9 AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 approx 0.8 for scenarios with prominent gradients in search space, using only sim20% of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at https://aka.ms/autorag. 10 authors · Jun 27, 2024 1
- AutoRAG-LoRA: Hallucination-Triggered Knowledge Retuning via Lightweight Adapters Large Language Models (LLMs) have demonstrated remarkable fluency across a range of natural language tasks, yet remain vulnerable to hallucinations - factual inaccuracies that undermine trust in real world deployment. We present AutoRAG-LoRA, a modular framework for Retrieval-Augmented Generation (RAG) that tackles hallucination in large language models through lightweight LoRA-based adapters and KL-regularized training. Our pipeline integrates automated prompt rewriting, hybrid retrieval, and low-rank adapter tuning to ground responses in retrieved evidence. A hallucination detection module, using both classifier-based and self-evaluation techniques, assigns confidence scores to generated outputs, triggering an optional feedback correction loop. This loop enforces factual alignment via contrastive KL loss and adapter fine tuning. We demonstrate that AutoRAG-LoRA significantly reduces the factual drift while preserving the efficiency and modularity of the model. 2 authors · Jul 11
- AutoRAG: Automated Framework for optimization of Retrieval Augmented Generation Pipeline Using LLMs (Large Language Models) in conjunction with external documents has made RAG (Retrieval-Augmented Generation) an essential technology. Numerous techniques and modules for RAG are being researched, but their performance can vary across different datasets. Finding RAG modules that perform well on specific datasets is challenging. In this paper, we propose the AutoRAG framework, which automatically identifies suitable RAG modules for a given dataset. AutoRAG explores and approximates the optimal combination of RAG modules for the dataset. Additionally, we share the results of optimizing a dataset using AutoRAG. All experimental results and data are publicly available and can be accessed through our GitHub repository https://github.com/Marker-Inc-Korea/AutoRAG_ARAGOG_Paper . 4 authors · Oct 28, 2024