C++ Demo for person_reid_youtureid (#277)
Browse files* add demo.cpp
* add CMakeLists.txt
* Update README.md
* turn standard to c++11
---------
Co-authored-by: Gongjunzhe12210401 <[email protected]>
models/person_reid_youtureid/CMakeLists.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required(VERSION 3.24.0)
|
2 |
+
project(opencv_zoo_person_reid_youtureid)
|
3 |
+
|
4 |
+
set(OPENCV_VERSION "4.10.0")
|
5 |
+
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
6 |
+
|
7 |
+
# Find OpenCV
|
8 |
+
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
9 |
+
|
10 |
+
add_executable(demo demo.cpp)
|
11 |
+
target_link_libraries(demo ${OpenCV_LIBS})
|
models/person_reid_youtureid/README.md
CHANGED
@@ -10,6 +10,7 @@ This model is provided by Tencent Youtu Lab [[Credits]](https://github.com/openc
|
|
10 |
|
11 |
Run the following command to try the demo:
|
12 |
|
|
|
13 |
```shell
|
14 |
python demo.py --query_dir /path/to/query --gallery_dir /path/to/gallery -v
|
15 |
|
@@ -17,6 +18,18 @@ python demo.py --query_dir /path/to/query --gallery_dir /path/to/gallery -v
|
|
17 |
python demo.py --help
|
18 |
```
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
### License
|
21 |
|
22 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
|
|
10 |
|
11 |
Run the following command to try the demo:
|
12 |
|
13 |
+
### Python
|
14 |
```shell
|
15 |
python demo.py --query_dir /path/to/query --gallery_dir /path/to/gallery -v
|
16 |
|
|
|
18 |
python demo.py --help
|
19 |
```
|
20 |
|
21 |
+
### C++
|
22 |
+
```shell
|
23 |
+
# A typical and default installation path of OpenCV is /usr/local
|
24 |
+
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
25 |
+
cmake --build build
|
26 |
+
|
27 |
+
./build/demo --query_dir=/path/to/query --gallery_dir=/path/to/gallery -v
|
28 |
+
|
29 |
+
# get help regarding various parameters
|
30 |
+
./build/demo --help
|
31 |
+
```
|
32 |
+
|
33 |
### License
|
34 |
|
35 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
models/person_reid_youtureid/demo.cpp
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <opencv2/opencv.hpp>
|
2 |
+
#include "opencv2/dnn.hpp"
|
3 |
+
#include <iostream>
|
4 |
+
#include <vector>
|
5 |
+
#include <map>
|
6 |
+
#include <string>
|
7 |
+
#include <numeric>
|
8 |
+
|
9 |
+
|
10 |
+
// YoutuReID class for person re-identification
|
11 |
+
class YoutuReID {
|
12 |
+
public:
|
13 |
+
YoutuReID(const std::string& model_path,
|
14 |
+
const cv::Size& input_size = cv::Size(128, 256),
|
15 |
+
int output_dim = 768,
|
16 |
+
const cv::Scalar& mean = cv::Scalar(0.485, 0.456, 0.406),
|
17 |
+
const cv::Scalar& std = cv::Scalar(0.229, 0.224, 0.225),
|
18 |
+
int backend_id = 0,
|
19 |
+
int target_id = 0)
|
20 |
+
: model_path_(model_path), input_size_(input_size),
|
21 |
+
output_dim_(output_dim), mean_(mean), std_(std),
|
22 |
+
backend_id_(backend_id), target_id_(target_id)
|
23 |
+
{
|
24 |
+
|
25 |
+
model_ = cv::dnn::readNet(model_path_);
|
26 |
+
model_.setPreferableBackend(backend_id_);
|
27 |
+
model_.setPreferableTarget(target_id_);
|
28 |
+
}
|
29 |
+
|
30 |
+
void setBackendAndTarget(int backend_id, int target_id) {
|
31 |
+
backend_id_ = backend_id;
|
32 |
+
target_id_ = target_id;
|
33 |
+
model_.setPreferableBackend(backend_id_);
|
34 |
+
model_.setPreferableTarget(target_id_);
|
35 |
+
}
|
36 |
+
|
37 |
+
void setInputSize(const cv::Size& input_size) {
|
38 |
+
input_size_ = input_size;
|
39 |
+
}
|
40 |
+
|
41 |
+
// Preprocess image by resizing, normalizing, and creating a blob
|
42 |
+
cv::Mat preprocess(const cv::Mat& image) {
|
43 |
+
cv::Mat img;
|
44 |
+
cv::cvtColor(image, img, cv::COLOR_BGR2RGB);
|
45 |
+
img.convertTo(img, CV_32F, 1.0 / 255.0);
|
46 |
+
|
47 |
+
// Normalize each channel separately
|
48 |
+
std::vector<cv::Mat> channels(3);
|
49 |
+
cv::split(img, channels);
|
50 |
+
channels[0] = (channels[0] - mean_[0]) / std_[0];
|
51 |
+
channels[1] = (channels[1] - mean_[1]) / std_[1];
|
52 |
+
channels[2] = (channels[2] - mean_[2]) / std_[2];
|
53 |
+
cv::merge(channels, img);
|
54 |
+
|
55 |
+
return cv::dnn::blobFromImage(img);
|
56 |
+
}
|
57 |
+
|
58 |
+
// Run inference to extract feature vector
|
59 |
+
cv::Mat infer(const cv::Mat& image) {
|
60 |
+
cv::Mat input_blob = preprocess(image);
|
61 |
+
model_.setInput(input_blob);
|
62 |
+
cv::Mat features = model_.forward();
|
63 |
+
|
64 |
+
if (features.dims == 4 && features.size[2] == 1 && features.size[3] == 1) {
|
65 |
+
features = features.reshape(1, {1, features.size[1]});
|
66 |
+
}
|
67 |
+
|
68 |
+
return features;
|
69 |
+
}
|
70 |
+
|
71 |
+
// Perform query, comparing each query image to each gallery image
|
72 |
+
std::vector<std::vector<int>> query(const std::vector<cv::Mat>& query_img_list,
|
73 |
+
const std::vector<cv::Mat>& gallery_img_list,
|
74 |
+
int topK = 5) {
|
75 |
+
std::vector<cv::Mat> query_features_list, gallery_features_list;
|
76 |
+
cv::Mat query_features, gallery_features;
|
77 |
+
|
78 |
+
for (size_t i = 0; i < query_img_list.size(); ++i) {
|
79 |
+
cv::Mat feature = infer(query_img_list[i]);
|
80 |
+
query_features_list.push_back(feature.clone());
|
81 |
+
}
|
82 |
+
cv::vconcat(query_features_list, query_features);
|
83 |
+
normalizeFeatures(query_features);
|
84 |
+
|
85 |
+
for (size_t i = 0; i < gallery_img_list.size(); ++i) {
|
86 |
+
cv::Mat feature = infer(gallery_img_list[i]);
|
87 |
+
gallery_features_list.push_back(feature.clone());
|
88 |
+
}
|
89 |
+
cv::vconcat(gallery_features_list, gallery_features);
|
90 |
+
normalizeFeatures(gallery_features);
|
91 |
+
|
92 |
+
cv::Mat dist = query_features * gallery_features.t();
|
93 |
+
return getTopK(dist, topK);
|
94 |
+
}
|
95 |
+
|
96 |
+
private:
|
97 |
+
// Normalize feature vectors row-wise to unit length
|
98 |
+
void normalizeFeatures(cv::Mat& features) {
|
99 |
+
const float epsilon = 1e-6;
|
100 |
+
for (int i = 0; i < features.rows; ++i) {
|
101 |
+
cv::Mat featureRow = features.row(i);
|
102 |
+
float norm = cv::norm(featureRow, cv::NORM_L2);
|
103 |
+
if (norm < epsilon) {
|
104 |
+
norm = epsilon;
|
105 |
+
}
|
106 |
+
featureRow /= norm;
|
107 |
+
}
|
108 |
+
}
|
109 |
+
|
110 |
+
// Retrieve Top-K indices from similarity matrix
|
111 |
+
std::vector<std::vector<int>> getTopK(const cv::Mat& dist, int topK) {
|
112 |
+
std::vector<std::vector<int>> indices(dist.rows);
|
113 |
+
|
114 |
+
for (int i = 0; i < dist.rows; ++i) {
|
115 |
+
std::vector<std::pair<float, int>> sim_index_pairs;
|
116 |
+
for (int j = 0; j < dist.cols; ++j) {
|
117 |
+
sim_index_pairs.emplace_back(dist.at<float>(i, j), j);
|
118 |
+
}
|
119 |
+
std::sort(sim_index_pairs.begin(), sim_index_pairs.end(),
|
120 |
+
[](const std::pair<float, int>& a, const std::pair<float, int>& b) {
|
121 |
+
return a.first > b.first;
|
122 |
+
});
|
123 |
+
|
124 |
+
for (int k = 0; k < topK && k < sim_index_pairs.size(); ++k) {
|
125 |
+
indices[i].push_back(sim_index_pairs[k].second);
|
126 |
+
}
|
127 |
+
}
|
128 |
+
return indices;
|
129 |
+
}
|
130 |
+
|
131 |
+
std::string model_path_;
|
132 |
+
cv::Size input_size_;
|
133 |
+
int output_dim_;
|
134 |
+
cv::Scalar mean_, std_;
|
135 |
+
int backend_id_;
|
136 |
+
int target_id_;
|
137 |
+
cv::dnn::Net model_;
|
138 |
+
};
|
139 |
+
|
140 |
+
// Read images from directory and return a pair of image list and file list
|
141 |
+
std::pair<std::vector<cv::Mat>, std::vector<std::string>> readImagesFromDirectory(const std::string& img_dir, int w = 128, int h = 256) {
|
142 |
+
std::vector<cv::Mat> img_list;
|
143 |
+
std::vector<std::string> file_list;
|
144 |
+
|
145 |
+
std::vector<std::string> file_names;
|
146 |
+
cv::glob(img_dir + "/*", file_names, false);
|
147 |
+
|
148 |
+
for (size_t i = 0; i < file_names.size(); ++i) {
|
149 |
+
std::string file_name = file_names[i].substr(file_names[i].find_last_of("/\\") + 1);
|
150 |
+
cv::Mat img = cv::imread(file_names[i]);
|
151 |
+
if (!img.empty()) {
|
152 |
+
cv::resize(img, img, cv::Size(w, h));
|
153 |
+
img_list.push_back(img);
|
154 |
+
file_list.push_back(file_name);
|
155 |
+
}
|
156 |
+
}
|
157 |
+
return std::make_pair(img_list, file_list);
|
158 |
+
}
|
159 |
+
|
160 |
+
// Visualize query and gallery results by creating concatenated images
|
161 |
+
std::map<std::string, cv::Mat> visualize(
|
162 |
+
const std::map<std::string, std::vector<std::string>>& results,
|
163 |
+
const std::string& query_dir,
|
164 |
+
const std::string& gallery_dir,
|
165 |
+
const cv::Size& output_size = cv::Size(128, 384)) {
|
166 |
+
|
167 |
+
std::map<std::string, cv::Mat> results_vis;
|
168 |
+
|
169 |
+
for (std::map<std::string, std::vector<std::string>>::const_iterator it = results.begin(); it != results.end(); ++it) {
|
170 |
+
const std::string& query_file = it->first;
|
171 |
+
const std::vector<std::string>& top_matches = it->second;
|
172 |
+
|
173 |
+
cv::Mat query_img = cv::imread(query_dir + "/" + query_file);
|
174 |
+
if (query_img.empty()) continue;
|
175 |
+
|
176 |
+
cv::resize(query_img, query_img, output_size);
|
177 |
+
cv::copyMakeBorder(query_img, query_img, 5, 5, 5, 5,
|
178 |
+
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
179 |
+
cv::putText(query_img, "Query", cv::Point(10, 30),
|
180 |
+
cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(0, 255, 0), 2);
|
181 |
+
|
182 |
+
cv::Mat concat_img = query_img;
|
183 |
+
|
184 |
+
for (size_t i = 0; i < top_matches.size(); ++i) {
|
185 |
+
cv::Mat gallery_img = cv::imread(gallery_dir + "/" + top_matches[i]);
|
186 |
+
if (gallery_img.empty()) continue;
|
187 |
+
|
188 |
+
cv::resize(gallery_img, gallery_img, output_size);
|
189 |
+
cv::copyMakeBorder(gallery_img, gallery_img, 5, 5, 5, 5,
|
190 |
+
cv::BORDER_CONSTANT, cv::Scalar(255, 255, 255));
|
191 |
+
cv::putText(gallery_img, "G" + std::to_string(i), cv::Point(10, 30),
|
192 |
+
cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(0, 255, 0), 2);
|
193 |
+
|
194 |
+
cv::hconcat(concat_img, gallery_img, concat_img);
|
195 |
+
}
|
196 |
+
results_vis[query_file] = concat_img;
|
197 |
+
}
|
198 |
+
return results_vis;
|
199 |
+
}
|
200 |
+
|
201 |
+
void printHelpMessage() {
|
202 |
+
std::cout << "usage: demo.cpp [-h] [--query_dir QUERY_DIR] [--gallery_dir GALLERY_DIR] "
|
203 |
+
<< "[--backend_target BACKEND_TARGET] [--topk TOPK] [--model MODEL] [--save] [--vis]\n\n"
|
204 |
+
<< "ReID baseline models from Tencent Youtu Lab\n\n"
|
205 |
+
<< "optional arguments:\n"
|
206 |
+
<< " -h, --help show this help message and exit\n"
|
207 |
+
<< " --query_dir QUERY_DIR, -q QUERY_DIR\n"
|
208 |
+
<< " Query directory.\n"
|
209 |
+
<< " --gallery_dir GALLERY_DIR, -g GALLERY_DIR\n"
|
210 |
+
<< " Gallery directory.\n"
|
211 |
+
<< " --backend_target BACKEND_TARGET, -bt BACKEND_TARGET\n"
|
212 |
+
<< " Choose one of the backend-target pair to run this demo: 0: (default) OpenCV implementation + "
|
213 |
+
"CPU, 1: CUDA + GPU (CUDA), 2: CUDA + GPU (CUDA FP16), 3: TIM-VX + NPU, 4: CANN + NPU\n"
|
214 |
+
<< " --topk TOPK Top-K closest from gallery for each query.\n"
|
215 |
+
<< " --model MODEL, -m MODEL\n"
|
216 |
+
<< " Path to the model.\n"
|
217 |
+
<< " --save, -s Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in "
|
218 |
+
"case of camera input.\n"
|
219 |
+
<< " --vis, -v Usage: Specify to open a new window to show results. Invalid in case of camera input.\n";
|
220 |
+
}
|
221 |
+
|
222 |
+
int main(int argc, char** argv) {
|
223 |
+
// CommandLineParser setup
|
224 |
+
cv::CommandLineParser parser(argc, argv,
|
225 |
+
"{help h | | Show help message.}"
|
226 |
+
"{query_dir q | | Query directory.}"
|
227 |
+
"{gallery_dir g | | Gallery directory.}"
|
228 |
+
"{backend_target bt | 0 | Choose one of the backend-target pair to run this demo: 0: (default) OpenCV implementation + CPU, "
|
229 |
+
"1: CUDA + GPU (CUDA), 2: CUDA + GPU (CUDA FP16), 3: TIM-VX + NPU, 4: CANN + NPU}"
|
230 |
+
"{topk k | 10 | Top-K closest from gallery for each query.}"
|
231 |
+
"{model m | person_reid_youtu_2021nov.onnx | Path to the model.}"
|
232 |
+
"{save s | false | Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.}"
|
233 |
+
"{vis v | false | Usage: Specify to open a new window to show results. Invalid in case of camera input.}");
|
234 |
+
|
235 |
+
if (parser.has("help")) {
|
236 |
+
printHelpMessage();
|
237 |
+
return 0;
|
238 |
+
}
|
239 |
+
|
240 |
+
