Yuantao Feng commited on
Commit
e0b3895
·
1 Parent(s): 9d96bb5

Add PPResNet from PaddleHub conversion (#4)

Browse files

* add PPResNet impl and demo

* add benchmark impl and results for PPResNet

README.md CHANGED
@@ -16,8 +16,8 @@ Hardware Setup:
16
  -->
17
 
18
  ***Important Notes***:
19
- - The time data that shown on the following tables presents the time elapsed from preprocess (resize is excluded), to a forward pass of a network, and postprocess to get final results.
20
- - The time data that shown on the following tables is the median of benchmark runs.
21
  - View [benchmark/config](./benchmark/config) for more details on benchmarking different models.
22
 
23
  <!--
@@ -33,6 +33,7 @@ Hardware Setup:
33
  | [DB](./models/text_detection_db) | 640x480 | 137.38 | 2780.78 |
34
  | [CRNN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 |
35
  | [SFace](./models/face_recognition_sface) | 112x112 | 8.69 | 96.79 |
 
36
 
37
 
38
  ## License
 
16
  -->
17
 
18
  ***Important Notes***:
19
+ - The time data that shown on the following table presents the time elapsed from preprocess (resize is excluded), to a forward pass of a network, and postprocess to get final results.
20
+ - The time data that shown on the following table is the median of 10 runs. Different metrics may be applied to some specific models.
21
  - View [benchmark/config](./benchmark/config) for more details on benchmarking different models.
22
 
23
  <!--
 
33
  | [DB](./models/text_detection_db) | 640x480 | 137.38 | 2780.78 |
34
  | [CRNN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 |
35
  | [SFace](./models/face_recognition_sface) | 112x112 | 8.69 | 96.79 |
36
+ | [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58
37
 
38
 
39
  ## License
benchmark/benchmark.py CHANGED
@@ -75,6 +75,10 @@ class Data:
75
  if self._use_label:
76
  self._labels = self._load_label()
77
 
 
 
 
 
78
  def _load_label(self):
79
  labels = dict.fromkeys(self._files, None)
80
  for filename in self._files:
@@ -83,6 +87,19 @@ class Data:
83
 
84
  def __getitem__(self, idx):
85
  image = cv.imread(os.path.join(self._path, self._files[idx]))
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  if self._use_label:
87
  return self._files[idx], image, self._labels[self._files[idx]]
88
  else:
@@ -113,7 +130,10 @@ class Metric:
113
  if len(args) == 1:
114
  for size in self._sizes:
115
  img_r = cv.resize(img, size)
116
- model.setInputSize(size)
 
 
 
117
  # TODO: batched inference
118
  # input_data = [img] * self._batch_size
119
  input_data = img_r
@@ -192,11 +212,13 @@ def build_from_cfg(cfg, registery):
192
  obj = registery.get(obj_name)
193
  return obj(**cfg)
194
 
195
- def prepend_pythonpath(cfg, key1, key2):
196
- pythonpath = os.environ['PYTHONPATH']
197
- if cfg[key1][key2].startswith('/'):
198
- return
199
- cfg[key1][key2] = os.path.join(pythonpath, cfg[key1][key2])
 
 
200
 
201
  if __name__ == '__main__':
202
  assert args.cfg.endswith('yaml'), 'Currently support configs of yaml format only.'
@@ -204,8 +226,7 @@ if __name__ == '__main__':
204
  cfg = yaml.safe_load(f)
205
 
206
  # prepend PYTHONPATH to each path
207
- prepend_pythonpath(cfg['Benchmark'], key1='data', key2='path')
208
- prepend_pythonpath(cfg, key1='Model', key2='modelPath')
209
 
210
  # Instantiate benchmarking
211
  benchmark = Benchmark(**cfg['Benchmark'])
 
75
  if self._use_label:
76
  self._labels = self._load_label()
77
 
78
+ self._to_rgb = kwargs.pop('toRGB', False)
79
+ self._resize = tuple(kwargs.pop('resize', []))
80
+ self._center_crop = kwargs.pop('centerCrop', None)
81
+
82
  def _load_label(self):
83
  labels = dict.fromkeys(self._files, None)
84
  for filename in self._files:
 
87
 
88
  def __getitem__(self, idx):
89
  image = cv.imread(os.path.join(self._path, self._files[idx]))
90
+
91
+ if self._to_rgb:
92
+ image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
93
+ if self._resize:
94
+ image = cv.resize(image, self._resize)
95
+ if self._center_crop:
96
+ h, w, _ = image.shape
97
+ w_crop = int((w - self._center_crop) / 2.)
98
+ assert w_crop >= 0
99
+ h_crop = int((h - self._center_crop) / 2.)
100
+ assert h_crop >= 0
101
+ image = image[w_crop:w-w_crop, h_crop:h-h_crop, :]
102
+
103
  if self._use_label:
104
  return self._files[idx], image, self._labels[self._files[idx]]
105
  else:
 
130
  if len(args) == 1:
131
  for size in self._sizes:
132
  img_r = cv.resize(img, size)
133
+ try:
134
+ model.setInputSize(size)
135
+ except:
136
+ pass
137
  # TODO: batched inference
138
  # input_data = [img] * self._batch_size
139
  input_data = img_r
 
212
  obj = registery.get(obj_name)
213
  return obj(**cfg)
214
 
215
+ def prepend_pythonpath(cfg):
216
+ for k, v in cfg.items():
217
+ if isinstance(v, dict):
218
+ prepend_pythonpath(v)
219
+ else:
220
+ if 'path' in k.lower():
221
+ cfg[k] = os.path.join(os.environ['PYTHONPATH'], v)
222
 
223
  if __name__ == '__main__':
224
  assert args.cfg.endswith('yaml'), 'Currently support configs of yaml format only.'
 
