Laurent Berger commited on
Commit
ea63088
·
1 Parent(s): c920270

yolox in c++ (#177)

Browse files

* yolox in c++

* review 1

* review 202306

* disable counter

models/object_detection_yolox/CMakeLists.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cmake_minimum_required(VERSION 3.24)
2
+ set(project_name "opencv_zoo_object_detection_yolox")
3
+
4
+ PROJECT (${project_name})
5
+
6
+ set(OPENCV_VERSION "4.7.0")
7
+ set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
8
+ find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
9
+ # Find OpenCV, you may need to set OpenCV_DIR variable
10
+ # to the absolute path to the directory containing OpenCVConfig.cmake file
11
+ # via the command line or GUI
12
+
13
+ file(GLOB SourceFile
14
+ "demo.cpp")
15
+ # If the package has been found, several variables will
16
+ # be set, you can find the full list with descriptions
17
+ # in the OpenCVConfig.cmake file.
18
+ # Print some message showing some of them
19
+ message(STATUS "OpenCV library status:")
20
+ message(STATUS " config: ${OpenCV_DIR}")
21
+ message(STATUS " version: ${OpenCV_VERSION}")
22
+ message(STATUS " libraries: ${OpenCV_LIBS}")
23
+ message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
24
+
25
+ # Declare the executable target built from your sources
26
+ add_executable(${project_name} ${SourceFile})
27
+
28
+ # Link your application with OpenCV libraries
29
+ target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
models/object_detection_yolox/README.md CHANGED
@@ -13,6 +13,8 @@ Note:
13
 
14
  ## Demo
15
 
 
 
16
  Run the following command to try the demo:
17
  ```shell
18
  # detect on camera input
@@ -24,6 +26,23 @@ Note:
24
  - image result saved as "result.jpg"
25
  - this model requires `opencv-python>=4.8.0`
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  ## Results
29
 
 
13
 
14
  ## Demo
15
 
16
+ ### Python
17
+
18
  Run the following command to try the demo:
19
  ```shell
20
  # detect on camera input
 
26
  - image result saved as "result.jpg"
27
  - this model requires `opencv-python>=4.8.0`
28
 
29
+ ### C++
30
+
31
+ Install latest OpenCV and CMake >= 3.24.0 to get started with:
32
+
33
+ ```shell
34
+ # A typical and default installation path of OpenCV is /usr/local
35
+ cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
36
+ cmake --build build
37
+
38
+ # detect on camera input
39
+ ./build/opencv_zoo_object_detection_yolox
40
+ # detect on an image
41
+ ./build/opencv_zoo_object_detection_yolox -m=/path/to/model -i=/path/to/image -v
42
+ # get help messages
43
+ ./build/opencv_zoo_object_detection_yolox -h
44
+ ```
45
+
46
 
