import os import sys import numpy as np import cv2 as cv import onnx from neural_compressor.experimental import Quantization, common class Quantize: def __init__(self, model_path, config_path, custom_dataset=None): self.model_path = model_path self.config_path = config_path self.custom_dataset = custom_dataset def run(self): print('Quantizing (int8) with Intel\'s Neural Compressor:') print('\tModel: {}'.format(self.model_path)) print('\tConfig: {}'.format(self.config_path)) output_name = '{}-int8-quantized.onnx'.format(self.model_path[:-5]) model = onnx.load(self.model_path) quantizer = Quantization(self.config_path) if self.custom_dataset is not None: quantizer.calib_dataloader = common.DataLoader(self.custom_dataset) quantizer.model = common.Model(model) q_model = quantizer() q_model.save(output_name) class Dataset: def __init__(self, root, size=None, dim='chw', mean=0.0, std=1.0, swapRB=False, toFP32=False): self.root = root self.size = size self.dim = dim self.mean = mean self.std = std self.swapRB = swapRB self.toFP32 = toFP32 self.image_list = self.load_image_list(self.root) def load_image_list(self, path): image_list = [] for f in os.listdir(path): if not f.endswith('.jpg'): continue image_list.append(os.path.join(path, f)) return image_list def __getitem__(self, idx): img = cv.imread(self.image_list[idx]) if self.swapRB: img = cv.cvtColor(img, cv.COLOR_BGR2RGB) if self.size: img = cv.resize(img, dsize=self.size) if self.toFP32: img = img.astype(np.float32) img = img - self.mean img = img / self.std if self.dim == 'chw': img = img.transpose(2, 0, 1) # hwc -> chw return img, 1 def __len__(self): return len(self.image_list) models=dict( mobilenetv1=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx', config_path='./inc_configs/mobilenet.yaml'), mobilenetv2=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx', config_path='./inc_configs/mobilenet.yaml'), mp_palmdet=Quantize(model_path='../../models/palm_detection_mediapipe/palm_detection_mediapipe_2022may.onnx', config_path='./inc_configs/mp_palmdet.yaml', custom_dataset=Dataset(root='../../benchmark/data/palm_detection', dim='hwc', swapRB=True, mean=127.5, std=127.5, toFP32=True)), mp_handpose=Quantize(model_path='../../models/handpose_estimation_mediapipe/handpose_estimation_mediapipe_2022may.onnx', config_path='./inc_configs/mp_handpose.yaml', custom_dataset=Dataset(root='../../benchmark/data/palm_detection', dim='hwc', swapRB=True, mean=127.5, std=127.5, toFP32=True)), lpd_yunet=Quantize(model_path='../../models/license_plate_detection_yunet/license_plate_detection_lpd_yunet_2022may.onnx', config_path='./inc_configs/lpd_yunet.yaml', custom_dataset=Dataset(root='../../benchmark/data/license_plate_detection', size=(320, 240), dim='chw', toFP32=True)), ) if __name__ == '__main__': selected_models = [] for i in range(1, len(sys.argv)): selected_models.append(sys.argv[i]) if not selected_models: selected_models = list(models.keys()) print('Models to be quantized: {}'.format(str(selected_models))) for selected_model_name in selected_models: q = models[selected_model_name] q.run()