226
  cfg = yaml.safe_load(f)
227
 
228
  # prepend PYTHONPATH to each path
229
+ prepend_pythonpath(cfg)
 
230
 
231
  # Instantiate benchmarking
232
  benchmark = Benchmark(**cfg['Benchmark'])
benchmark/config/image_classification_ppresnet.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Benchmark:
2
+ name: "Image Classification Benchmark"
3
+ data:
4
+ path: "benchmark/data/image_classification"
5
+ files: ["coffee_mug.jpg", "umbrella.jpg", "wall_clock.jpg"]
6
+ toRGB: True
7
+ resize: [256, 256]
8
+ centerCrop: 224
9
+ metric:
10
+ warmup: 3
11
+ repeat: 10
12
+ batchSize: 1
13
+ reduction: 'median'
14
+ backend: "default"
15
+ target: "cpu"
16
+
17
+ Model:
18
+ name: "PPResNet"
19
+ modelPath: "models/image_classification_ppresnet/image_classification_ppresnet50.onnx"
20
+ labelPath: "models/image_classification_ppresnet/imagenet_labels.txt"
benchmark/download_data.py CHANGED
@@ -173,6 +173,10 @@ data_downloaders = dict(
173
  url='https://drive.google.com/u/0/uc?id=1lTQdZUau7ujHBqp0P6M1kccnnJgO-dRj&export=download',
174
  sha='a40cf095ceb77159ddd2a5902f3b4329696dd866',
175
  filename='text.zip'),
 
 
 
 
176
  )
177
 
178
  if __name__ == '__main__':
 
173
  url='https://drive.google.com/u/0/uc?id=1lTQdZUau7ujHBqp0P6M1kccnnJgO-dRj&export=download',
174
  sha='a40cf095ceb77159ddd2a5902f3b4329696dd866',
175
  filename='text.zip'),
176
+ image_classification=Downloader(name='image_classification',
177
+ url='https://drive.google.com/u/0/uc?id=1qcsrX3CIAGTooB-9fLKYwcvoCuMgjzGU&export=download',
178
+ sha='987546f567f9f11d150eea78951024b55b015401',
179
+ filename='image_classification.zip'),
180
  )
181
 
182
  if __name__ == '__main__':
models/__init__.py CHANGED
@@ -2,6 +2,7 @@ from .face_detection_yunet.yunet import YuNet
2
  from .text_detection_db.db import DB
3
  from .text_recognition_crnn.crnn import CRNN
4
  from .face_recognition_sface.sface import SFace
 
5
 
6
  class Registery:
7
  def __init__(self, name):
@@ -18,4 +19,5 @@ MODELS = Registery('Models')
18
  MODELS.register(YuNet)
19
  MODELS.register(DB)
20
  MODELS.register(CRNN)
21
- MODELS.register(SFace)
 
 
2
  from .text_detection_db.db import DB
3
  from .text_recognition_crnn.crnn import CRNN
4
  from .face_recognition_sface.sface import SFace
5
+ from .image_classification_ppresnet.ppresnet import PPResNet
6
 
7
  class Registery:
8
  def __init__(self, name):
 
