# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. # # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. # Third party copyrights are property of their respective owners. import argparse import numpy as np import cv2 as cv from db import DB def str2bool(v): if v.lower() in ['on', 'yes', 'true', 'y', 't']: return True elif v.lower() in ['off', 'no', 'false', 'n', 'f']: return False else: raise NotImplementedError parser = argparse.ArgumentParser(description='Real-time Scene Text Detection with Differentiable Binarization (https://arxiv.org/abs/1911.08947).') parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.') parser.add_argument('--model', '-m', type=str, default='text_detection_db.onnx', help='Path to the model.') parser.add_argument('--width', type=int, default=736, help='Preprocess input image by resizing to a specific width. It should be multiple by 32.') parser.add_argument('--height', type=int, default=736, help='Preprocess input image by resizing to a specific height. It should be multiple by 32.') parser.add_argument('--binary_threshold', type=float, default=0.3, help='Threshold of the binary map.') parser.add_argument('--polygon_threshold', type=float, default=0.5, help='Threshold of polygons.') parser.add_argument('--max_candidates', type=int, default=200, help='Max candidates of polygons.') parser.add_argument('--unclip_ratio', type=np.float64, default=2.0, help=' The unclip ratio of the detected text region, which determines the output size.') parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.') parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') args = parser.parse_args() def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), isClosed=True, thickness=2, fps=None): output = image.copy() if fps is not None: cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) pts = np.array(results[0]) output = cv.polylines(output, pts, isClosed, box_color, thickness) return output if __name__ == '__main__': # Instantiate DB model = DB(modelPath=args.model, inputSize=[args.width, args.height], binaryThreshold=args.binary_threshold, polygonThreshold=args.polygon_threshold, maxCandidates=args.max_candidates, unclipRatio=args.unclip_ratio ) # If input is an image if args.input is not None: image = cv.imread(args.input) image = cv.resize(image, [args.width, args.height]) # Inference results = model.infer(image) # Print results print('{} texts detected.'.format(len(results[0]))) for idx, (bbox, score) in enumerate(zip(results[0], results[1])): print('{}: {} {} {} {}, {:.2f}'.format(idx, bbox[0], bbox[1], bbox[2], bbox[3], score[0])) # Draw results on the input image image = visualize(image, results) # Save results if save is true if args.save: print('Resutls saved to result.jpg\n') cv.imwrite('result.jpg', image) # Visualize results in a new window if args.vis: cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) cv.imshow(args.input, image) cv.waitKey(0) else: # Omit input to call default camera deviceId = 0 cap = cv.VideoCapture(deviceId) tm = cv.TickMeter() while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: print('No frames grabbed!') break frame = cv.resize(frame, [args.width, args.height]) # Inference tm.start() results = model.infer(frame) # results is a tuple tm.stop() # Draw results on the input image frame = visualize(frame, results, fps=tm.getFPS()) # Visualize results in a new Window cv.imshow('{} Demo'.format(model.name), frame) tm.reset()