std::string query_dir = parser.get<std::string>("query_dir");
|
241 |
+
std::string gallery_dir = parser.get<std::string>("gallery_dir");
|
242 |
+
int backend_target = parser.get<int>("backend_target");
|
243 |
+
int topK = parser.get<int>("topk");
|
244 |
+
std::string model_path = parser.get<std::string>("model");
|
245 |
+
bool save_flag = parser.get<bool>("save");
|
246 |
+
bool vis_flag = parser.get<bool>("vis");
|
247 |
+
|
248 |
+
if (!parser.check()) {
|
249 |
+
parser.printErrors();
|
250 |
+
return 1;
|
251 |
+
}
|
252 |
+
|
253 |
+
const std::vector<std::pair<int, int>> backend_target_pairs = {
|
254 |
+
{cv::dnn::DNN_BACKEND_OPENCV, cv::dnn::DNN_TARGET_CPU},
|
255 |
+
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA},
|
256 |
+
{cv::dnn::DNN_BACKEND_CUDA, cv::dnn::DNN_TARGET_CUDA_FP16},
|
257 |
+
{cv::dnn::DNN_BACKEND_TIMVX, cv::dnn::DNN_TARGET_NPU},
|
258 |
+
{cv::dnn::DNN_BACKEND_CANN, cv::dnn::DNN_TARGET_NPU}
|
259 |
+
};
|
260 |
+
|
261 |
+
int backend_id = backend_target_pairs[backend_target].first;
|
262 |
+
int target_id = backend_target_pairs[backend_target].second;
|
263 |
+
|
264 |
+
YoutuReID reid(model_path, cv::Size(128, 256), 768,
|
265 |
+
cv::Scalar(0.485, 0.456, 0.406),
|
266 |
+
cv::Scalar(0.229, 0.224, 0.225),
|
267 |
+
backend_id, target_id);
|
268 |
+
|
269 |
+
std::pair<std::vector<cv::Mat>, std::vector<std::string>> query_data = readImagesFromDirectory(query_dir);
|
270 |
+
std::pair<std::vector<cv::Mat>, std::vector<std::string>> gallery_data = readImagesFromDirectory(gallery_dir);
|
271 |
+
|
272 |
+
std::vector<std::vector<int>> indices = reid.query(query_data.first, gallery_data.first, topK);
|
273 |
+
|
274 |
+
std::map<std::string, std::vector<std::string>> results;
|
275 |
+
for (size_t i = 0; i < query_data.second.size(); ++i) {
|
276 |
+
std::vector<std::string> top_matches;
|
277 |
+
for (int idx : indices[i]) {
|
278 |
+
top_matches.push_back(gallery_data.second[idx]);
|
279 |
+
}
|
280 |
+
results[query_data.second[i]] = top_matches;
|
281 |
+
std::cout << "Query: " << query_data.second[i] << "\n";
|
282 |
+
std::cout << "\tTop-" << topK << " from gallery: ";
|
283 |
+
for (size_t j = 0; j < top_matches.size(); ++j) {
|
284 |
+
std::cout << top_matches[j] << " ";
|
285 |
+
}
|
286 |
+
std::cout << std::endl;
|
287 |
+
}
|
288 |
+
|
289 |
+
std::map<std::string, cv::Mat> results_vis = visualize(results, query_dir, gallery_dir);
|
290 |
+
|
291 |
+
if (save_flag) {
|
292 |
+
for (std::map<std::string, cv::Mat>::iterator it = results_vis.begin(); it != results_vis.end(); ++it) {
|
293 |
+
std::string save_path = "result-" + it->first;
|
294 |
+
cv::imwrite(save_path, it->second);
|
295 |
+
}
|
296 |
+
}
|
297 |
+
|
298 |
+
if (vis_flag) {
|
299 |
+
for (std::map<std::string, cv::Mat>::iterator it = results_vis.begin(); it != results_vis.end(); ++it) {
|
300 |
+
cv::namedWindow("result-" + it->first, cv::WINDOW_AUTOSIZE);
|
301 |
+
cv::imshow("result-" + it->first, it->second);
|
302 |
+
cv::waitKey(0);
|
303 |
+
cv::destroyAllWindows();
|
304 |
+
}
|
305 |
+
}
|
306 |
+
|
307 |
+
return 0;
|
308 |
+
}
|