19
  MODELS.register(YuNet)
20
  MODELS.register(DB)
21
  MODELS.register(CRNN)
22
+ MODELS.register(SFace)
23
+ MODELS.register(PPResNet)
models/image_classification_ppresnet/LICENSE ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
2
+
3
+ Apache License
4
+ Version 2.0, January 2004
5
+ http://www.apache.org/licenses/
6
+
7
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
8
+
9
+ 1. Definitions.
10
+
11
+ "License" shall mean the terms and conditions for use, reproduction,
12
+ and distribution as defined by Sections 1 through 9 of this document.
13
+
14
+ "Licensor" shall mean the copyright owner or entity authorized by
15
+ the copyright owner that is granting the License.
16
+
17
+ "Legal Entity" shall mean the union of the acting entity and all
18
+ other entities that control, are controlled by, or are under common
19
+ control with that entity. For the purposes of this definition,
20
+ "control" means (i) the power, direct or indirect, to cause the
21
+ direction or management of such entity, whether by contract or
22
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
23
+ outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ "You" (or "Your") shall mean an individual or Legal Entity
26
+ exercising permissions granted by this License.
27
+
28
+ "Source" form shall mean the preferred form for making modifications,
29
+ including but not limited to software source code, documentation
30
+ source, and configuration files.
31
+
32
+ "Object" form shall mean any form resulting from mechanical
33
+ transformation or translation of a Source form, including but
34
+ not limited to compiled object code, generated documentation,
35
+ and conversions to other media types.
36
+
37
+ "Work" shall mean the work of authorship, whether in Source or
38
+ Object form, made available under the License, as indicated by a
39
+ copyright notice that is included in or attached to the work
40
+ (an example is provided in the Appendix below).
41
+
42
+ "Derivative Works" shall mean any work, whether in Source or Object
43
+ form, that is based on (or derived from) the Work and for which the
44
+ editorial revisions, annotations, elaborations, or other modifications
45
+ represent, as a whole, an original work of authorship. For the purposes
46
+ of this License, Derivative Works shall not include works that remain
47
+ separable from, or merely link (or bind by name) to the interfaces of,
48
+ the Work and Derivative Works thereof.
49
+
50
+ "Contribution" shall mean any work of authorship, including
51
+ the original version of the Work and any modifications or additions
52
+ to that Work or Derivative Works thereof, that is intentionally
53
+ submitted to Licensor for inclusion in the Work by the copyright owner
54
+ or by an individual or Legal Entity authorized to submit on behalf of
55
+ the copyright owner. For the purposes of this definition, "submitted"
56
+ means any form of electronic, verbal, or written communication sent
57
+ to the Licensor or its representatives, including but not limited to
58
+ communication on electronic mailing lists, source code control systems,
59
+ and issue tracking systems that are managed by, or on behalf of, the
60
+ Licensor for the purpose of discussing and improving the Work, but
61
+ excluding communication that is conspicuously marked or otherwise
62
+ designated in writing by the copyright owner as "Not a Contribution."
63
+
64
+ "Contributor" shall mean Licensor and any individual or Legal Entity
65
+ on behalf of whom a Contribution has been received by Licensor and
66
+ subsequently incorporated within the Work.
67
+
68
+ 2. Grant of Copyright License. Subject to the terms and conditions of
69
+ this License, each Contributor hereby grants to You a perpetual,
70
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
71
+ copyright license to reproduce, prepare Derivative Works of,
72
+ publicly display, publicly perform, sublicense, and distribute the
73
+ Work and such Derivative Works in Source or Object form.
74
+
75
+ 3. Grant of Patent License. Subject to the terms and conditions of
76
+ this License, each Contributor hereby grants to You a perpetual,
77
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
78
+ (except as stated in this section) patent license to make, have made,
79
+ use, offer to sell, sell, import, and otherwise transfer the Work,
80
+ where such license applies only to those patent claims licensable
81
+ by such Contributor that are necessarily infringed by their
82
+ Contribution(s) alone or by combination of their Contribution(s)
83
+ with the Work to which such Contribution(s) was submitted. If You
84
+ institute patent litigation against any entity (including a
85
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
86
+ or a Contribution incorporated within the Work constitutes direct
87
+ or contributory patent infringement, then any patent licenses
88
+ granted to You under this License for that Work shall terminate
89
+ as of the date such litigation is filed.
90
+
91
+ 4. Redistribution. You may reproduce and distribute copies of the
92
+ Work or Derivative Works thereof in any medium, with or without
93
+ modifications, and in Source or Object form, provided that You
94
+ meet the following conditions:
95
+
96
+ (a) You must give any other recipients of the Work or
97
+ Derivative Works a copy of this License; and
98
+
99
