Delay-agnostic Asynchronous Coordinate Update Algorithm
Abstract
An asynchronous coordinate update algorithm called DEGAS is proposed for operator fixed points, proving convergence under various delay conditions and validated with classification experiments.
We propose a delay-agnostic asynchronous coordinate update algorithm (DEGAS) for computing operator fixed points, with applications to asynchronous optimization. DEGAS includes novel asynchronous variants of ADMM and block-coordinate descent as special cases. We prove that DEGAS converges under both bounded and unbounded delays under delay-free parameter conditions. We also validate by theory and experiments that DEGAS adapts well to the actual delays. The effectiveness of DEGAS is demonstrated by numerical experiments on classification problems.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper