=/path/to/model -i=/path/to/image -v
|
40 |
+
# get help messages
|
41 |
+
./build/opencv_zoo_text_detection_db -h
|
42 |
+
```
|
43 |
+
|
44 |
### Example outputs
|
45 |
|
46 |

|
models/text_detection_db/demo.cpp
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <iostream>
|
2 |
+
|
3 |
+
#include <opencv2/dnn.hpp>
|
4 |
+
#include <opencv2/imgproc.hpp>
|
5 |
+
#include <opencv2/highgui.hpp>
|
6 |
+
|
7 |
+
using namespace std;
|
8 |
+
using namespace cv;
|
9 |
+
using namespace dnn;
|
10 |
+
|
11 |
+
vector< pair<cv::dnn::Backend, cv::dnn::Target> > backendTargetPairs = {
|
12 |
+
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_OPENCV, dnn::DNN_TARGET_CPU),
|
13 |
+
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA),
|
14 |
+
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA_FP16),
|
15 |
+
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_TIMVX, dnn::DNN_TARGET_NPU),
|
16 |
+
std::make_pair<cv::dnn::Backend, cv::dnn::Target>(dnn::DNN_BACKEND_CANN, dnn::DNN_TARGET_NPU)};
|
17 |
+
|
18 |
+
|
19 |
+
std::string keys =
|
20 |
+
"{ help h | | Print help message. }"
|
21 |
+
"{ model m | text_detection_DB_IC15_resnet18_2021sep.onnx | Usage: Set model type, defaults to text_detection_DB_IC15_resnet18_2021sep.onnx }"
|
22 |
+
"{ input i | | Usage: Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
23 |
+
"{ width | 736 | Usage: Resize input image to certain width, default = 736. It should be multiple by 32.}"
|
24 |
+
"{ height | 736 | Usage: Resize input image to certain height, default = 736. It should be multiple by 32.}"
|
25 |
+
"{ binary_threshold | 0.3 | Usage: Threshold of the binary map, default = 0.3.}"
|
26 |
+
"{ polygon_threshold | 0.5 | Usage: Threshold of polygons, default = 0.5.}"
|
27 |
+
"{ max_candidates | 200 | Usage: Set maximum number of polygon candidates, default = 200.}"
|
28 |
+
"{ unclip_ratio | 2.0 | Usage: The unclip ratio of the detected text region, which determines the output size, default = 2.0.}"
|
29 |
+
"{ save s | true | Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.}"
|
30 |
+
"{ viz v | true | Usage: Specify to open a new window to show results. Invalid in case of camera input.}"
|
31 |
+
"{ backend bt | 0 | Choose one of computation backends: "
|
32 |
+
"0: (default) OpenCV implementation + CPU, "
|
33 |
+
"1: CUDA + GPU (CUDA), "
|
34 |
+
"2: CUDA + GPU (CUDA FP16), "
|
35 |
+
"3: TIM-VX + NPU, "
|
36 |
+
"4: CANN + NPU}";
|
37 |
+
|
38 |
+
|
39 |
+
class DB {
|
40 |
+
public:
|
41 |
+
|
42 |
+
DB(string modPath, Size inSize = Size(736, 736), float binThresh = 0.3,
|
43 |
+
float polyThresh = 0.5, int maxCand = 200, double unRatio = 2.0,
|
44 |
+
dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) : modelPath(modPath), inputSize(inSize), binaryThreshold(binThresh),
|
45 |
+
polygonThreshold(polyThresh), maxCandidates(maxCand), unclipRatio(unRatio),
|
46 |
+
backendId(bId), targetId(tId)
|
47 |
+
{
|
48 |
+
this->model = TextDetectionModel_DB(readNet(modelPath));
|
49 |
+
this->model.setPreferableBackend(backendId);
|
50 |
+
this->model.setPreferableTarget(targetId);
|
51 |
+
|
52 |
+
this->model.setBinaryThreshold(binaryThreshold);
|
53 |
+
this->model.setPolygonThreshold(polygonThreshold);
|
54 |
+
this->model.setUnclipRatio(unclipRatio);
|
55 |
+
this->model.setMaxCandidates(maxCandidates);
|
56 |
+
|
57 |
+
this->model.setInputParams(1.0 / 255.0, inputSize, Scalar(122.67891434, 116.66876762, 104.00698793));
|
58 |
+
}
|
59 |
+
pair< vector<vector<Point>>, vector<float> > infer(Mat image) {
|
60 |
+
CV_Assert(image.rows == this->inputSize.height && "height of input image != net input size ");
|
61 |
+
CV_Assert(image.cols == this->inputSize.width && "width of input image != net input size ");
|
62 |
+
vector<vector<Point>> pt;
|
63 |
+
vector<float> confidence;
|
64 |
+
this->model.detect(image, pt, confidence);
|
65 |
+
return make_pair< vector<vector<Point>> &, vector< float > &>(pt, confidence);
|
66 |
+
}
|
67 |