+ (b) You must cause any modified files to carry prominent notices
100
+ stating that You changed the files; and
101
+
102
+ (c) You must retain, in the Source form of any Derivative Works
103
+ that You distribute, all copyright, patent, trademark, and
104
+ attribution notices from the Source form of the Work,
105
+ excluding those notices that do not pertain to any part of
106
+ the Derivative Works; and
107
+
108
+ (d) If the Work includes a "NOTICE" text file as part of its
109
+ distribution, then any Derivative Works that You distribute must
110
+ include a readable copy of the attribution notices contained
111
+ within such NOTICE file, excluding those notices that do not
112
+ pertain to any part of the Derivative Works, in at least one
113
+ of the following places: within a NOTICE text file distributed
114
+ as part of the Derivative Works; within the Source form or
115
+ documentation, if provided along with the Derivative Works; or,
116
+ within a display generated by the Derivative Works, if and
117
+ wherever such third-party notices normally appear. The contents
118
+ of the NOTICE file are for informational purposes only and
119
+ do not modify the License. You may add Your own attribution
120
+ notices within Derivative Works that You distribute, alongside
121
+ or as an addendum to the NOTICE text from the Work, provided
122
+ that such additional attribution notices cannot be construed
123
+ as modifying the License.
124
+
125
+ You may add Your own copyright statement to Your modifications and
126
+ may provide additional or different license terms and conditions
127
+ for use, reproduction, or distribution of Your modifications, or
128
+ for any such Derivative Works as a whole, provided Your use,
129
+ reproduction, and distribution of the Work otherwise complies with
130
+ the conditions stated in this License.
131
+
132
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
133
+ any Contribution intentionally submitted for inclusion in the Work
134
+ by You to the Licensor shall be under the terms and conditions of
135
+ this License, without any additional terms or conditions.
136
+ Notwithstanding the above, nothing herein shall supersede or modify
137
+ the terms of any separate license agreement you may have executed
138
+ with Licensor regarding such Contributions.
139
+
140
+ 6. Trademarks. This License does not grant permission to use the trade
141
+ names, trademarks, service marks, or product names of the Licensor,
142
+ except as required for reasonable and customary use in describing the
143
+ origin of the Work and reproducing the content of the NOTICE file.
144
+
145
+ 7. Disclaimer of Warranty. Unless required by applicable law or
146
+ agreed to in writing, Licensor provides the Work (and each
147
+ Contributor provides its Contributions) on an "AS IS" BASIS,
148
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
149
+ implied, including, without limitation, any warranties or conditions
150
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
151
+ PARTICULAR PURPOSE. You are solely responsible for determining the
152
+ appropriateness of using or redistributing the Work and assume any
153
+ risks associated with Your exercise of permissions under this License.
154
+
155
+ 8. Limitation of Liability. In no event and under no legal theory,
156
+ whether in tort (including negligence), contract, or otherwise,
157
+ unless required by applicable law (such as deliberate and grossly
158
+ negligent acts) or agreed to in writing, shall any Contributor be
159
+ liable to You for damages, including any direct, indirect, special,
160
+ incidental, or consequential damages of any character arising as a
161
+ result of this License or out of the use or inability to use the
162
+ Work (including but not limited to damages for loss of goodwill,
163
+ work stoppage, computer failure or malfunction, or any and all
164
+ other commercial damages or losses), even if such Contributor
165
+ has been advised of the possibility of such damages.
166
+
167
+ 9. Accepting Warranty or Additional Liability. While redistributing
168
+ the Work or Derivative Works thereof, You may choose to offer,
169
+ and charge a fee for, acceptance of support, warranty, indemnity,
170
+ or other liability obligations and/or rights consistent with this
171
+ License. However, in accepting such obligations, You may act only
172
+ on Your own behalf and on Your sole responsibility, not on behalf
173
+ of any other Contributor, and only if You agree to indemnify,
174
+ defend, and hold each Contributor harmless for any liability
175
+ incurred by, or claims asserted against, such Contributor by reason
176
+ of your accepting any such warranty or additional liability.
177
+
178
+ END OF TERMS AND CONDITIONS
179
+
180
+ APPENDIX: How to apply the Apache License to your work.
181
+
182
+ To apply the Apache License to your work, attach the following
183
+ boilerplate notice, with the fields enclosed by brackets "[]"
184
+ replaced with your own identifying information. (Don't include
185
+ the brackets!) The text should be enclosed in the appropriate
186
+ comment syntax for the file format. We also recommend that a
187
+ file or class name and description of purpose be included on the
188
+ same "printed page" as the copyright notice for easier
189
+ identification within third-party archives.
190
+
191
+ Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
