import argparse import numpy as np import cv2 as cv from lpd_yunet import LPD_YuNet def str2bool(v): if v.lower() in ['on', 'yes', 'true', 'y', 't']: return True elif v.lower() in ['off', 'no', 'false', 'n', 'f']: return False else: raise NotImplementedError backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA] targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16] help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA" help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16" try: backends += [cv.dnn.DNN_BACKEND_TIMVX] targets += [cv.dnn.DNN_TARGET_NPU] help_msg_backends += "; {:d}: TIMVX" help_msg_targets += "; {:d}: NPU" except: print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.') parser = argparse.ArgumentParser(description='LPD-YuNet for License Plate Detection') parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.') parser.add_argument('--model', '-m', type=str, default='license_plate_detection_lpd_yunet_2022may.onnx', help='Path to the model.') parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends)) parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets)) parser.add_argument('--conf_threshold', type=float, default=0.9, help='Filter out faces of confidence < conf_threshold.') parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.') parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.') parser.add_argument('--keep_top_k', type=int, default=750, help='Keep keep_top_k bounding boxes after NMS.') parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.') parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') args = parser.parse_args() def visualize(image, dets, line_color=(0, 255, 0), text_color=(0, 0, 255), fps=None): output = image.copy() if fps is not None: cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) for det in dets: bbox = det[:-1].astype(np.int32) x1, y1, x2, y2, x3, y3, x4, y4 = bbox # Draw the border of license plate cv.line(output, (x1, y1), (x2, y2), line_color, 2) cv.line(output, (x2, y2), (x3, y3), line_color, 2) cv.line(output, (x3, y3), (x4, y4), line_color, 2) cv.line(output, (x4, y4), (x1, y1), line_color, 2) return output if __name__ == '__main__': # Instantiate LPD-YuNet model = LPD_YuNet(modelPath=args.model, confThreshold=args.conf_threshold, nmsThreshold=args.nms_threshold, topK=args.top_k, keepTopK=args.keep_top_k, backendId=args.backend, targetId=args.target) # If input is an image if args.input is not None: image = cv.imread(args.input) h, w, _ = image.shape # Inference model.setInputSize([w, h]) results = model.infer(image) # Print results print('{} license plates detected.'.format(results.shape[0])) # Draw results on the input image image = visualize(image, results) # Save results if save is true if args.save: print('Resutls saved to result.jpg') cv.imwrite('result.jpg', image) # Visualize results in a new window if args.vis: cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) cv.imshow(args.input, image) cv.waitKey(0) else: # Omit input to call default camera deviceId = 0 cap = cv.VideoCapture(deviceId) w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) model.setInputSize([w, h]) tm = cv.TickMeter() while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: print('No frames grabbed!') break # Inference tm.start() results = model.infer(frame) # results is a tuple tm.stop() # Draw results on the input image frame = visualize(frame, results, fps=tm.getFPS()) # Visualize results in a new Window cv.imshow('LPD-YuNet Demo', frame) tm.reset()