import argparse import numpy as np import cv2 as cv from mp_palmdet import MPPalmDet def str2bool(v): if v.lower() in ['on', 'yes', 'true', 'y', 't']: return True elif v.lower() in ['off', 'no', 'false', 'n', 'f']: return False else: raise NotImplementedError backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA] targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16] help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA" help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16" try: backends += [cv.dnn.DNN_BACKEND_TIMVX] targets += [cv.dnn.DNN_TARGET_NPU] help_msg_backends += "; {:d}: TIMVX" help_msg_targets += "; {:d}: NPU" except: print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.') parser = argparse.ArgumentParser(description='Hand Detector from MediaPipe') parser.add_argument('--input', '-i', type=str, help='Usage: Set path to the input image. Omit for using default camera.') parser.add_argument('--model', '-m', type=str, default='./palm_detection_mediapipe_2022may.onnx', help='Usage: Set model path, defaults to palm_detection_mediapipe_2022may.onnx.') parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends)) parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets)) parser.add_argument('--score_threshold', type=float, default=0.99, help='Usage: Set the minimum needed confidence for the model to identify a palm, defaults to 0.99. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold. An empirical score threshold for the quantized model is 0.49.') parser.add_argument('--nms_threshold', type=float, default=0.3, help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.') parser.add_argument('--save', '-s', type=str, default=False, help='Usage: Set “True” to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input. Default will be set to “False”.') parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Usage: Default will be set to “True” and will open a new window to show results. Set to “False” to stop visualizations from being shown. Invalid in case of camera input.') args = parser.parse_args() def visualize(image, results, print_results=False, fps=None): output = image.copy() if fps is not None: cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) for idx, palm in enumerate(results): score = palm[-1] palm_box = palm[0:4] palm_landmarks = palm[4:-1].reshape(7, 2) # put score palm_box = palm_box.astype(np.int32) cv.putText(output, '{:.4f}'.format(score), (palm_box[0], palm_box[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, (0, 255, 0)) # draw box cv.rectangle(output, (palm_box[0], palm_box[1]), (palm_box[2], palm_box[3]), (0, 255, 0), 2) # draw points palm_landmarks = palm_landmarks.astype(np.int32) for p in palm_landmarks: cv.circle(output, p, 2, (0, 0, 255), 2) # Print results if print_results: print('-----------palm {}-----------'.format(idx + 1)) print('score: {:.2f}'.format(score)) print('palm box: {}'.format(palm_box)) print('palm landmarks: ') for plm in palm_landmarks: print('\t{}'.format(plm)) return output if __name__ == '__main__': # Instantiate MPPalmDet model = MPPalmDet(modelPath=args.model, nmsThreshold=args.nms_threshold, scoreThreshold=args.score_threshold, backendId=args.backend, targetId=args.target) # If input is an image if args.input is not None: image = cv.imread(args.input) # Inference results = model.infer(image) if len(results) == 0: print('Hand not detected') # Draw results on the input image image = visualize(image, results, print_results=True) # Save results if save is true if args.save: print('Resutls saved to result.jpg\n') cv.imwrite('result.jpg', image) # Visualize results in a new window if args.vis: cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) cv.imshow(args.input, image) cv.waitKey(0) else: # Omit input to call default camera deviceId = 0 cap = cv.VideoCapture(deviceId) tm = cv.TickMeter() while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: print('No frames grabbed!') break # Inference tm.start() results = model.infer(frame) tm.stop() # Draw results on the input image frame = visualize(frame, results, fps=tm.getFPS()) # Visualize results in a new Window cv.imshow('MPPalmDet Demo', frame) tm.reset()