Sidd1609 commited on
Commit
da19665
·
1 Parent(s): 6d6a76b

Merge pull request #103 from Sidd1609:NanoDet

Browse files
models/object_detection_nanodet/LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
models/object_detection_nanodet/README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Nanodet
2
+
3
+ Nanodet: NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss.In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training.
4
+
5
+ Note:
6
+ - This version of nanodet: Nanodet-m-plus-1.5x_416
7
+
8
+ ## Demo
9
+
10
+ Run the following command to try the demo:
11
+ ```shell
12
+ # detect on camera input
13
+ python demo.py
14
+ # detect on an image
15
+ python demo.py --input /path/to/image
16
+ ```
17
+ Note:
18
+ - image result saved as "result.jpg"
19
+
20
+
21
+ ## Results
22
+
23
+ Here are some of the sample results that were observed using the model,
24
+
25
+ ![test1_res.jpg](./samples/1_res.jpg)
26
+ ![test2_res.jpg](./samples/2_res.jpg)
27
+
28
+ Video inference result,
29
+ ![WebCamR.gif](./samples/WebCamR.gif)
30
+
31
+ ## Model metrics:
32
+
33
+ The model is evaluated on [COCO 2017 val](https://cocodataset.org/#download). Results are showed below:
34
+
35
+ <table>
36
+ <tr><th>Average Precision </th><th>Average Recall</th></tr>
37
+ <tr><td>
38
+
39
+ | area | IoU | Average Precision(AP) |
40
+ |:-------|:------|:------------------------|
41
+ | all | 0.50:0.95 | 0.304 |
42
+ | all | 0.50 | 0.459 |
43
+ | all | 0.75 | 0.317 |
44
+ | small | 0.50:0.95 | 0.107 |
45
+ | medium | 0.50:0.95 | 0.322 |
46
+ | large | 0.50:0.95 | 0.478 |
47
+
48
+ </td><td>
49
+
50
+ area | IoU | Average Recall |
51
+ |:-------|:------|:----------------|
52
+ | all | 0.50:0.95 | 0.278 |
53
+ | all | 0.50:0.95 | 0.434 |
54
+ | all | 0.50:0.95 | 0.462 |
55
+ | small | 0.50:0.95 | 0.198 |
56
+ | medium | 0.50:0.95 | 0.510 |
57
+ | large | 0.50:0.95 | 0.702 |
58
+ </td></tr> </table>
59
+
60
+ | class | AP50 | mAP | class | AP50 | mAP |
61
+ |:--------------|:-------|:------|:---------------|:-------|:------|
62
+ | person | 67.5 | 41.8 | bicycle | 35.4 | 18.8 |
63
+ | car | 45.0 | 25.4 | motorcycle | 58.9 | 33.1 |
64
+ | airplane | 77.3 | 58.9 | bus | 68.8 | 56.4 |
65
+ | train | 81.1 | 60.5 | truck | 38.6 | 24.7 |
66
+ | boat | 35.5 | 16.7 | traffic light | 30.5 | 14.0 |
67
+ | fire hydrant | 69.8 | 54.5 | stop sign | 60.9 | 54.6 |
68
+ | parking meter | 55.1 | 38.5 | bench | 26.8 | 15.9 |
69
+ | bird | 38.3 | 23.6 | cat | 82.5 | 62.1 |
70
+ | dog | 67.0 | 51.4 | horse | 64.3 | 44.2 |
71
+ | sheep | 57.7 | 35.8 | cow | 61.2 | 39.9 |
72
+ | elephant | 79.9 | 56.2 | bear | 81.8 | 63.0 |
73
+ | zebra | 85.4 | 59.5 | giraffe | 84.1 | 59.9 |
74
+ | backpack | 12.4 | 5.9 | umbrella | 46.5 | 28.8 |
75
+ | handbag | 8.4 | 3.7 | tie | 35.2 | 19.6 |
76
+ | suitcase | 38.1 | 23.8 | frisbee | 60.7 | 43.9 |
77
+ | skis | 30.5 | 14.5 | snowboard | 32.3 | 18.2 |
78
+ | sports ball | 37.6 | 24.5 | kite | 51.1 | 30.4 |
79
+ | baseball bat | 28.9 | 13.6 | baseball glove | 40.1 | 21.6 |
80
+ | skateboard | 59.4 | 35.2 | surfboard | 47.9 | 26.6 |
81
+ | tennis racket | 55.2 | 30.5 | bottle | 34.7 | 20.2 |
82
+ | wine glass | 27.8 | 16.3 | cup | 35.5 | 23.7 |
83
+ | fork | 25.9 | 14.8 | knife | 10.9 | 5.6 |
84
+ | spoon | 8.7 | 4.1 | bowl | 42.8 | 29.4 |
85
+ | banana | 35.5 | 18.5 | apple | 19.4 | 12.9 |
86
+ | sandwich | 46.7 | 33.4 | orange | 35.2 | 25.9 |
87
+ | broccoli | 36.4 | 19.1 | carrot | 30.9 | 17.8 |
88
+ | hot dog | 42.7 | 29.3 | pizza | 61.0 | 44.9 |
89
+ | donut | 47.3 | 34.0 | cake | 39.9 | 24.4 |
90
+ | chair | 28.8 | 16.1 | couch | 60.5 | 42.6 |
91
+ | potted plant | 29.0 | 15.3 | bed | 63.3 | 46.0 |
92
+ | dining table | 39.6 | 27.5 | toilet | 71.3 | 55.3 |
93
+ | tv | 66.5 | 48.1 | laptop | 62.6 | 46.9 |
94
+ | mouse | 63.5 | 44.1 | remote | 19.8 | 10.3 |
95
+ | keyboard | 62.1 | 41.5 | cell phone | 33.7 | 22.8 |
96
+ | microwave | 54.9 | 39.6 | oven | 48.1 | 30.4 |
97
+ | toaster | 30.0 | 16.4 | sink | 44.5 | 27.8 |
98
+ | refrigerator | 63.2 | 46.1 | book | 18.4 | 7.3 |
99
+ | clock | 57.8 | 35.8 | vase | 33.7 | 22.1 |
100
+ | scissors | 27.8 | 17.8 | teddy bear | 54.1 | 35.4 |
101
+ | hair drier | 2.9 | 1.1 | toothbrush | 13.1 | 8.2 |
102
+
103
+ ## License
104
+
105
+ All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
106
+
107
+ #### Contributor Details
108
+
109
+ - Google Summer of Code'22
110
+ - Contributor: Sri Siddarth Chakaravarthy
111
+ - Github Profile: https://github.com/Sidd1609
112
+ - Organisation: OpenCV
113
+ - Project: Lightweight object detection models using OpenCV
114
+
115
+ ## Reference
116
+
117
+ - Nanodet: https://zhuanlan.zhihu.com/p/306530300
118
+ - Nanodet Plus: https://zhuanlan.zhihu.com/p/449912627
119
+ - Nanodet weight and scripts for training: https://github.com/RangiLyu/nanodet
models/object_detection_nanodet/demo.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import argparse
4
+
5
+ from nanodet import NanoDet
6
+
7
+ def str2bool(v):
8
+ if v.lower() in ['on', 'yes', 'true', 'y', 't']:
9
+ return True
10
+ elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
11
+ return False
12
+ else:
13
+ raise NotImplementedError
14
+
15
+ backends = [cv2.dnn.DNN_BACKEND_OPENCV, cv2.dnn.DNN_BACKEND_CUDA]
16
+ targets = [cv2.dnn.DNN_TARGET_CPU, cv2.dnn.DNN_TARGET_CUDA, cv2.dnn.DNN_TARGET_CUDA_FP16]
17
+ help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
18
+ help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
19
+
20
+ try:
21
+ backends += [cv2.dnn.DNN_BACKEND_TIMVX]
22
+ targets += [cv2.dnn.DNN_TARGET_NPU]
23
+ help_msg_backends += "; {:d}: TIMVX"
24
+ help_msg_targets += "; {:d}: NPU"
25
+ except:
26
+ print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
27
+
28
+ classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
29
+ 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
30
+ 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
31
+ 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
32
+ 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
33
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
34
+ 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
35
+ 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
36
+ 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
37
+ 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
38
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
39
+ 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
40
+ 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
41
+ 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
42
+
43
+ def letterbox(srcimg, target_size=(416, 416)):
44
+ img = srcimg.copy()
45
+
46
+ top, left, newh, neww = 0, 0, target_size[0], target_size[1]
47
+ if img.shape[0] != img.shape[1]:
48
+ hw_scale = img.shape[0] / img.shape[1]
49
+ if hw_scale > 1:
50
+ newh, neww = target_size[0], int(target_size[1] / hw_scale)
51
+ img = cv2.resize(img, (neww, newh), interpolation=cv2.INTER_AREA)
52
+ left = int((target_size[1] - neww) * 0.5)
53
+ img = cv2.copyMakeBorder(img, 0, 0, left, target_size[1] - neww - left, cv2.BORDER_CONSTANT, value=0) # add border
54
+ else:
55
+ newh, neww = int(target_size[0] * hw_scale), target_size[1]
56
+ img = cv2.resize(img, (neww, newh), interpolation=cv2.INTER_AREA)
57
+ top = int((target_size[0] - newh) * 0.5)
58
+ img = cv2.copyMakeBorder(img, top, target_size[0] - newh - top, 0, 0, cv2.BORDER_CONSTANT, value=0)
59
+ else:
60
+ img = cv2.resize(img, target_size, interpolation=cv2.INTER_AREA)
61
+
62
+ letterbox_scale = [top, left, newh, neww]
63
+ return img, letterbox_scale
64
+
65
+ def unletterbox(bbox, original_image_shape, letterbox_scale):
66
+ ret = bbox.copy()
67
+
68
+ h, w = original_image_shape
69
+ top, left, newh, neww = letterbox_scale
70
+
71
+ if h == w:
72
+ ratio = h / newh
73
+ ret = ret * ratio
74
+ return ret
75
+
76
+ ratioh, ratiow = h / newh, w / neww
77
+ ret[0] = max((ret[0] - left) * ratiow, 0)
78
+ ret[1] = max((ret[1] - top) * ratioh, 0)
79
+ ret[2] = min((ret[2] - left) * ratiow, w)
80
+ ret[3] = min((ret[3] - top) * ratioh, h)
81
+
82
+ return ret.astype(np.int32)
83
+
84
+ def vis(preds, res_img, letterbox_scale, fps=None):
85
+ ret = res_img.copy()
86
+
87
+ # draw FPS
88
+ if fps is not None:
89
+ fps_label = "FPS: %.2f" % fps
90
+ cv2.putText(ret, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
91
+
92
+ # draw bboxes and labels
93
+ for pred in preds:
94
+ bbox = pred[:4]
95
+ conf = pred[-2]
96
+ classid = pred[-1].astype(np.int32)
97
+
98
+ # bbox
99
+ xmin, ymin, xmax, ymax = unletterbox(bbox, ret.shape[:2], letterbox_scale)
100
+ cv2.rectangle(ret, (xmin, ymin), (xmax, ymax), (0, 255, 0), thickness=2)
101
+
102
+ # label
103
+ label = "{:s}: {:.2f}".format(classes[classid], conf)
104
+ cv2.putText(ret, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
105
+
106
+ return ret
107
+
108
+ if __name__=='__main__':
109
+ parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
110
+ parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
111
+ parser.add_argument('--model', '-m', type=str, default='object_detection_nanodet_2022nov.onnx', help="Path to the model")
112
+ parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
113
+ parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
114
+ parser.add_argument('--confidence', default=0.35, type=float, help='Class confidence')
115
+ parser.add_argument('--nms', default=0.6, type=float, help='Enter nms IOU threshold')
116
+ parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.')
117
+ parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
118
+ args = parser.parse_args()
119
+
120
+ model = NanoDet(modelPath= args.model,
121
+ prob_threshold=args.confidence,
122
+ iou_threshold=args.nms,
123
+ backend_id=args.backend,
124
+ target_id=args.target)
125
+
126
+ tm = cv2.TickMeter()
127
+ tm.reset()
128
+ if args.input is not None:
129
+ image = cv2.imread(args.input)
130
+ input_blob = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
131
+
132
+ # Letterbox transformation
133
+ input_blob, letterbox_scale = letterbox(input_blob)
134
+
135
+ # Inference
136
+ tm.start()
137
+ preds = model.infer(input_blob)
138
+ tm.stop()
139
+ print("Inference time: {:.2f} ms".format(tm.getTimeMilli()))
140
+
141
+ img = vis(preds, image, letterbox_scale)
142
+
143
+ if args.save:
144
+ print('Resutls saved to result.jpg\n')
145
+ cv2.imwrite('result.jpg', img)
146
+
147
+ if args.vis:
148
+ cv2.namedWindow(args.input, cv2.WINDOW_AUTOSIZE)
149
+ cv2.imshow(args.input, img)
150
+ cv2.waitKey(0)
151
+
152
+ else:
153
+ print("Press any key to stop video capture")
154
+ deviceId = 0
155
+ cap = cv2.VideoCapture(deviceId)
156
+
157
+ while cv2.waitKey(1) < 0:
158
+ hasFrame, frame = cap.read()
159
+ if not hasFrame:
160
+ print('No frames grabbed!')
161
+ break
162
+
163
+ input_blob = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
164
+ input_blob, letterbox_scale = letterbox(input_blob)
165
+ # Inference
166
+ tm.start()
167
+ preds = model.infer(input_blob)
168
+ tm.stop()
169
+
170
+ img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
171
+
172
+ cv2.imshow("NanoDet Demo", img)
173
+
174
+ tm.reset()
models/object_detection_nanodet/nanodet.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+
4
+ class NanoDet:
5
+ def __init__(self, modelPath, prob_threshold=0.35, iou_threshold=0.6, backend_id=0, target_id=0):
6
+ self.strides = (8, 16, 32, 64)
7
+ self.image_shape = (416, 416)
8
+ self.reg_max = 7
9
+ self.prob_threshold = prob_threshold
10
+ self.iou_threshold = iou_threshold
11
+ self.backend_id = backend_id
12
+ self.target_id = target_id
13
+ self.project = np.arange(self.reg_max + 1)
14
+ self.mean = np.array([103.53, 116.28, 123.675], dtype=np.float32).reshape(1, 1, 3)
15
+ self.std = np.array([57.375, 57.12, 58.395], dtype=np.float32).reshape(1, 1, 3)
16
+ self.net = cv2.dnn.readNet(modelPath)
17
+ self.net.setPreferableBackend(self.backend_id)
18
+ self.net.setPreferableTarget(self.target_id)
19
+
20
+ self.anchors_mlvl = []
21
+ for i in range(len(self.strides)):
22
+ featmap_size = (int(self.image_shape[0] / self.strides[i]), int(self.image_shape[1] / self.strides[i]))
23
+ stride = self.strides[i]
24
+ feat_h, feat_w = featmap_size
25
+ shift_x = np.arange(0, feat_w) * stride
26
+ shift_y = np.arange(0, feat_h) * stride
27
+ xv, yv = np.meshgrid(shift_x, shift_y)
28
+ xv = xv.flatten()
29
+ yv = yv.flatten()
30
+ cx = xv + 0.5 * (stride-1)
31
+ cy = yv + 0.5 * (stride - 1)
32
+ #anchors = np.stack((cx, cy), axis=-1)
33
+ anchors = np.column_stack((cx, cy))
34
+ self.anchors_mlvl.append(anchors)
35
+
36
+ @property
37
+ def name(self):
38
+ return self.__class__.__name__
39
+
40
+ def setBackend(self, backenId):
41
+ self.backend_id = backendId
42
+ self.net.setPreferableBackend(self.backend_id)
43
+
44
+ def setTarget(self, targetId):
45
+ self.target_id = targetId
46
+ self.net.setPreferableTarget(self.target_id)
47
+
48
+ def pre_process(self, img):
49
+ img = img.astype(np.float32)
50
+ img = (img - self.mean) / self.std
51
+ blob = cv2.dnn.blobFromImage(img)
52
+ return blob
53
+
54
+ def infer(self, srcimg):
55
+ blob = self.pre_process(srcimg)
56
+ self.net.setInput(blob)
57
+ outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
58
+ preds = self.post_process(outs)
59
+ return preds
60
+
61
+ def post_process(self, preds):
62
+ cls_scores, bbox_preds = preds[::2], preds[1::2]
63
+ rescale = False
64
+ scale_factor = 1
65
+ bboxes_mlvl = []
66
+ scores_mlvl = []
67
+ for stride, cls_score, bbox_pred, anchors in zip(self.strides, cls_scores, bbox_preds, self.anchors_mlvl):
68
+ if cls_score.ndim==3:
69
+ cls_score = cls_score.squeeze(axis=0)
70
+ if bbox_pred.ndim==3:
71
+ bbox_pred = bbox_pred.squeeze(axis=0)
72
+
73
+ x_exp = np.exp(bbox_pred.reshape(-1, self.reg_max + 1))
74
+ x_sum = np.sum(x_exp, axis=1, keepdims=True)
75
+ bbox_pred = x_exp / x_sum
76
+ bbox_pred = np.dot(bbox_pred, self.project).reshape(-1,4)
77
+ bbox_pred *= stride
78
+
79
+ nms_pre = 1000
80
+ if nms_pre > 0 and cls_score.shape[0] > nms_pre:
81
+ max_scores = cls_score.max(axis=1)
82
+ topk_inds = max_scores.argsort()[::-1][0:nms_pre]
83
+ anchors = anchors[topk_inds, :]
84
+ bbox_pred = bbox_pred[topk_inds, :]
85
+ cls_score = cls_score[topk_inds, :]
86
+
87
+ points = anchors
88
+ distance = bbox_pred
89
+ max_shape=self.image_shape
90
+ x1 = points[:, 0] - distance[:, 0]
91
+ y1 = points[:, 1] - distance[:, 1]
92
+ x2 = points[:, 0] + distance[:, 2]
93
+ y2 = points[:, 1] + distance[:, 3]
94
+
95
+ if max_shape is not None:
96
+ x1 = np.clip(x1, 0, max_shape[1])
97
+ y1 = np.clip(y1, 0, max_shape[0])
98
+ x2 = np.clip(x2, 0, max_shape[1])
99
+ y2 = np.clip(y2, 0, max_shape[0])
100
+
101
+ #bboxes = np.stack([x1, y1, x2, y2], axis=-1)
102
+ bboxes = np.column_stack([x1, y1, x2, y2])
103
+ bboxes_mlvl.append(bboxes)
104
+ scores_mlvl.append(cls_score)
105
+
106
+ bboxes_mlvl = np.concatenate(bboxes_mlvl, axis=0)
107
+ if rescale:
108
+ bboxes_mlvl /= scale_factor
109
+ scores_mlvl = np.concatenate(scores_mlvl, axis=0)
110
+ bboxes_wh = bboxes_mlvl.copy()
111
+ bboxes_wh[:, 2:4] = bboxes_wh[:, 2:4] - bboxes_wh[:, 0:2]
112
+ classIds = np.argmax(scores_mlvl, axis=1)
113
+ confidences = np.max(scores_mlvl, axis=1)
114
+
115
+ indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.prob_threshold, self.iou_threshold)
116
+
117
+ if len(indices)>0:
118
+ det_bboxes = bboxes_mlvl[indices]
119
+ det_conf = confidences[indices]
120
+ det_classid = classIds[indices]
121
+
122
+ return np.concatenate([det_bboxes, det_conf.reshape(-1, 1), det_classid.reshape(-1, 1)], axis=1)
123
+ else:
124
+ return np.array([])