import cv2 as cv import argparse # Check OpenCV version assert cv.__version__ > "4.8.0", \ "Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python" parser = argparse.ArgumentParser( description="VIT track opencv API") parser.add_argument('--input', '-i', type=str, help='Usage: Set path to the input video. Omit for using default camera.') parser.add_argument('--model_path', type=str, default='vitTracker.onnx', help='Usage: Set model path, defaults to vitTracker.onnx.') args = parser.parse_args() def visualize(image, bbox, score, isLocated, fps=None, box_color=(0, 255, 0),text_color=(0, 255, 0), fontScale = 1, fontSize = 1): output = image.copy() h, w, _ = output.shape if fps is not None: cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 30), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize) if isLocated and score >= 0.3: # bbox: Tuple of length 4 x, y, w, h = bbox cv.rectangle(output, (x, y), (x+w, y+h), box_color, 2) cv.putText(output, '{:.2f}'.format(score), (x, y+20), cv.FONT_HERSHEY_DUPLEX, fontScale, text_color, fontSize) else: text_size, baseline = cv.getTextSize('Target lost!', cv.FONT_HERSHEY_DUPLEX, fontScale, fontSize) text_x = int((w - text_size[0]) / 2) text_y = int((h - text_size[1]) / 2) cv.putText(output, 'Target lost!', (text_x, text_y), cv.FONT_HERSHEY_DUPLEX, fontScale, (0, 0, 255), fontSize) return output if __name__ == '__main__': params = cv.TrackerVit_Params() params.net = args.model_path model = cv.TrackerVit_create(params) # Read from args.input _input = args.input if args.input is None: device_id = 0 _input = device_id video = cv.VideoCapture(_input) # Select an object has_frame, first_frame = video.read() if not has_frame: print('No frames grabbed!') exit() first_frame_copy = first_frame.copy() cv.putText(first_frame_copy, "1. Drag a bounding box to track.", (0, 15), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0)) cv.putText(first_frame_copy, "2. Press ENTER to confirm", (0, 35), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0)) roi = cv.selectROI('vitTrack Demo', first_frame_copy) print("Selected ROI: {}".format(roi)) # Init tracker with ROI model.init(first_frame, roi) # Track frame by frame tm = cv.TickMeter() while cv.waitKey(1) < 0: has_frame, frame = video.read() if not has_frame: print('End of video') break # Inference tm.start() isLocated, bbox = model.update(frame) score = model.getTrackingScore() tm.stop() # Visualize frame = visualize(frame, bbox, score, isLocated, fps=tm.getFPS()) cv.imshow('vittrack Demo', frame) tm.reset()