47
  ## Results
48
 
models/object_detection_yolox/demo.cpp ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <vector>
2
+ #include <string>
3
+ #include <utility>
4
+
5
+ #include <opencv2/opencv.hpp>
6
+
7
+ using namespace std;
8
+ using namespace cv;
9
+ using namespace dnn;
10
+
11
+ vector< pair<dnn::Backend, dnn::Target> > backendTargetPairs = {
12
+ std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_OPENCV, dnn::DNN_TARGET_CPU),
13
+ std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA),
14
+ std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA_FP16),
15
+ std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_TIMVX, dnn::DNN_TARGET_NPU),
16
+ std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CANN, dnn::DNN_TARGET_NPU) };
17
+
18
+ vector<string> labelYolox = {
19
+ "person", "bicycle", "car", "motorcycle", "airplane", "bus",
20
+ "train", "truck", "boat", "traffic light", "fire hydrant",
21
+ "stop sign", "parking meter", "bench", "bird", "cat", "dog",
22
+ "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
23
+ "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
24
+ "skis", "snowboard", "sports ball", "kite", "baseball bat",
25
+ "baseball glove", "skateboard", "surfboard", "tennis racket",
26
+ "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
27
+ "banana", "apple", "sandwich", "orange", "broccoli", "carrot",
28
+ "hot dog", "pizza", "donut", "cake", "chair", "couch",
29
+ "potted plant", "bed", "dining table", "toilet", "tv", "laptop",
30
+ "mouse", "remote", "keyboard", "cell phone", "microwave",
31
+ "oven", "toaster", "sink", "refrigerator", "book", "clock",
32
+ "vase", "scissors", "teddy bear", "hair drier", "toothbrush" };
33
+
34
+ class YoloX {
35
+ private:
36
+ Net net;
37
+ string modelPath;
38
+ Size inputSize;
39
+ float confThreshold;
40
+ float nmsThreshold;
41
+ float objThreshold;
42
+ dnn::Backend backendId;
43
+ dnn::Target targetId;
44
+ int num_classes;
45
+ vector<int> strides;
46
+ Mat expandedStrides;
47
+ Mat grids;
48
+
49
+ public:
50
+ YoloX(string modPath, float confThresh = 0.35, float nmsThresh = 0.5, float objThresh = 0.5, dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) :
51
+ modelPath(modPath), confThreshold(confThresh),
52
+ nmsThreshold(nmsThresh), objThreshold(objThresh),
53
+ backendId(bId), targetId(tId)
54
+ {
55
+ this->num_classes = int(labelYolox.size());
56
+ this->net = readNet(modelPath);
57
+ this->inputSize = Size(640, 640);
58
+ this->strides = vector<int>{ 8, 16, 32 };
59
+ this->net.setPreferableBackend(this->backendId);
60
+ this->net.setPreferableTarget(this->targetId);
61
+ this->generateAnchors();
62
+ }
63
+
64
+ void setBackendAndTarget(dnn::Backend bId, dnn::Target tId)
65
+ {
66
+ this->backendId = bId;
67
+ this->targetId = tId;
68
+ this->net.setPreferableBackend(this->backendId);
69
+ this->net.setPreferableTarget(this->targetId);
70
+ }
71
+
72
+ Mat preprocess(Mat img)
73
+ {
74
+ Mat blob;
75
+ Image2BlobParams paramYolox;
76
+ paramYolox.datalayout = DNN_LAYOUT_NCHW;
77
+ paramYolox.ddepth = CV_32F;
78
+ paramYolox.mean = Scalar::all(0);
79
+ paramYolox.scalefactor = Scalar::all(1);
80
+ paramYolox.size = Size(img.cols, img.rows);
81
+ paramYolox.swapRB = true;
82
+
83
+ blob = blobFromImageWithParams(img, paramYolox);
84
+ return blob;
85
+ }
86
+
87
+ Mat infer(Mat srcimg)
88
+ {
89
+ Mat inputBlob = this->preprocess(srcimg);
90
+
91
+ this->net.setInput(inputBlob);
92
+ vector<Mat> outs;
93
+ this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
94
+
95
+ Mat predictions = this->postprocess(outs[0]);
96
+ return predictions;
97
+ }
98
+
99
+ Mat postprocess(Mat outputs)
100
+ {
101
+ Mat dets = outputs.reshape(0,outputs.size[1]);
102
+ Mat col01;
103
+ add(dets.colRange(0, 2), this->grids, col01);
104
+ Mat col23;
105
+ exp(dets.colRange(2, 4), col23);
106
+ vector<Mat> col = { col01, col23 };
107
+ Mat boxes;
108
+ hconcat(col, boxes);
109
+ float* ptr = this->expandedStrides.ptr<float>(0);
110
+ for (int r = 0; r < boxes.rows; r++, ptr++)
111
+ {
112
+ boxes.rowRange(r, r + 1) = *ptr * boxes.rowRange(r, r + 1);
113
+ }
114
+ // get boxes
115
+ Mat boxes_xyxy(boxes.rows, boxes.cols, CV_32FC1, Scalar(1));
116
+ Mat scores = dets.colRange(5, dets.cols).clone();
117
+ vector<float> maxScores(dets.rows);
118
+ vector<int> maxScoreIdx(dets.rows);
119
+ vector<Rect2d> boxesXYXY(dets.rows);
120
+
121
+ for (int r = 0; r < boxes_xyxy.rows; r++, ptr++)
122
+ {
123
+ boxes_xyxy.at<float>(r, 0) = boxes.at<float>(r, 0) - boxes.at<float>(r, 2) / 2.f;
124
+ boxes_xyxy.at<float>(r, 1) = boxes.at<float>(r, 1) - boxes.at<float>(r, 3) / 2.f;
125
+ boxes_xyxy.at<float>(r, 2) = boxes.at<float>(r, 0) + boxes.at<float>(r, 2) / 2.f;
126
+ boxes_xyxy.at<float>(r, 3) = boxes.at<float>(r, 1) + boxes.at<float>(r, 3) / 2.f;
127
+ // get scores and class indices
128
+ scores.rowRange(r, r + 1) = scores.rowRange(r, r + 1) * dets.at<float>(r, 4);
129
+ double minVal, maxVal;
130
+ Point maxIdx;
131
+ minMaxLoc(scores.rowRange(r, r+1), &minVal, &maxVal, nullptr, &maxIdx);
132
+ maxScoreIdx[r] = maxIdx.x;
133
+ maxScores[r] = float(maxVal);
134
+ boxesXYXY[r].x = boxes_xyxy.at<float>(r, 0);
135
+ boxesXYXY[r].y = boxes_xyxy.at<float>(r, 1);
136
+ boxesXYXY[r].width = boxes_xyxy.at<float>(r, 2);
137
+ boxesXYXY[r].height = boxes_xyxy.at<float>(r, 3);
138
+ }
139
+
140
+ vector< int > keep;
141
+ NMSBoxesBatched(boxesXYXY, maxScores, maxScoreIdx, this->confThreshold, this->nmsThreshold, keep);
142
+ Mat candidates(int(keep.size()), 6, CV_32FC1);
143
+ int row = 0;
144
+ for (auto idx : keep)
145
+ {
146
+ boxes_xyxy.rowRange(idx, idx + 1).copyTo(candidates(Rect(0, row, 4, 1)));
147
+ candidates.at<float>(row, 4) = maxScores[idx];
148
+ candidates.at<float>(row, 5) = float(maxScoreIdx[idx]);
149
+ row++;
150
+ }
151
+ if (keep.size() == 0)
152
+ return Mat();
153
+ return candidates;
154
+
155
+ }
156
+
157
+
158
+ void generateAnchors()
159
+ {
160
+ vector< tuple<int, int, int> > nb;
161
+ int total = 0;
162
+
163
+ for (auto v : this->strides)
164
+ {
165
+ int w = this->inputSize.width / v;
166
+ int h = this->inputSize.height / v;
167
+ nb.push_back(tuple<int, int, int>(w * h, w, v));
168
+ total += w * h;
169
+ }
170
+ this->grids = Mat(total, 2, CV_32FC1);
171
+ this->expandedStrides = Mat(total, 1, CV_32FC1);
172
+ float* ptrGrids = this->grids.ptr<float>(0);
173
+ float* ptrStrides = this->expandedStrides.ptr<float>(0);
174
+ int pos = 0;
175
+ for (auto le : nb)
176
+ {
177
+ int r = get<1>(le);
178
+ for (int i = 0; i < get<0>(le); i++, pos++)
179
+ {
180
+ *ptrGrids++ = float(i % r);
181
+ *ptrGrids++ = float(i / r);
182
+ *ptrStrides++ = float((get<2>(le)));
183
+ }
184
+ }
185
+ }
186
+ };
187
+
188
+ std::string keys =
189
+ "{ help h | | Print help message. }"
190
+ "{ model m | object_detection_yolox_2022nov.onnx | Usage: Path to the model, defaults to object_detection_yolox_2022nov.onnx }"
191
+ "{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
192
+ "{ confidence | 0.5 | Class confidence }"
193
+ "{ obj | 0.5 | Enter object threshold }"
194
+ "{ nms | 0.5 | Enter nms IOU threshold }"
195
+ "{ save s | true | Specify to save results. This flag is invalid when using camera. }"
196
+ "{ vis v | 1 | Specify to open a window for result visualization. This flag is invalid when using camera. }"
197
+ "{ backend bt | 0 | Choose one of computation backends: "
198
+ "0: (default) OpenCV implementation + CPU, "
199
+ "1: CUDA + GPU (CUDA), "
200
+ "2: CUDA + GPU (CUDA FP16), "
201
+ "3: TIM-VX + NPU, "
202
+ "4: CANN + NPU}";
203
+
204
+ pair<Mat, double> letterBox(Mat srcimg, Size targetSize = Size(640, 640))
205
+ {
206
+ Mat paddedImg(targetSize.height, targetSize.width, CV_32FC3, Scalar::all(114.0));
207
+ Mat resizeImg;
208
+
209
+ double ratio = min(targetSize.height / double(srcimg.rows), targetSize.width / double(srcimg.cols));
210
+ resize(srcimg, resizeImg, Size(int(srcimg.cols * ratio), int(srcimg.rows * ratio)), INTER_LINEAR);
211
+ resizeImg.copyTo(paddedImg(Rect(0, 0, int(srcimg.cols * ratio), int(srcimg.rows * ratio))));
212
+ return pair<Mat, double>(paddedImg, ratio);
213
+ }
214
+
215
+ Mat unLetterBox(Mat bbox, double letterboxScale)
216
+ {
217
+ return bbox / letterboxScale;
218
+ }
219
+
220
+ Mat visualize(Mat dets, Mat srcimg, double letterbox_scale, double fps = -1)
221
+ {
222
+ Mat resImg = srcimg.clone();
223
+
224
+ if (fps > 0)
225
+ putText(resImg, format("FPS: %.2f", fps), Size(10, 25), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
226
+
227
+ for (int row = 0; row < dets.rows; row++)
228
+ {
229
+ Mat boxF = unLetterBox(dets(Rect(0, row, 4, 1)), letterbox_scale);
230
+ Mat box;
231
+ boxF.convertTo(box, CV_32S);
232
+ float score = dets.at<float>(row, 4);
233
+ int clsId = int(dets.at<float>(row, 5));
234
+
235
+ int x0 = box.at<int>(0, 0);
236
+ int y0 = box.at<int>(0, 1);
237
+ int x1 = box.at<int>(0, 2);
238
+ int y1 = box.at<int>(0, 3);
239
+
240
+ string text = format("%s : %f", labelYolox[clsId].c_str(), score * 100);
241
+ int font = FONT_HERSHEY_SIMPLEX;
242
+ int baseLine = 0;
243
+ Size txtSize = getTextSize(text, font, 0.4, 1, &baseLine);
244
+ rectangle(resImg, Point(x0, y0), Point(x1, y1), Scalar(0, 255, 0), 2);
245
+ rectangle(resImg, Point(x0, y0 + 1), Point(x0 + txtSize.width + 1, y0 + int(1.5 * txtSize.height)), Scalar(255, 255, 255), -1);
246
+ putText(resImg, text, Point(x0, y0 + txtSize.height), font, 0.4, Scalar(0, 0, 0), 1);
247
+ }
248
+
249
+ return resImg;
250
+ }
251
+
252
+ int main(int argc, char** argv)
253
+ {
254
+ CommandLineParser parser(argc, argv, keys);
255
+
256
+ parser.about("Use this script to run Yolox deep learning networks in opencv_zoo using OpenCV.");
257
+ if (parser.has("help"))
258
+ {
259
+ parser.printMessage();
260
+ return 0;
261
+ }
262
+
263
+ string model = parser.get<String>("model");
264
+ float confThreshold = parser.get<float>("confidence");
265
+ float objThreshold = parser.get<float>("obj");
266
+ float nmsThreshold = parser.get<float>("nms");
267
+ bool vis = parser.get<bool>("vis");
268
+ bool save = parser.get<bool>("save");
269
+ int backendTargetid = parser.get<int>("backend");
270
+
271
+ if (model.empty())
272
+ {
273
+ CV_Error(Error::StsError, "Model file " + model + " not found");
274
+ }
275
+
276
+ YoloX modelNet(model, confThreshold, nmsThreshold, objThreshold,
277
+ backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
278
+ //! [Open a video file or an image file or a camera stream]
279
+ VideoCapture cap;
280
+ if (parser.has("input"))
281
+ cap.open(samples::findFile(parser.get<String>("input")));
282
+ else
283
+ cap.open(0);
284
+ if (!cap.isOpened())
285
+ CV_Error(Error::StsError, "Cannot opend video or file");
286
+ Mat frame, inputBlob;
287
+ double letterboxScale;
288
+
289
+ static const std::string kWinName = model;
290
+ int nbInference = 0;
291
+ while (waitKey(1) < 0)
292
+ {
293
+ cap >> frame;
294
+ if (frame.empty())
295
+ {
296
+ cout << "Frame is empty" << endl;
297
+ waitKey();
298
+ break;
299
+ }
300
+ pair<Mat, double> w = letterBox(frame);
301
+ inputBlob = get<0>(w);
302
+ letterboxScale = get<1>(w);
303
+ TickMeter tm;
304
+ tm.start();
305
+ Mat predictions = modelNet.infer(inputBlob);
306
+ tm.stop();
307
+ cout << "Inference time: " << tm.getTimeMilli() << " ms\n";
308
+ Mat img = visualize(predictions, frame, letterboxScale, tm.getFPS());
309
+ if (vis)
310
+ {
311
+ imshow(kWinName, img);
312
+ }
313
+ }
314
+ return 0;
315
+ }