File size: 3,424 Bytes
d040cc2 4a706e0 effb47b 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 f8e2647 4a706e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
license: apache-2.0
language:
- en
base_model:
- Salesforce/codet5-small
tags:
- cpp
- complete
---
# π Codelander
---
## π Overview
This specialized **CodeT5** model has been fine-tuned for **C++ code completion** tasks.
It excels at understanding **C++ syntax** and **common programming patterns** to provide intelligent code suggestions as you type.
---
## β¨ Key Features
- πΉ Context-aware completions for C++ functions, classes, and control structures
- πΉ Handles complex C++ syntax including **templates, STL, and modern C++ features**
- πΉ Trained on **competitive programming solutions** from high-quality Codeforces submissions
- πΉ Low latency suitable for **real-time editor integration**
---
## π Model Performance
| Metric | Value |
|---------------------|---------|
| Training Loss | 1.2475 |
| Validation Loss | 1.0016 |
| Training Epochs | 3 |
| Training Steps | 14010 |
| Samples per second | 6.275 |
---
## βοΈ Installation & Usage
### π§ Direct Integration with HuggingFace Transformers
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("outlander23/codelander")
tokenizer = AutoTokenizer.from_pretrained("outlander23/codelander")
# Generate completion
def get_completion(code_prefix, max_new_tokens=100):
inputs = tokenizer(f"complete C++ code: {code_prefix}", return_tensors="pt")
outputs = model.generate(
inputs.input_ids,
max_new_tokens=max_new_tokens,
temperature=0.7,
top_p=0.9,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
```
---
## ποΈ Model Architecture
- Base Model: **Salesforce/codet5-base**
- Parameters: **220M**
- Context Window: **512 tokens**
- Fine-tuning: **Seq2Seq training on C++ code snippets**
- Training Time: ~ **5 hours**
---
## π Training Data
- Dataset: **open-r1/codeforces-submissions**
- Selection: **Accepted C++ solutions only**
- Size: **50,000+ code samples**
- Processing: **Prefix-suffix pairs with random splits**
---
## β οΈ Limitations
- β May generate syntactically correct but semantically incorrect code
- β Limited knowledge of **domain-specific libraries** not present in training data
- β May occasionally produce **incomplete code fragments**
---
## π» Example Completions
### β
Example 1: Factorial Function
**Input:**
```cpp
int factorial(int n) {
if (n <= 1) {
return 1;
} else {
```
**Completion:**
```cpp
return n * factorial(n - 1);
}
}
```
---
---
## π Training Details
- Training completed on: **2025-08-28 12:51:09 UTC**
- Training epochs: **3/3**
- Total steps: **14010**
- Training loss: **1.2475**
### π Epoch Performance
| Epoch | Training Loss | Validation Loss |
|-------|---------------|-----------------|
| 1 | 1.2638 | 1.1004 |
| 2 | 1.1551 | 1.0250 |
| 3 | 1.1081 | 1.0016 |
---
## π₯οΈ Compatibility
- β
Compatible with **Transformers 4.30.0+**
- β
Optimized for **Python 3.8+**
- β
Supports both **CPU and GPU inference**
---
## β€οΈ Credits
Made with β€οΈ by **outlander23**
> "Good code is its own best documentation." β *Steve McConnell*
--- |