# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. # # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. # Third party copyrights are property of their respective owners. import argparse import numpy as np import cv2 as cv from ppresnet import PPResNet def str2bool(v): if v.lower() in ['on', 'yes', 'true', 'y', 't']: return True elif v.lower() in ['off', 'no', 'false', 'n', 'f']: return False else: raise NotImplementedError parser = argparse.ArgumentParser(description='Deep Residual Learning for Image Recognition (https://arxiv.org/abs/1512.03385, https://github.com/PaddlePaddle/PaddleHub)') parser.add_argument('--input', '-i', type=str, help='Path to the input image.') parser.add_argument('--model', '-m', type=str, default='image_classification_ppresnet50_2021oct.onnx', help='Path to the model.') args = parser.parse_args() if __name__ == '__main__': # Instantiate ResNet model = PPResNet(modelPath=args.model) # Read image and get a 224x224 crop from a 256x256 resized image = cv.imread(args.input) image = cv.cvtColor(image, cv.COLOR_BGR2RGB) image = cv.resize(image, dsize=(256, 256)) image = image[16:240, 16:240, :] # Inference result = model.infer(image) # Print result print('label: {}'.format(result))