Yuantao Feng
commited on
Commit
·
f134c2e
1
Parent(s):
411de07
Bug fixes and corrections (#33)
Browse files* add (ms) to each hardware header
* add a argument for label path
* correct filenames for face detection
* add a download link for face recognition data
* fix path to face recognition data
* correct shasum for face_detection.zip
* fix filename for person_reid benchmark data package
README.md
CHANGED
@@ -14,7 +14,7 @@ Guidelines:
|
|
14 |
|
15 |
## Models & Benchmark Results
|
16 |
|
17 |
-
| Model | Input Size | INTEL-CPU | RPI-CPU | JETSON-GPU | D1-CPU |
|
18 |
|-------|------------|-----------|---------|------------|--------|
|
19 |
| [YuNet](./models/face_detection_yunet) | 160x120 | 1.45 | 6.22 | 12.18 | 86.69 |
|
20 |
| [SFace](./models/face_recognition_sface) | 112x112 | 8.65 | 99.20 | 24.88 | --- |
|
|
|
14 |
|
15 |
## Models & Benchmark Results
|
16 |
|
17 |
+
| Model | Input Size | INTEL-CPU (ms) | RPI-CPU (ms) | JETSON-GPU (ms) | D1-CPU (ms) |
|
18 |
|-------|------------|-----------|---------|------------|--------|
|
19 |
| [YuNet](./models/face_detection_yunet) | 160x120 | 1.45 | 6.22 | 12.18 | 86.69 |
|
20 |
| [SFace](./models/face_recognition_sface) | 112x112 | 8.65 | 99.20 | 24.88 | --- |
|
benchmark/config/face_detection_yunet.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Face Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
-
path: "benchmark/data/
|
6 |
files: ["group.jpg", "concerts.jpg", "dance.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [160, 120]
|
|
|
2 |
name: "Face Detection Benchmark"
|
3 |
type: "Detection"
|
4 |
data:
|
5 |
+
path: "benchmark/data/face_detection"
|
6 |
files: ["group.jpg", "concerts.jpg", "dance.jpg"]
|
7 |
sizes: # [[w1, h1], ...], Omit to run at original scale
|
8 |
- [160, 120]
|
benchmark/config/face_recognition_sface.yaml
CHANGED
@@ -2,7 +2,7 @@ Benchmark:
|
|
2 |
name: "Face Recognition Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
-
path: "benchmark/data/
|
6 |
files: ["Aaron_Tippin_0001.jpg", "Alvaro_Uribe_0028.jpg", "Alvaro_Uribe_0029.jpg", "Jose_Luis_Rodriguez_Zapatero_0001.jpg"]
|
7 |
metric: # 'sizes' is omitted since this model requires input of fixed size
|
8 |
warmup: 30
|
|
|
2 |
name: "Face Recognition Benchmark"
|
3 |
type: "Recognition"
|
4 |
data:
|
5 |
+
path: "benchmark/data/face_recognition"
|
6 |
files: ["Aaron_Tippin_0001.jpg", "Alvaro_Uribe_0028.jpg", "Alvaro_Uribe_0029.jpg", "Jose_Luis_Rodriguez_Zapatero_0001.jpg"]
|
7 |
metric: # 'sizes' is omitted since this model requires input of fixed size
|
8 |
warmup: 30
|
benchmark/download_data.py
CHANGED
@@ -165,10 +165,14 @@ def GDrive(gid):
|
|
165 |
|
166 |
# Data will be downloaded and extracted to ./data by default
|
167 |
data_downloaders = dict(
|
168 |
-
|
169 |
url='https://drive.google.com/u/0/uc?id=1lOAliAIeOv4olM65YDzE55kn6XjiX2l6&export=download',
|
170 |
-
sha='
|
171 |
-
filename='
|
|
|
|
|
|
|
|
|
172 |
text=Downloader(name='text',
|
173 |
url='https://drive.google.com/u/0/uc?id=1lTQdZUau7ujHBqp0P6M1kccnnJgO-dRj&export=download',
|
174 |
sha='a40cf095ceb77159ddd2a5902f3b4329696dd866',
