Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection
Abstract
A benchmark for paraphrase detection using Transformer-based language models provides a dataset for evaluating the effectiveness of detection systems.
The rise of language models such as BERT allows for high-quality text paraphrasing. This is a problem to academic integrity, as it is difficult to differentiate between original and machine-generated content. We propose a benchmark consisting of paraphrased articles using recent language models relying on the Transformer architecture. Our contribution fosters future research of paraphrase detection systems as it offers a large collection of aligned original and paraphrased documents, a study regarding its structure, classification experiments with state-of-the-art systems, and we make our findings publicly available.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper