ONNX
File size: 7,490 Bytes
85b92e6
 
 
 
 
 
 
 
 
6487ac5
85b92e6
7da703f
 
 
 
 
85b92e6
cc3d40f
85b92e6
6487ac5
 
a9d8286
 
 
 
 
 
 
 
27272e9
85b92e6
 
a9d8286
 
 
 
 
 
 
 
 
 
 
 
4fcc8b2
 
 
 
a9d8286
 
 
 
85b92e6
 
 
 
 
 
 
 
 
 
 
 
a9d8286
 
 
cc3d40f
6487ac5
4fcc8b2
85b92e6
 
 
27272e9
a9d8286
 
 
 
85b92e6
 
 
05dc1e2
 
 
 
 
 
85b92e6
 
 
 
 
 
 
 
 
05dc1e2
 
 
 
 
 
 
85b92e6
05dc1e2
85b92e6
 
 
a9ec92a
05dc1e2
85b92e6
 
 
 
05dc1e2
85b92e6
 
 
 
 
 
 
05dc1e2
85b92e6
 
 
 
05dc1e2
 
 
 
 
 
85b92e6
 
 
 
086c63c
85b92e6
 
086c63c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05dc1e2
 
 
 
 
 
 
086c63c
05dc1e2
086c63c
85b92e6
 
05dc1e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.

import argparse
import numpy as np
import cv2 as cv
from huggingface_hub import hf_hub_download

# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
       "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"

from crnn import CRNN
from ppocr_det import PPOCRDet

text_detection_model_path = hf_hub_download(repo_id="opencv/text_detection_ppocr", filename="text_detection_en_ppocrv3_2023may.onnx")

# Valid combinations of backends and targets
backend_target_pairs = [
    [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA_FP16],
    [cv.dnn.DNN_BACKEND_TIMVX,  cv.dnn.DNN_TARGET_NPU],
    [cv.dnn.DNN_BACKEND_CANN,   cv.dnn.DNN_TARGET_NPU]
]

parser = argparse.ArgumentParser(
    description="An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)")
parser.add_argument('--input', '-i', type=str,
                    help='Usage: Set path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx',
                    help='Usage: Set model path, defaults to text_recognition_CRNN_EN_2021sep.onnx.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
                    help='''Choose one of the backend-target pair to run this demo:
                        {:d}: (default) OpenCV implementation + CPU,
                        {:d}: CUDA + GPU (CUDA),
                        {:d}: CUDA + GPU (CUDA FP16),
                        {:d}: TIM-VX + NPU,
                        {:d}: CANN + NPU
                    '''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--width', type=int, default=736,
                    help='Preprocess input image by resizing to a specific width. It should be multiple by 32.')
parser.add_argument('--height', type=int, default=736,
                    help='Preprocess input image by resizing to a specific height. It should be multiple by 32.')
parser.add_argument('--save', '-s', action='store_true',
                    help='Usage: Specify to save a file with results. Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
                    help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()

def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2):
    output = image.copy()

    pts = np.array(boxes[0])
    output = cv.polylines(output, pts, isClosed, color, thickness)
    for box, text in zip(boxes[0], texts):
        cv.putText(output, text, (box[1].astype(np.int32)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
    return output

if __name__ == '__main__':
    backend_id = backend_target_pairs[args.backend_target][0]
    target_id = backend_target_pairs[args.backend_target][1]

    # Instantiate PPOCRDet for text detection
    detector = PPOCRDet(modelPath=text_detection_model_path,
                  inputSize=[args.width, args.height],
                  binaryThreshold=0.3,
                  polygonThreshold=0.5,
                  maxCandidates=200,
                  unclipRatio=2.0,
                  backendId=backend_id,
                  targetId=target_id)
    # Instantiate CRNN for text recognition
    recognizer = CRNN(modelPath=args.model, backendId=backend_id, targetId=target_id)

    # If input is an image
    if args.input is not None:
        original_image = cv.imread(args.input)
        original_w = original_image.shape[1]
        original_h = original_image.shape[0]
        scaleHeight = original_h / args.height
        scaleWidth = original_w / args.width
        image = cv.resize(original_image, [args.width, args.height])

        # Inference
        results = detector.infer(image)
        texts = []
        for box, score in zip(results[0], results[1]):
            texts.append(
                recognizer.infer(image, box.reshape(8))
            )

        # Scale the results bounding box
        for i in range(len(results[0])):
            for j in range(4):
                box = results[0][i][j]
                results[0][i][j][0] = box[0] * scaleWidth
                results[0][i][j][1] = box[1] * scaleHeight

        # Draw results on the input image
        original_image = visualize(original_image, results, texts)

        # Save results if save is true
        if args.save:
            print('Results saved to result.jpg\n')
            cv.imwrite('result.jpg', original_image)

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, original_image)
            cv.waitKey(0)
    else: # Omit input to call default camera
        deviceId = 0
        cap = cv.VideoCapture(deviceId)

        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            hasFrame, original_image = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            original_w = original_image.shape[1]
            original_h = original_image.shape[0]
            scaleHeight = original_h / args.height
            scaleWidth = original_w / args.width

            frame = cv.resize(original_image, [args.width, args.height])
            # Inference of text detector
            tm.start()
            results = detector.infer(frame)
            tm.stop()
            cv.putText(frame, 'Latency - {}: {:.2f}'.format(detector.name, tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
            tm.reset()

            # Inference of text recognizer
            if len(results[0]) and len(results[1]):
                texts = []
                tm.start()
                for box, score in zip(results[0], results[1]):
                    result = np.hstack(
                        (box.reshape(8), score)
                    )
                    texts.append(
                        recognizer.infer(frame, box.reshape(8))
                    )
                tm.stop()
                cv.putText(frame, 'Latency - {}: {:.2f}'.format(recognizer.name, tm.getFPS()), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
                tm.reset()

                # Scale the results bounding box
                for i in range(len(results[0])):
                    for j in range(4):
                        box = results[0][i][j]
                        results[0][i][j][0] = box[0] * scaleWidth
                        results[0][i][j][1] = box[1] * scaleHeight

                # Draw results on the input image
                original_image = visualize(original_image, results, texts)
                print(texts)

            # Visualize results in a new Window
            cv.imshow('{} Demo'.format(recognizer.name), original_image)