# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. # # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. # Third party copyrights are property of their respective owners. import sys import argparse import numpy as np import cv2 as cv from sface import SFace sys.path.append('../face_detection_yunet') from yunet import YuNet def str2bool(v): if v.lower() in ['on', 'yes', 'true', 'y', 't']: return True elif v.lower() in ['off', 'no', 'false', 'n', 'f']: return False else: raise NotImplementedError backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA] targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16] help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA" help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16" try: backends += [cv.dnn.DNN_BACKEND_TIMVX] targets += [cv.dnn.DNN_TARGET_NPU] help_msg_backends += "; {:d}: TIMVX" help_msg_targets += "; {:d}: NPU" except: print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.') parser = argparse.ArgumentParser( description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)") parser.add_argument('--input1', '-i1', type=str, help='Path to the input image 1.') parser.add_argument('--input2', '-i2', type=str, help='Path to the input image 2.') parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021dec.onnx', help='Path to the model.') parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends)) parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets)) parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0, help='Distance type. \'0\': cosine, \'1\': norm_l1.') parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.') parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') args = parser.parse_args() if __name__ == '__main__': # Instantiate SFace for face recognition recognizer = SFace(modelPath=args.model, disType=args.dis_type, backendId=args.backend, targetId=args.target) # Instantiate YuNet for face detection detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2022mar.onnx', inputSize=[320, 320], confThreshold=0.9, nmsThreshold=0.3, topK=5000, backendId=args.backend, targetId=args.target) img1 = cv.imread(args.input1) img2 = cv.imread(args.input2) # Detect faces detector.setInputSize([img1.shape[1], img1.shape[0]]) face1 = detector.infer(img1) assert face1.shape[0] > 0, 'Cannot find a face in {}'.format(args.input1) detector.setInputSize([img2.shape[1], img2.shape[0]]) face2 = detector.infer(img2) assert face2.shape[0] > 0, 'Cannot find a face in {}'.format(args.input2) # Match result = recognizer.match(img1, face1[0][:-1], img2, face2[0][:-1]) print('Result: {}.'.format('same identity' if result else 'different identities'))