File size: 3,424 Bytes
d040cc2
 
 
 
 
 
 
 
 
 
 
 
4a706e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
effb47b
4a706e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8e2647
 
4a706e0
 
 
 
 
 
 
 
 
f8e2647
4a706e0
f8e2647
4a706e0
 
 
 
f8e2647
4a706e0
f8e2647
4a706e0
f8e2647
4a706e0
 
 
f8e2647
4a706e0
f8e2647
4a706e0
f8e2647
4a706e0
f8e2647
4a706e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8e2647
4a706e0
f8e2647
4a706e0
f8e2647
4a706e0
f8e2647
4a706e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
license: apache-2.0
language:
- en
base_model:
- Salesforce/codet5-small
tags:
- cpp
- complete
---


# πŸš€ Codelander

---

## πŸ“– Overview

This specialized **CodeT5** model has been fine-tuned for **C++ code completion** tasks.  
It excels at understanding **C++ syntax** and **common programming patterns** to provide intelligent code suggestions as you type.

---

## ✨ Key Features

- πŸ”Ή Context-aware completions for C++ functions, classes, and control structures  
- πŸ”Ή Handles complex C++ syntax including **templates, STL, and modern C++ features**  
- πŸ”Ή Trained on **competitive programming solutions** from high-quality Codeforces submissions  
- πŸ”Ή Low latency suitable for **real-time editor integration**  

---

## πŸ“Š Model Performance

| Metric              | Value   |
|---------------------|---------|
| Training Loss       | 1.2475  |
| Validation Loss     | 1.0016  |
| Training Epochs     | 3       |
| Training Steps      | 14010   |
| Samples per second  | 6.275   |

---

## βš™οΈ Installation & Usage

### πŸ”§ Direct Integration with HuggingFace Transformers

```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Load model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("outlander23/codelander")
tokenizer = AutoTokenizer.from_pretrained("outlander23/codelander")

# Generate completion
def get_completion(code_prefix, max_new_tokens=100):
    inputs = tokenizer(f"complete C++ code: {code_prefix}", return_tensors="pt")
    outputs = model.generate(
        inputs.input_ids,
        max_new_tokens=max_new_tokens,
        temperature=0.7,
        top_p=0.9,
        do_sample=True
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)
```

---

## πŸ—οΈ Model Architecture

- Base Model: **Salesforce/codet5-base**  
- Parameters: **220M**  
- Context Window: **512 tokens**  
- Fine-tuning: **Seq2Seq training on C++ code snippets**  
- Training Time: ~ **5 hours**  

---

## πŸ“‚ Training Data

- Dataset: **open-r1/codeforces-submissions**  
- Selection: **Accepted C++ solutions only**  
- Size: **50,000+ code samples**  
- Processing: **Prefix-suffix pairs with random splits**  

---

## ⚠️ Limitations

- ❌ May generate syntactically correct but semantically incorrect code  
- ❌ Limited knowledge of **domain-specific libraries** not present in training data  
- ❌ May occasionally produce **incomplete code fragments**  

---

## πŸ’» Example Completions

### βœ… Example 1: Factorial Function

**Input:**  
```cpp
int factorial(int n) {
    if (n <= 1) {
        return 1;
    } else {
```

**Completion:**  
```cpp
        return n * factorial(n - 1);
    }
}
```

---


---

## πŸ“ˆ Training Details

- Training completed on: **2025-08-28 12:51:09 UTC**  
- Training epochs: **3/3**  
- Total steps: **14010**  
- Training loss: **1.2475**  

### πŸ“Š Epoch Performance

| Epoch | Training Loss | Validation Loss |
|-------|---------------|-----------------|
| 1     | 1.2638        | 1.1004          |
| 2     | 1.1551        | 1.0250          |
| 3     | 1.1081        | 1.0016          |

---

## πŸ–₯️ Compatibility

- βœ… Compatible with **Transformers 4.30.0+**  
- βœ… Optimized for **Python 3.8+**  
- βœ… Supports both **CPU and GPU inference**  

---

## ❀️ Credits

Made with ❀️ by **outlander23**  

> "Good code is its own best documentation." – *Steve McConnell*  

---