osanseviero commited on
Commit
8074454
·
2 Parent(s): e796aae c1590ef

Merge branch 'main' of https://huggingface.co/osanseviero/asr-with-transformers-wav2vec2 into main

Browse files
Files changed (3) hide show
  1. README.md +3 -0
  2. model.py +0 -6
  3. requirements.txt +2 -1
README.md CHANGED
@@ -1,10 +1,13 @@
1
  ---
 
 
2
  language: en
3
  datasets:
4
  - librispeech_asr
5
  tags:
6
  - audio
7
  - automatic-speech-recognition
 
8
  license: apache-2.0
9
  widget:
10
  - label: Librispeech sample 1
 
1
  ---
2
+ benchmark: superb
3
+ library_name: superb
4
  language: en
5
  datasets:
6
  - librispeech_asr
7
  tags:
8
  - audio
9
  - automatic-speech-recognition
10
+ - superb
11
  license: apache-2.0
12
  widget:
13
  - label: Librispeech sample 1
model.py CHANGED
@@ -3,7 +3,6 @@ from transformers import AutomaticSpeechRecognitionPipeline, AutoTokenizer, Wav2
3
  from typing import Dict
4
  from pathlib import Path
5
 
6
-
7
  class PreTrainedModel():
8
  def __init__(self):
9
  """
@@ -26,17 +25,12 @@ class PreTrainedModel():
26
  """
27
  return self.model(inputs)
28
 
29
-
30
  """
31
  # Just an example using this.
32
  import subprocess
33
  from datasets import load_dataset
34
 
35
  def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
36
- """
37
- Librosa does that under the hood but forces the use of an actual
38
- file leading to hitting disk, which is almost always very bad.
39
- """
40
  ar = f"{sampling_rate}"
41
  ac = "1"
42
  format_for_conversion = "f32le"
 
3
  from typing import Dict
4
  from pathlib import Path
5
 
 
6
  class PreTrainedModel():
7
  def __init__(self):
8
  """
 
25
  """
26
  return self.model(inputs)
27
 
 
28
  """
29
  # Just an example using this.
30
  import subprocess
31
  from datasets import load_dataset
32
 
33
  def ffmpeg_read(bpayload: bytes, sampling_rate: int) -> np.array:
 
 
 
 
34
  ar = f"{sampling_rate}"
35
  ac = "1"
36
  format_for_conversion = "f32le"
requirements.txt CHANGED
@@ -1,2 +1,3 @@
1
  transformers
2
- numpy
 
 
1
  transformers
2
+ numpy
3
+ torch