# Accuracy evaluation of models in OpenCV Zoo Make sure you have the following packages installed: ```shell pip install tqdm pip install scikit-learn pip install scipy==1.8.1 ``` Generally speaking, evaluation can be done with the following command: ```shell python eval.py -m model_name -d dataset_name -dr dataset_root_dir ``` Supported datasets: - [ImageNet](#imagenet) - [WIDERFace](#widerface) - [LFW](#lfw) - [ICDAR](#icdar2003) - [IIIT5K](#iiit5k) - [Mini Supervisely](#mini-supervisely) ## ImageNet ### Prepare data Please visit https://image-net.org/ to download the ImageNet dataset (only need images in `ILSVRC/Data/CLS-LOC/val`) and [the labels from caffe](http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz). Organize files as follow: ```shell $ tree -L 2 /path/to/imagenet . ├── caffe_ilsvrc12 │   ├── det_synset_words.txt │   ├── imagenet.bet.pickle │   ├── imagenet_mean.binaryproto │   ├── synsets.txt │   ├── synset_words.txt │   ├── test.txt │   ├── train.txt │   └── val.txt ├── caffe_ilsvrc12.tar.gz ├── ILSVRC │   ├── Annotations │   ├── Data │   └── ImageSets ├── imagenet_object_localization_patched2019.tar.gz ├── LOC_sample_submission.csv ├── LOC_synset_mapping.txt ├── LOC_train_solution.csv └── LOC_val_solution.csv ``` ### Evaluation Run evaluation with the following command: ```shell python eval.py -m mobilenet -d imagenet -dr /path/to/imagenet ``` ## WIDERFace The script is modified based on [WiderFace-Evaluation](https://github.com/wondervictor/WiderFace-Evaluation). ### Prepare data Please visit http://shuoyang1213.me/WIDERFACE to download the WIDERFace dataset [Validation Images](https://huggingface.co/datasets/wider_face/resolve/main/data/WIDER_val.zip), [Face annotations](http://shuoyang1213.me/WIDERFACE/support/bbx_annotation/wider_face_split.zip) and [eval_tools](http://shuoyang1213.me/WIDERFACE/support/eval_script/eval_tools.zip). Organize files as follow: ```shell $ tree -L 2 /path/to/widerface . ├── eval_tools │   ├── boxoverlap.m │   ├── evaluation.m │   ├── ground_truth │   ├── nms.m │   ├── norm_score.m │   ├── plot │   ├── read_pred.m │   └── wider_eval.m ├── wider_face_split │   ├── readme.txt │   ├── wider_face_test_filelist.txt │   ├── wider_face_test.mat │   ├── wider_face_train_bbx_gt.txt │   ├── wider_face_train.mat │   ├── wider_face_val_bbx_gt.txt │   └── wider_face_val.mat └── WIDER_val └── images ``` ### Evaluation Run evaluation with the following command: ```shell python eval.py -m yunet -d widerface -dr /path/to/widerface ``` ## LFW The script is modified based on [evaluation of InsightFace](https://github.com/deepinsight/insightface/blob/f92bf1e48470fdd567e003f196f8ff70461f7a20/src/eval/lfw.py). This evaluation uses [YuNet](../../models/face_detection_yunet) as face detector. The structure of the face bounding boxes saved in [lfw_face_bboxes.npy](../eval/datasets/lfw_face_bboxes.npy) is shown below. Each row represents the bounding box of the main face that will be used in each image. ```shell [ [x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm], ... [x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm] ] ``` `x1, y1, w, h` are the top-left coordinates, width and height of the face bounding box, `{x, y}_{re, le, nt, rcm, lcm}` stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively. Data type of this numpy array is `np.float32`. ### Prepare data Please visit http://vis-www.cs.umass.edu/lfw to download the LFW [all images](http://vis-www.cs.umass.edu/lfw/lfw.tgz)(needs to be decompressed) and [pairs.txt](http://vis-www.cs.umass.edu/lfw/pairs.txt)(needs to be placed in the `view2` folder). Organize files as follow: ```shell $ tree -L 2 /path/to/lfw . ├── lfw │   ├── Aaron_Eckhart │   ├── ... │   └── Zydrunas_Ilgauskas └── view2    └── pairs.txt ``` ### Evaluation Run evaluation with the following command: ```shell python eval.py -m sface -d lfw -dr /path/to/lfw ``` ## ICDAR2003 ### Prepare data Please visit http://iapr-tc11.org/mediawiki/index.php/ICDAR_2003_Robust_Reading_Competitions to download the ICDAR2003 dataset and the labels. You have to download the Robust Word Recognition [TrialTrain Set](http://www.iapr-tc11.org/dataset/ICDAR2003_RobustReading/TrialTrain/word.zip) only. ```shell $ tree -L 2 /path/to/icdar . ├── word │   ├── 1 │ │ ├── self │ │ ├── ... │ │ └── willcooks │   ├── ... │   └── 12 └── word.xml    ``` ### Evaluation Run evaluation with the following command: ```shell python eval.py -m crnn -d icdar -dr /path/to/icdar ``` ### Example ```shell download zip file from http://www.iapr-tc11.org/dataset/ICDAR2003_RobustReading/TrialTrain/word.zip upzip file to /path/to/icdar python eval.py -m crnn -d icdar -dr /path/to/icdar ``` ## IIIT5K ### Prepare data Please visit https://github.com/cv-small-snails/Text-Recognition-Material to download the IIIT5K dataset and the labels. ### Evaluation All the datasets in the format of lmdb can be evaluated by this script.
Run evaluation with the following command: ```shell python eval.py -m crnn -d iiit5k -dr /path/to/iiit5k ``` ## Mini Supervisely ### Prepare data Please download the mini_supervisely data from [here](https://paddleseg.bj.bcebos.com/humanseg/data/mini_supervisely.zip) which includes the validation dataset and unzip it. ```shell $ tree -L 2 /path/to/mini_supervisely . ├── Annotations │   ├── ache-adult-depression-expression-41253.png │   ├── ... ├── Images │   ├── ache-adult-depression-expression-41253.jpg │   ├── ... ├── test.txt ├── train.txt └── val.txt ``` ### Evaluation Run evaluation with the following command : ```shell python eval.py -m pphumanseg -d mini_supervisely -dr /path/to/pphumanseg ``` Run evaluation on quantized model with the following command : ```shell python eval.py -m pphumanseg_q -d mini_supervisely -dr /path/to/pphumanseg ```