Explainable Identification of Hate Speech towards Islam using Graph Neural Networks
Abstract
A graph neural network model effectively identifies and explains hate speech towards Islam by leveraging relationships across diverse data points.
Islamophobic language is a prevalent challenge on online social interaction platforms. Identifying and eliminating such hatred is a crucial step towards a future of harmony and peace. This study presents a novel paradigm for identifying and explaining hate speech towards Islam using graph neural networks. Utilizing the intrinsic ability of graph neural networks to find, extract, and use relationships across disparate data points, our model consistently achieves outstanding performance while offering explanations for the underlying correlations and causation.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper