# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. # # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. # Third party copyrights are property of their respective owners. import os import argparse import numpy as np import cv2 as cv # Check OpenCV version opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" from youtureid import YoutuReID # Valid combinations of backends and targets backend_target_pairs = [ [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], [cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], [cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] ] parser = argparse.ArgumentParser( description="ReID baseline models from Tencent Youtu Lab") parser.add_argument('--query_dir', '-q', type=str, help='Query directory.') parser.add_argument('--gallery_dir', '-g', type=str, help='Gallery directory.') parser.add_argument('--backend_target', '-bt', type=int, default=0, help='''Choose one of the backend-target pair to run this demo: {:d}: (default) OpenCV implementation + CPU, {:d}: CUDA + GPU (CUDA), {:d}: CUDA + GPU (CUDA FP16), {:d}: TIM-VX + NPU, {:d}: CANN + NPU '''.format(*[x for x in range(len(backend_target_pairs))])) parser.add_argument('--topk', type=int, default=10, help='Top-K closest from gallery for each query.') parser.add_argument('--model', '-m', type=str, default='person_reid_youtu_2021nov.onnx', help='Path to the model.') parser.add_argument('--save', '-s', action='store_true', help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.') parser.add_argument('--vis', '-v', action='store_true', help='Usage: Specify to open a new window to show results. Invalid in case of camera input.') args = parser.parse_args() def readImageFromDirectory(img_dir, w=128, h=256): img_list = [] file_list = os.listdir(img_dir) for f in file_list: img = cv.imread(os.path.join(img_dir, f)) img = cv.resize(img, (w, h)) img_list.append(img) return img_list, file_list def visualize(results, query_dir, gallery_dir, output_size=(128, 384)): def addBorder(img, color, borderSize=5): border = cv.copyMakeBorder(img, top=borderSize, bottom=borderSize, left=borderSize, right=borderSize, borderType=cv.BORDER_CONSTANT, value=color) return border results_vis = dict.fromkeys(results.keys(), None) for f, topk_f in results.items(): query_img = cv.imread(os.path.join(query_dir, f)) query_img = cv.resize(query_img, output_size) query_img = addBorder(query_img, [0, 0, 0]) cv.putText(query_img, 'Query', (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0, 255, 0), 2) gallery_img_list = [] for idx, gallery_f in enumerate(topk_f): gallery_img = cv.imread(os.path.join(gallery_dir, gallery_f)) gallery_img = cv.resize(gallery_img, output_size) gallery_img = addBorder(gallery_img, [255, 255, 255]) cv.putText(gallery_img, 'G{:02d}'.format(idx), (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0, 255, 0), 2) gallery_img_list.append(gallery_img) results_vis[f] = np.concatenate([query_img] + gallery_img_list, axis=1) return results_vis if __name__ == '__main__': backend_id = backend_target_pairs[args.backend_target][0] target_id = backend_target_pairs[args.backend_target][1] # Instantiate YoutuReID for person ReID net = YoutuReID(modelPath=args.model, backendId=backend_id, targetId=target_id) # Read images from dir query_img_list, query_file_list = readImageFromDirectory(args.query_dir) gallery_img_list, gallery_file_list = readImageFromDirectory(args.gallery_dir) # Query topk_indices = net.query(query_img_list, gallery_img_list, args.topk) # Index to filename results = dict.fromkeys(query_file_list, None) for f, indices in zip(query_file_list, topk_indices): topk_matches = [] for idx in indices: topk_matches.append(gallery_file_list[idx]) results[f] = topk_matches # Print print('Query: {}'.format(f)) print('\tTop-{} from gallery: {}'.format(args.topk, str(topk_matches))) # Visualize results_vis = visualize(results, args.query_dir, args.gallery_dir) if args.save: for f, img in results_vis.items(): cv.imwrite('result-{}'.format(f), img) if args.vis: for f, img in results_vis.items(): cv.namedWindow('result-{}'.format(f), cv.WINDOW_AUTOSIZE) cv.imshow('result-{}'.format(f), img) cv.waitKey(0) cv.destroyAllWindows()