|
@@ -192,7 +196,7 @@ data_downloaders = dict(
|
|
192 |
person_reid=Downloader(name='person_reid',
|
193 |
url='https://drive.google.com/u/0/uc?id=1G8FkfVo5qcuyMkjSs4EA6J5e16SWDGI2&export=download',
|
194 |
sha='5b741fbf34c1fbcf59cad8f2a65327a5899e66f1',
|
195 |
-
filename='person_reid')
|
196 |
)
|
197 |
|
198 |
if __name__ == '__main__':
|
|
|
165 |
|
166 |
# Data will be downloaded and extracted to ./data by default
|
167 |
data_downloaders = dict(
|
168 |
+
face_detection=Downloader(name='face_detection',
|
169 |
url='https://drive.google.com/u/0/uc?id=1lOAliAIeOv4olM65YDzE55kn6XjiX2l6&export=download',
|
170 |
+
sha='0ba67a9cfd60f7fdb65cdb7c55a1ce76c1193df1',
|
171 |
+
filename='face_detection.zip'),
|
172 |
+
face_recognition=Downloader(name='face_recognition',
|
173 |
+
url='https://drive.google.com/u/0/uc?id=1BRIozREIzqkm_aMQ581j93oWoS-6TLST&export=download',
|
174 |
+
sha='03892b9036c58d9400255ff73858caeec1f46609',
|
175 |
+
filename='face_recognition.zip'),
|
176 |
text=Downloader(name='text',
|
177 |
url='https://drive.google.com/u/0/uc?id=1lTQdZUau7ujHBqp0P6M1kccnnJgO-dRj&export=download',
|
178 |
sha='a40cf095ceb77159ddd2a5902f3b4329696dd866',
|
|
|
196 |
person_reid=Downloader(name='person_reid',
|
197 |
url='https://drive.google.com/u/0/uc?id=1G8FkfVo5qcuyMkjSs4EA6J5e16SWDGI2&export=download',
|
198 |
sha='5b741fbf34c1fbcf59cad8f2a65327a5899e66f1',
|
199 |
+
filename='person_reid.zip')
|
200 |
)
|
201 |
|
202 |
if __name__ == '__main__':
|
models/image_classification_ppresnet/demo.py
CHANGED
@@ -22,11 +22,12 @@ def str2bool(v):
|
|
22 |
parser = argparse.ArgumentParser(description='Deep Residual Learning for Image Recognition (https://arxiv.org/abs/1512.03385, https://github.com/PaddlePaddle/PaddleHub)')
|
23 |
parser.add_argument('--input', '-i', type=str, help='Path to the input image.')
|
24 |
parser.add_argument('--model', '-m', type=str, default='image_classification_ppresnet50_2021oct.onnx', help='Path to the model.')
|
|
|
25 |
args = parser.parse_args()
|
26 |
|
27 |
if __name__ == '__main__':
|
28 |
# Instantiate ResNet
|
29 |
-
model = PPResNet(modelPath=args.model)
|
30 |
|
31 |
# Read image and get a 224x224 crop from a 256x256 resized
|
32 |
image = cv.imread(args.input)
|
|
|
22 |
parser = argparse.ArgumentParser(description='Deep Residual Learning for Image Recognition (https://arxiv.org/abs/1512.03385, https://github.com/PaddlePaddle/PaddleHub)')
|
23 |
parser.add_argument('--input', '-i', type=str, help='Path to the input image.')
|
24 |
parser.add_argument('--model', '-m', type=str, default='image_classification_ppresnet50_2021oct.onnx', help='Path to the model.')
|
25 |
+
parser.add_argument('--label', '-l', type=str, default='./imagenet_labels.txt', help='Path to the dataset labels.')
|
26 |
args = parser.parse_args()
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
# Instantiate ResNet
|
30 |
+
model = PPResNet(modelPath=args.model, labelPath=args.label)
|
31 |
|
32 |
# Read image and get a 224x224 crop from a 256x256 resized
|
33 |
image = cv.imread(args.input)
|