+
|
68 |
+
private:
|
69 |
+
string modelPath;
|
70 |
+
TextDetectionModel_DB model;
|
71 |
+
Size inputSize;
|
72 |
+
float binaryThreshold;
|
73 |
+
float polygonThreshold;
|
74 |
+
int maxCandidates;
|
75 |
+
double unclipRatio;
|
76 |
+
dnn::Backend backendId;
|
77 |
+
dnn::Target targetId;
|
78 |
+
|
79 |
+
};
|
80 |
+
|
81 |
+
Mat visualize(Mat image, pair< vector<vector<Point>>, vector<float> >&results, double fps=-1, Scalar boxColor=Scalar(0, 255, 0), Scalar textColor=Scalar(0, 0, 255), bool isClosed=true, int thickness=2)
|
82 |
+
{
|
83 |
+
Mat output;
|
84 |
+
image.copyTo(output);
|
85 |
+
if (fps > 0)
|
86 |
+
putText(output, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, textColor);
|
87 |
+
polylines(output, results.first, isClosed, boxColor, thickness);
|
88 |
+
return output;
|
89 |
+
}
|
90 |
+
|
91 |
+
int main(int argc, char** argv)
|
92 |
+
{
|
93 |
+
CommandLineParser parser(argc, argv, keys);
|
94 |
+
|
95 |
+
parser.about("Use this program to run Real-time Scene Text Detection with Differentiable Binarization in opencv Zoo using OpenCV.");
|
96 |
+
if (parser.has("help"))
|
97 |
+
{
|
98 |
+
parser.printMessage();
|
99 |
+
return 0;
|
100 |
+
}
|
101 |
+
|
102 |
+
int backendTargetid = parser.get<int>("backend");
|
103 |
+
String modelName = parser.get<String>("model");
|
104 |
+
|
105 |
+
if (modelName.empty())
|
106 |
+
{
|
107 |
+
CV_Error(Error::StsError, "Model file " + modelName + " not found");
|
108 |
+
}
|
109 |
+
|
110 |
+
Size inpSize(parser.get<int>("width"), parser.get<int>("height"));
|
111 |
+
float binThresh = parser.get<float>("binary_threshold");
|
112 |
+
float polyThresh = parser.get<float>("polygon_threshold");
|
113 |
+
int maxCand = parser.get<int>("max_candidates");
|
114 |
+
double unRatio = parser.get<float>("unclip_ratio");
|
115 |
+
bool save = parser.get<bool>("save");
|
116 |
+
bool viz = parser.get<float>("viz");
|
117 |
+
|
118 |
+
DB model(modelName, inpSize, binThresh, polyThresh, maxCand, unRatio, backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
|
119 |
+
|
120 |
+
//! [Open a video file or an image file or a camera stream]
|
121 |
+
VideoCapture cap;
|
122 |
+
if (parser.has("input"))
|
123 |
+
cap.open(parser.get<String>("input"));
|
124 |
+
else
|
125 |
+
cap.open(0);
|
126 |
+
if (!cap.isOpened())
|
127 |
+
CV_Error(Error::StsError, "Cannot opend video or file");
|
128 |
+
Mat originalImage;
|
129 |
+
static const std::string kWinName = modelName;
|
130 |
+
while (waitKey(1) < 0)
|
131 |
+
{
|
132 |
+
cap >> originalImage;
|
133 |
+
if (originalImage.empty())
|
134 |
+
{
|
135 |
+
cout << "Frame is empty" << endl;
|
136 |
+
waitKey();
|
137 |
+
break;
|
138 |
+
}
|
139 |
+
int originalW = originalImage.cols;
|
140 |
+
int originalH = originalImage.rows;
|
141 |
+
double scaleHeight = originalH / double(inpSize.height);
|
142 |
+
double scaleWidth = originalW / double(inpSize.width);
|
143 |
+
Mat image;
|
144 |
+
resize(originalImage, image, inpSize);
|
145 |
+
|
146 |
+
// inference
|
147 |
+
TickMeter tm;
|
148 |
+
tm.start();
|
149 |
+
pair< vector<vector<Point>>, vector<float> > results = model.infer(image);
|
150 |
+
tm.stop();
|
151 |
+
auto x = results.first;
|
152 |
+
// Scale the results bounding box
|
153 |
+
for (auto &pts : results.first)
|
154 |
+
{
|
155 |
+
for (int i = 0; i < 4; i++)
|
156 |
+
{
|
157 |
+
pts[i].x = int(pts[i].x * scaleWidth);
|
158 |
+
pts[i].y = int(pts[i].y * scaleHeight);
|
159 |
+
}
|
160 |
+
}
|
161 |
+
originalImage = visualize(originalImage, results, tm.getFPS());
|
162 |
+
tm.reset();
|
163 |
+
if (parser.has("input"))
|
164 |
+
{
|
165 |
+
if (save)
|
166 |
+
{
|
167 |
+
cout << "Result image saved to result.jpg\n";
|
168 |
+
imwrite("result.jpg", originalImage);
|
169 |
+
}
|
170 |
+
if (viz)
|
171 |
+
imshow(kWinName, originalImage);
|
172 |
+
}
|
173 |
+
else
|
174 |
+
imshow(kWinName, originalImage);
|
175 |
+
}
|
176 |
+
return 0;
|
177 |
+
}
|
178 |
+
|
179 |
+
|