# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. # # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. # Third party copyrights are property of their respective owners. import sys import argparse import numpy as np import cv2 as cv from crnn import CRNN sys.path.append('../text_detection_db') from db import DB def str2bool(v): if v.lower() in ['on', 'yes', 'true', 'y', 't']: return True elif v.lower() in ['off', 'no', 'false', 'n', 'f']: return False else: raise NotImplementedError backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA] targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16] help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA" help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16" try: backends += [cv.dnn.DNN_BACKEND_TIMVX] targets += [cv.dnn.DNN_TARGET_NPU] help_msg_backends += "; {:d}: TIMVX" help_msg_targets += "; {:d}: NPU" except: print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.') parser = argparse.ArgumentParser( description="An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)") parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.') parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx', help='Path to the model.') parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends)) parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets)) parser.add_argument('--charset', '-c', type=str, default='charset_36_EN.txt', help='Path to the charset file corresponding to the selected model.') parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.') parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') args = parser.parse_args() def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2): output = image.copy() pts = np.array(boxes[0]) output = cv.polylines(output, pts, isClosed, color, thickness) for box, text in zip(boxes[0], texts): cv.putText(output, text, (box[1].astype(np.int32)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) return output if __name__ == '__main__': # Instantiate CRNN for text recognition recognizer = CRNN(modelPath=args.model, charsetPath=args.charset) # Instantiate DB for text detection detector = DB(modelPath='../text_detection_db/text_detection_DB_IC15_resnet18_2021sep.onnx', inputSize=[736, 736], binaryThreshold=0.3, polygonThreshold=0.5, maxCandidates=200, unclipRatio=2.0, backendId=args.backend, targetId=args.target ) # If input is an image if args.input is not None: image = cv.imread(args.input) image = cv.resize(image, [args.width, args.height]) # Inference results = detector.infer(image) texts = [] for box, score in zip(results[0], results[1]): texts.append( recognizer.infer(image, box.reshape(8)) ) # Draw results on the input image image = visualize(image, results, texts) # Save results if save is true if args.save: print('Resutls saved to result.jpg\n') cv.imwrite('result.jpg', image) # Visualize results in a new window if args.vis: cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) cv.imshow(args.input, image) cv.waitKey(0) else: # Omit input to call default camera deviceId = 0 cap = cv.VideoCapture(deviceId) tm = cv.TickMeter() while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: print('No frames grabbed!') break frame = cv.resize(frame, [736, 736]) # Inference of text detector tm.start() results = detector.infer(frame) tm.stop() cv.putText(frame, 'Latency - {}: {:.2f}'.format(detector.name, tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) tm.reset() # Inference of text recognizer if len(results[0]) and len(results[1]): texts = [] tm.start() for box, score in zip(results[0], results[1]): result = np.hstack( (box.reshape(8), score) ) texts.append( recognizer.infer(frame, box.reshape(8)) ) tm.stop() cv.putText(frame, 'Latency - {}: {:.2f}'.format(recognizer.name, tm.getFPS()), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) tm.reset() # Draw results on the input image frame = visualize(frame, results, texts) print(texts) # Visualize results in a new Window cv.imshow('{} Demo'.format(recognizer.name), frame)