192
+
193
+ Licensed under the Apache License, Version 2.0 (the "License");
194
+ you may not use this file except in compliance with the License.
195
+ You may obtain a copy of the License at
196
+
197
+ http://www.apache.org/licenses/LICENSE-2.0
198
+
199
+ Unless required by applicable law or agreed to in writing, software
200
+ distributed under the License is distributed on an "AS IS" BASIS,
201
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
202
+ See the License for the specific language governing permissions and
203
+ limitations under the License.
models/image_classification_ppresnet/README.md ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ResNet
2
+
3
+ Deep Residual Learning for Image Recognition
4
+
5
+ This model is ported from [PaddleHub](https://github.com/PaddlePaddle/PaddleHub) using [this script from OpenCV](https://github.com/opencv/opencv/blob/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle/paddle_resnet50.py).
6
+
7
+ ## Demo
8
+
9
+ Run the following command to try the demo:
10
+ ```shell
11
+ python demo.py --input /path/to/image
12
+ ```
13
+
14
+ ## License
15
+
16
+ All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
17
+
18
+ ## Reference
19
+
20
+ - https://arxiv.org/abs/1512.03385
21
+ - https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle
22
+ - https://github.com/PaddlePaddle/PaddleHub
models/image_classification_ppresnet/demo.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is part of OpenCV Zoo project.
2
+ # It is subject to the license terms in the LICENSE file found in the same directory.
3
+ #
4
+ # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5
+ # Third party copyrights are property of their respective owners.
6
+
7
+ import argparse
8
+
9
+ import numpy as np
10
+ import cv2 as cv
11
+
12
+ from ppresnet import PPResNet
13
+
14
+ def str2bool(v):
15
+ if v.lower() in ['on', 'yes', 'true', 'y', 't']:
16
+ return True
17
+ elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
18
+ return False
19
+ else:
20
+ raise NotImplementedError
21
+
22
+ parser = argparse.ArgumentParser(description='Deep Residual Learning for Image Recognition (https://arxiv.org/abs/1512.03385, https://github.com/PaddlePaddle/PaddleHub)')
23
+ parser.add_argument('--input', '-i', type=str, help='Path to the input image.')
24
+ parser.add_argument('--model', '-m', type=str, default='image_classification_ppresnet50.onnx', help='Path to the model.')
25
+ args = parser.parse_args()
26
+
27
+ if __name__ == '__main__':
28
+ # Instantiate ResNet
29
+ model = PPResNet(modelPath=args.model)
30
+
31
+ # Read image and get a 224x224 crop from a 256x256 resized
32
+ image = cv.imread(args.input)
33
+ image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
34
+ image = cv.resize(image, dsize=(256, 256))
35
+ image = image[16:240, 16:240, :]
36
+
37
+ # Inference
38
+ result = model.infer(image)
39
+
40
+ # Print result
41
+ print('label: {}'.format(result))
models/image_classification_ppresnet/imagenet_labels.txt ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ tench
2
+ goldfish
3
+ great white shark
4
+ tiger shark
5
+ hammerhead
6
+ electric ray
7
+ stingray
8
+ cock
9
+ hen
10
+ ostrich
11
+ brambling
12
+ goldfinch
13
+ house finch
14
+ junco
15
+ indigo bunting
16
+ robin
17
+ bulbul
18
+ jay
19
+ magpie
20
+ chickadee
21
+ water ouzel
22
+ kite
23
+ bald eagle
24
+ vulture
25
+ great grey owl
26
+ European fire salamander
27
+ common newt
28
+ eft
29
+ spotted salamander
30
+ axolotl
31
+ bullfrog
32
+ tree frog
33
+ tailed frog
34
+ loggerhead
35
+ leatherback turtle
36
+ mud turtle
37
+ terrapin
38
+ box turtle
39
+ banded gecko
40
+ common iguana
41
+ American chameleon
42
+ whiptail
43
+ agama
44
+ frilled lizard
45
+ alligator lizard
46
+ Gila monster
47
+ green lizard
48
+ African chameleon
49
+ Komodo dragon
50
+ African crocodile
51
+ American alligator
52
+ triceratops
53
+ thunder snake
54
+ ringneck snake
55
+ hognose snake
56
+ green snake
57
+ king snake
58
+ garter snake
59
+ water snake
60
+ vine snake
61
+ night snake
62
+ boa constrictor
63
+ rock python
64
+ Indian cobra
65
+ green mamba
66
+ sea snake
67
+ horned viper
68
+ diamondback
69
+ sidewinder
70
+ trilobite
71
+ harvestman
72
+ scorpion
73
+ black and gold garden spider
74
+ barn spider
75
+ garden spider
76
+ black widow
77
+ tarantula
78
+ wolf spider
79
+ tick
80
+ centipede
81
+ black grouse
82
+ ptarmigan
83
+ ruffed grouse
84
+ prairie chicken
85
+ peacock
86
+ quail
87
+ partridge
88
+ African grey
89
+ macaw
90
+ sulphur-crested cockatoo
91
+ lorikeet
92
+ coucal
93
+ bee eater
94
+ hornbill
95
+ hummingbird
96
+ jacamar
97
+ toucan
98
+ drake
99
+ red-breasted merganser
100
+ goose
101
+ black swan
102
+ tusker
103
+ echidna
104
+ platypus
105
+ wallaby
106
+ koala
107
+ wombat
108
+ jellyfish
109
+ sea anemone
110
+ brain coral
111
+ flatworm
112
+ nematode
113
+ conch
114
+ snail
115
+ slug
116
+ sea slug
117
+ chiton
118
+ chambered nautilus
119
+ Dungeness crab
120
+ rock crab
121
+ fiddler crab
122
+ king crab
123
+ American lobster
124
+ spiny lobster
125
+ crayfish
126
+ hermit crab
127
+ isopod
128
+ white stork
129
+ black stork
130
+ spoonbill
131
+ flamingo
132
+ little blue heron
133
+ American egret
134
+ bittern
135
+ crane
136
+ limpkin
137
+ European gallinule
138
+ American coot
139
+ bustard
140
+ ruddy turnstone
141
+ red-backed sandpiper
