# PP-OCRv3 Text Detection PP-OCRv3: More Attempts for the Improvement of Ultra Lightweight OCR System. **Note**: - The int8 quantization model may produce unstable results due to some loss of accuracy. - Original Paddle Models source of English: [here](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar). - Original Paddle Models source of Chinese: [here](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar). - `IC15` in the filename means the model is trained on [IC15 dataset](https://rrc.cvc.uab.es/?ch=4&com=introduction), which can detect English text instances only. - `TD500` in the filename means the model is trained on [TD500 dataset](http://www.iapr-tc11.org/mediawiki/index.php/MSRA_Text_Detection_500_Database_(MSRA-TD500)), which can detect both English & Chinese instances. - Visit https://docs.opencv.org/master/d4/d43/tutorial_dnn_text_spotting.html for more information. - `text_detection_xx_ppocrv3_2023may_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`. ## Demo ### Python Run the following command to try the demo: ```shell # detect on camera input python demo.py # detect on an image python demo.py --input /path/to/image -v # get help regarding various parameters python demo.py --help ``` ### C++ Install latest OpenCV and CMake >= 3.24.0 to get started with: ```shell # A typical and default installation path of OpenCV is /usr/local cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation . cmake --build build # detect on camera input ./build/opencv_zoo_text_detection_ppocr -m=/path/to/model # detect on an image ./build/opencv_zoo_text_detection_ppocr -m=/path/to/model -i=/path/to/image -v # get help messages ./build/opencv_zoo_text_detection_ppocr -h ``` ### Example outputs ![mask](./example_outputs/mask.jpg) ![gsoc](./example_outputs/gsoc.jpg) ## License All files in this directory are licensed under [Apache 2.0 License](./LICENSE). ## Reference - https://arxiv.org/abs/2206.03001 - https://github.com/PaddlePaddle/PaddleOCR - https://docs.opencv.org/master/d4/d43/tutorial_dnn_text_spotting.html