142
+ redshank
143
+ dowitcher
144
+ oystercatcher
145
+ pelican
146
+ king penguin
147
+ albatross
148
+ grey whale
149
+ killer whale
150
+ dugong
151
+ sea lion
152
+ Chihuahua
153
+ Japanese spaniel
154
+ Maltese dog
155
+ Pekinese
156
+ Shih-Tzu
157
+ Blenheim spaniel
158
+ papillon
159
+ toy terrier
160
+ Rhodesian ridgeback
161
+ Afghan hound
162
+ basset
163
+ beagle
164
+ bloodhound
165
+ bluetick
166
+ black-and-tan coonhound
167
+ Walker hound
168
+ English foxhound
169
+ redbone
170
+ borzoi
171
+ Irish wolfhound
172
+ Italian greyhound
173
+ whippet
174
+ Ibizan hound
175
+ Norwegian elkhound
176
+ otterhound
177
+ Saluki
178
+ Scottish deerhound
179
+ Weimaraner
180
+ Staffordshire bullterrier
181
+ American Staffordshire terrier
182
+ Bedlington terrier
183
+ Border terrier
184
+ Kerry blue terrier
185
+ Irish terrier
186
+ Norfolk terrier
187
+ Norwich terrier
188
+ Yorkshire terrier
189
+ wire-haired fox terrier
190
+ Lakeland terrier
191
+ Sealyham terrier
192
+ Airedale
193
+ cairn
194
+ Australian terrier
195
+ Dandie Dinmont
196
+ Boston bull
197
+ miniature schnauzer
198
+ giant schnauzer
199
+ standard schnauzer
200
+ Scotch terrier
201
+ Tibetan terrier
202
+ silky terrier
203
+ soft-coated wheaten terrier
204
+ West Highland white terrier
205
+ Lhasa
206
+ flat-coated retriever
207
+ curly-coated retriever
208
+ golden retriever
209
+ Labrador retriever
210
+ Chesapeake Bay retriever
211
+ German short-haired pointer
212
+ vizsla
213
+ English setter
214
+ Irish setter
215
+ Gordon setter
216
+ Brittany spaniel
217
+ clumber
218
+ English springer
219
+ Welsh springer spaniel
220
+ cocker spaniel
221
+ Sussex spaniel
222
+ Irish water spaniel
223
+ kuvasz
224
+ schipperke
225
+ groenendael
226
+ malinois
227
+ briard
228
+ kelpie
229
+ komondor
230
+ Old English sheepdog
231
+ Shetland sheepdog
232
+ collie
233
+ Border collie
234
+ Bouvier des Flandres
235
+ Rottweiler
236
+ German shepherd
237
+ Doberman
238
+ miniature pinscher
239
+ Greater Swiss Mountain dog
240
+ Bernese mountain dog
241
+ Appenzeller
242
+ EntleBucher
243
+ boxer
244
+ bull mastiff
245
+ Tibetan mastiff
246
+ French bulldog
247
+ Great Dane
248
+ Saint Bernard
249
+ Eskimo dog
250
+ malamute
251
+ Siberian husky
252
+ dalmatian
253
+ affenpinscher
254
+ basenji
255
+ pug
256
+ Leonberg
257
+ Newfoundland
258
+ Great Pyrenees
259
+ Samoyed
260
+ Pomeranian
261
+ chow
262
+ keeshond
263
+ Brabancon griffon
264
+ Pembroke
265
+ Cardigan
266
+ toy poodle
267
+ miniature poodle
268
+ standard poodle
269
+ Mexican hairless
270
+ timber wolf
271
+ white wolf
272
+ red wolf
273
+ coyote
274
+ dingo
275
+ dhole
276
+ African hunting dog
277
+ hyena
278
+ red fox
279
+ kit fox
280
+ Arctic fox
281
+ grey fox
282
+ tabby
283
+ tiger cat
284
+ Persian cat
285
+ Siamese cat
286
+ Egyptian cat
287
+ cougar
288
+ lynx
289
+ leopard
290
+ snow leopard
291
+ jaguar
292
+ lion
293
+ tiger
294
+ cheetah
295
+ brown bear
296
+ American black bear
297
+ ice bear
298
+ sloth bear
299
+ mongoose
300
+ meerkat
301
+ tiger beetle
302
+ ladybug
303
+ ground beetle
304
+ long-horned beetle
305
+ leaf beetle
306
+ dung beetle
307
+ rhinoceros beetle
308
+ weevil
309
+ fly
310
+ bee
311
+ ant
312
+ grasshopper
313
+ cricket
314
+ walking stick
315
+ cockroach
316
+ mantis
317
+ cicada
318
+ leafhopper
319
+ lacewing
320
+ dragonfly
321
+ damselfly
322
+ admiral
323
+ ringlet
324
+ monarch
325
+ cabbage butterfly
326
+ sulphur butterfly
327
+ lycaenid
328
+ starfish
329
+ sea urchin
330
+ sea cucumber
331
+ wood rabbit
332
+ hare
333
+ Angora
334
+ hamster
335
+ porcupine
336
+ fox squirrel
337
+ marmot
338
+ beaver
339
+ guinea pig
340
+ sorrel
341
+ zebra
342
+ hog
343
+ wild boar
344
+ warthog
345
+ hippopotamus
346
+ ox
347
+ water buffalo
348
+ bison
349
+ ram
350
+ bighorn
351
+ ibex
352
+ hartebeest
353
+ impala
354
+ gazelle
355
+ Arabian camel
356
+ llama
357
+ weasel
358
+ mink
359
+ polecat
360
+ black-footed ferret
361
+ otter
362
+ skunk
363
+ badger
364
+ armadillo
365
+ three-toed sloth
366
+ orangutan
367
+ gorilla
368
+ chimpanzee
369
+ gibbon
370
+ siamang
371
+ guenon
372
+ patas
373
+ baboon
374
+ macaque
375
+ langur
376
+ colobus
377
+ proboscis monkey
378
+ marmoset
379
+ capuchin
380
+ howler monkey
381
+ titi
382
+ spider monkey
383
+ squirrel monkey
384
+ Madagascar cat
385
+ indri
386
+ Indian elephant
387
+ African elephant
388
+ lesser panda
389
+ giant panda
390
+ barracouta
391
+ eel
392
+ coho
393
+ rock beauty
394
+ anemone fish
395
+ sturgeon
396
+ gar
397
+ lionfish
398
+ puffer
399
+ abacus
400
+ abaya
401
+ academic gown
402
+ accordion
403
+ acoustic guitar
404
+ aircraft carrier
405
+ airliner
406
+ airship
407
+ altar
408
+ ambulance
409
+ amphibian
410
+ analog clock
411
+ apiary
412
+ apron
413
+ ashcan
414
+ assault rifle
415
+ backpack
416
+ bakery
417
+ balance beam
418
+ balloon
419
+ ballpoint
420
+ Band Aid
421
+ banjo
422
+ bannister
423
+ barbell
424
+ barber chair
425
+ barbershop
426
+ barn
427
+ barometer
428
+ barrel
429
+ barrow
430
+ baseball
431
+ basketball
432
+ bassinet
433
+ bassoon
434
+ bathing cap
435
+ bath towel
436
+ bathtub
437
+ beach wagon
438
+ beacon
439
+ beaker
440
+ bearskin
441
+ beer bottle
442
+ beer glass
443
+ bell cote
444
+ bib
445
+ bicycle-built-for-two
446
+ bikini
447
+ binder
448
+ binoculars
449
+ birdhouse
450
+ boathouse
451
+ bobsled
452
+ bolo tie
453
+ bonnet
454
+ bookcase
455
+ bookshop
456
+ bottlecap
457
+ bow
458
+ bow tie
459
+ brass
460
+ brassiere
461
+ breakwater
462
+ breastplate
463
+ broom
464
+ bucket
465
+ buckle
466
+ bulletproof vest
467
+ bullet train
468
+ butcher shop
469
+ cab
470
+ caldron
471
+ candle
472
+ cannon
473
+ canoe
474
+ can opener
475
+ cardigan
476
+ car mirror
477
+ carousel
478
+ carpenters kit
479
+ carton
480
+ car wheel
481
+ cash machine
482
+ cassette
483
+ cassette player
484
+ castle
485
+ catamaran
486
+ CD player
487
+ cello
488
+ cellular telephone
489
+ chain
490
+ chainlink fence
491
+ chain mail
492
+ chain saw
493
+ chest
494
+ chiffonier
495
+ chime
496
+ china cabinet
497
+ Christmas stocking
498
+ church
499
+ cinema
500
+ cleaver
501
+ cliff dwelling
502
+ cloak
503
+ clog
504
+ cocktail shaker
505
+ coffee mug
506
+ coffeepot
507
+ coil
508
+ combination lock
509
+ computer keyboard
510
+ confectionery
511
+ container ship
512
+ convertible
513
+ corkscrew
514
+ cornet
515
+ cowboy boot
516
+ cowboy hat
517
+ cradle
518
+ crane
519
+ crash helmet
520
+ crate
521
+ crib
522
+ Crock Pot
523
+ croquet ball
524
+ crutch
525
+ cuirass
526
+ dam
527
+ desk
528
+ desktop computer
529
+ dial telephone
530
+ diaper
531
+ digital clock
532
+ digital watch
533
+ dining table
534
+ dishrag
535
+ dishwasher
536
+ disk brake
537
+ dock
538
+ dogsled
539
+ dome
540
+ doormat
541
+ drilling platform
542
+ drum
543
+ drumstick
544
+ dumbbell
545
+ Dutch oven
546
+ electric fan
547
+ electric guitar
548
+ electric locomotive
549
+ entertainment center
550
+ envelope
551
+ espresso maker
552
+ face powder
553
+ feather boa
554
+ file
555
+ fireboat
556
+ fire engine
557
+ fire screen
558
+ flagpole
559
+ flute
560
+ folding chair
561
+ football helmet
562
+ forklift
563
+ fountain
564
+ fountain pen
565
+ four-poster
566
+ freight car
567
+ French horn
568
+ frying pan
569
+ fur coat
570
+ garbage truck
571
+ gasmask
572
+ gas pump
573
+ goblet
574
+ go-kart
575
+ golf ball
576
+ golfcart
577
+ gondola
578
+ gong
579
+ gown
580
+ grand piano
581
+ greenhouse
582
+ grille
583
+ grocery store
584
+ guillotine
585
+ hair slide
586
+ hair spray
587
+ half track
588
+ hammer
589
+ hamper
590
+ hand blower
591
+ hand-held computer
592
+ handkerchief
593
+ hard disc
594
+ harmonica
595
+ harp
596
+ harvester
597
+ hatchet
598
+ holster
599
+ home theater
600
+ honeycomb
601
+ hook
602
+ hoopskirt
603
+ horizontal bar
604
+ horse cart
605
+ hourglass
606
+ iPod
607
+ iron
608
+ jack-o-lantern
609
+ jean
610
+ jeep
611
+ jersey
612
+ jigsaw puzzle
613
+ jinrikisha
614
+ joystick
615
+ kimono
616
+ knee pad
617
+ knot
618
+ lab coat
619
+ ladle
620
+ lampshade
621
+ laptop
622
+ lawn mower
623
+ lens cap
624
+ letter opener
625
+ library
626
+ lifeboat
627
+ lighter
628
+ limousine
629
+ liner
630
+ lipstick
631
+ Loafer
632
+ lotion
633
+ loudspeaker
634
+ loupe
635
+ lumbermill
636
+ magnetic compass
637
+ mailbag
638
+ mailbox
639
+ maillot
640
+ maillot
641
+ manhole cover
642
+ maraca
643
+ marimba
644
+ mask
645
+ matchstick
646
+ maypole
647
+ maze
648
+ measuring cup
649
+ medicine chest
650
+ megalith
651
+ microphone
652
+ microwave
653
+ military uniform
654
+ milk can
655
+ minibus
656
+ miniskirt
657
+ minivan
658
+ missile
659
+ mitten
660
+ mixing bowl
661
+ mobile home
662
+ Model T
663
+ modem
664
+ monastery
665
+ monitor
666
+ moped
667
+ mortar
668
+ mortarboard
669
+ mosque
670
+ mosquito net
671
+ motor scooter
672
+ mountain bike
673
+ mountain tent
674
+ mouse
675
+ mousetrap
676
+ moving van
677
+ muzzle
678
+ nail
679
+ neck brace
680
+ necklace
681
+ nipple
682
+ notebook
683
+ obelisk
684
+ oboe
685
+ ocarina
686
+ odometer
687
+ oil filter
688
+ organ
689
+ oscilloscope
690
+ overskirt
691
+ oxcart
692
+ oxygen mask
693
+ packet
694
+ paddle
695
+ paddlewheel
696
+ padlock
697
+ paintbrush
698
+ pajama
699
+ palace
700
+ panpipe
701
+ paper towel
702
+ parachute
703
+ parallel bars
704
+ park bench
705
+ parking meter
706
+ passenger car
707
+ patio
708
+ pay-phone
709
+ pedestal
710
+ pencil box
711
+ pencil sharpener
712
+ perfume
713
+ Petri dish
714
+ photocopier
715
+ pick
716
+ pickelhaube
717
+ picket fence
718
+ pickup
719
+ pier
720
+ piggy bank
721
+ pill bottle
722
+ pillow
723
+ ping-pong ball
724
+ pinwheel
725
+ pirate
726
+ pitcher
727
+ plane
728
+ planetarium
729
+ plastic bag
730
+ plate rack
731
+ plow
732
+ plunger
733
+ Polaroid camera
734
+ pole
735
+ police van
736
+ poncho
737
+ pool table
738
+ pop bottle
739
+ pot
740
+ potters wheel
741
+ power drill
742
+ prayer rug
743
+ printer
744
+ prison
745
+ projectile
746
+ projector
747
+ puck
748
+ punching bag
749
+ purse
750
+ quill
751
+ quilt
752
+ racer
753
+ racket
754
+ radiator
755
+ radio
756
+ radio telescope
757
+ rain barrel
758
+ recreational vehicle
759
+ reel
760
+ reflex camera
761
+ refrigerator
762
+ remote control
763
+ restaurant
764
+ revolver
765
+ rifle
766
+ rocking chair
767
+ rotisserie
768
+ rubber eraser
769
+ rugby ball
770
+ rule
771
+ running shoe
772
+ safe
773
+ safety pin
774
+ saltshaker
775
+ sandal
776
+ sarong
777
+ sax
778
+ scabbard
779
+ scale
780
+ school bus
781
+ schooner
782
+ scoreboard
783
+ screen
784
+ screw
785
+ screwdriver
786
+ seat belt
787
+ sewing machine
788
+ shield
789
+ shoe shop
790
+ shoji
791
+ shopping basket
792
+ shopping cart
793
+ shovel
794
+ shower cap
795
+ shower curtain
796
+ ski
797
+ ski mask
798
+ sleeping bag
799
+ slide rule
800
+ sliding door
801
+ slot
802
+ snorkel
803
+ snowmobile
804
+ snowplow
805
+ soap dispenser
806
+ soccer ball
807
+ sock
808
+ solar dish
809
+ sombrero
810
+ soup bowl
811
+ space bar
812
+ space heater
813
+ space shuttle
814
+ spatula
815
+ speedboat
816
+ spider web
817
+ spindle
818
+ sports car
819
+ spotlight
820
+ stage
821
+ steam locomotive
822
+ steel arch bridge
823
+ steel drum
824
+ stethoscope
825
+ stole
826
+ stone wall
827
+ stopwatch
828
+ stove
829
+ strainer
830
+ streetcar
831
+ stretcher
832
+ studio couch
833
+ stupa
834
+ submarine
835
+ suit
836
+ sundial
837
+ sunglass
838
+ sunglasses
839
+ sunscreen
840
+ suspension bridge
841
+ swab
842
+ sweatshirt
843
+ swimming trunks
844
+ swing
845
+ switch
846
+ syringe
847
+ table lamp
848
+ tank
849
+ tape player
850
+ teapot
851
+ teddy
852
+ television
853
+ tennis ball
854
+ thatch
855
+ theater curtain
856
+ thimble
857
+ thresher
858
+ throne
859
+ tile roof
860
+ toaster
861
+ tobacco shop
862
+ toilet seat
863
+ torch
864
+ totem pole
865
+ tow truck
866
+ toyshop
867
+ tractor
868
+ trailer truck
869
+ tray
870
+ trench coat
871
+ tricycle
872
+ trimaran
873
+ tripod
874
+ triumphal arch
875
+ trolleybus
876
+ trombone
877
+ tub
878
+ turnstile
879
+ typewriter keyboard
880
+ umbrella
881
+ unicycle
882
+ upright
883
+ vacuum
884
+ vase
885
+ vault
886
+ velvet
887
+ vending machine
888
+ vestment
889
+ viaduct
890
+ violin
891
+ volleyball
892
+ waffle iron
893
+ wall clock
894
+ wallet
895
+ wardrobe
896
+ warplane
897
+ washbasin
898
+ washer
899
+ water bottle
900
+ water jug
901
+ water tower
902
+ whiskey jug
903
+ whistle
904
+ wig
905
+ window screen
906
+ window shade
907
+ Windsor tie
908
+ wine bottle
909
+ wing
910
+ wok
911
+ wooden spoon
912
+ wool
913
+ worm fence
914
+ wreck
915
+ yawl
916
+ yurt
917
+ web site
918
+ comic book
919
+ crossword puzzle
920
+ street sign
921
+ traffic light
922
+ book jacket
923
+ menu
924
+ plate
925
+ guacamole
926
+ consomme
927
+ hot pot
928
+ trifle
929
+ ice cream
930
+ ice lolly
931
+ French loaf
932
+ bagel
933
+ pretzel
934
+ cheeseburger
935
+ hotdog
936
+ mashed potato
937
+ head cabbage
938
+ broccoli
939
+ cauliflower
940
+ zucchini
941
+ spaghetti squash
942
+ acorn squash
943
+ butternut squash
944
+ cucumber
945
+ artichoke
946
+ bell pepper
947
+ cardoon
948
+ mushroom
949
+ Granny Smith
950
+ strawberry
951
+ orange
952
+ lemon
953
+ fig
954
+ pineapple
955
+ banana
956
+ jackfruit
957
+ custard apple
958
+ pomegranate
959
+ hay
960
+ carbonara
961
+ chocolate sauce
962
+ dough
963
+ meat loaf
964
+ pizza
965
+ potpie
966
+ burrito
967
+ red wine
968
+ espresso
969
+ cup
970
+ eggnog
971
+ alp
972
+ bubble
973
+ cliff
974
+ coral reef
975
+ geyser
976
+ lakeside
977
+ promontory
978
+ sandbar
979
+ seashore
980
+ valley
981
+ volcano
982
+ ballplayer
983
+ groom
984
+ scuba diver
985
+ rapeseed
986
+ daisy
987
+ yellow ladys slipper
988
+ corn
989
+ acorn
990
+ hip
991
+ buckeye
992
+ coral fungus
993
+ agaric
994
+ gyromitra
995
+ stinkhorn
996
+ earthstar
997
+ hen-of-the-woods
998
+ bolete
999
+ ear
1000
+ toilet tissue
models/image_classification_ppresnet/ppresnet.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is part of OpenCV Zoo project.
2
+ # It is subject to the license terms in the LICENSE file found in the same directory.
3
+ #
4
+ # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5
+ # Third party copyrights are property of their respective owners.
6
+
7
+
8
+ import numpy as np
9
+ import cv2 as cv
10
+
11
+ class PPResNet:
12
+ def __init__(self, modelPath, labelPath):
13
+ self._modelPath = modelPath
14
+ self._model = cv.dnn.readNet(self._modelPath)
15
+ self._labelPath = labelPath
16
+
17
+ self._inputNames = ''
18
+ self._outputNames = ['save_infer_model/scale_0.tmp_0']
19
+ self._inputSize = [224, 224]
20
+ self._mean = np.array([0.485, 0.456, 0.406])[np.newaxis, np.newaxis, :]
21
+ self._std = np.array([0.229, 0.224, 0.225])[np.newaxis, np.newaxis, :]
22
+
23
+ # load labels
24
+ self._labels = self._load_labels()
25
+
26
+ def _load_labels(self):
27
+ labels = []
28
+ with open(self._labelPath, 'r') as f:
29
+ for line in f:
30
+ labels.append(line.strip())
31
+ return labels
32
+
33
+ @property
34
+ def name(self):
35
+ return self.__class__.__name__
36
+
37
+ def setBackend(self, backend_id):
38
+ self._model.setPreferableBackend(backend_id)
39
+
40
+ def setTarget(self, target_id):
41
+ self._model.setPreferableTarget(target_id)
42
+
43
+ def _preprocess(self, image):
44
+ image = image.astype(np.float32, copy=False) / 255.0
45
+ image -= self._mean
46
+ image /= self._std
47
+ return cv.dnn.blobFromImage(image)
48
+
49
+ def infer(self, image):
50
+ assert image.shape[0] == self._inputSize[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self._inputSize[1])
51
+ assert image.shape[1] == self._inputSize[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self._inputSize[0])
52
+
53
+ # Preprocess
54
+ inputBlob = self._preprocess(image)
55
+
56
+ # Forward
57
+ self._model.setInput(inputBlob, self._inputNames)
58
+ outputBlob = self._model.forward(self._outputNames)
59
+
60
+ # Postprocess
61
+ results = self._postprocess(outputBlob)
62
+
63
+ return results
64
+
65
+ def _postprocess(self, outputBlob):
66
+ class_id = np.argmax(outputBlob[0])
67
+ return self._labels[class_id]