new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 8

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Language agents have shown some ability to interact with an external environment, e.g., a virtual world such as ScienceWorld, to perform complex tasks, e.g., growing a plant, without the startup costs of reinforcement learning. However, despite their zero-shot capabilities, these agents to date do not continually improve over time beyond performance refinement on a specific task. Here we present CLIN, the first language-based agent to achieve this, so that it continually improves over multiple trials, including when both the environment and task are varied, and without requiring parameter updates. Our approach is to use a persistent, dynamic, textual memory centered on causal abstractions (rather than general "helpful hints") that is regularly updated after each trial so that the agent gradually learns useful knowledge for new trials. In the ScienceWorld benchmark, CLIN is able to continually improve on repeated trials on the same task and environment, outperforming state-of-the-art reflective language agents like Reflexion by 23 absolute points. CLIN can also transfer its learning to new environments (or new tasks), improving its zero-shot performance by 4 points (13 for new tasks) and can further improve performance there through continual memory updates, enhancing performance by an additional 17 points (7 for new tasks). This suggests a new architecture for agents built on frozen models that can still continually and rapidly improve over time.

CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain

The field of natural language processing (NLP) has recently seen a large change towards using pre-trained language models for solving almost any task. Despite showing great improvements in benchmark datasets for various tasks, these models often perform sub-optimal in non-standard domains like the clinical domain where a large gap between pre-training documents and target documents is observed. In this paper, we aim at closing this gap with domain-specific training of the language model and we investigate its effect on a diverse set of downstream tasks and settings. We introduce the pre-trained CLIN-X (Clinical XLM-R) language models and show how CLIN-X outperforms other pre-trained transformer models by a large margin for ten clinical concept extraction tasks from two languages. In addition, we demonstrate how the transformer model can be further improved with our proposed task- and language-agnostic model architecture based on ensembles over random splits and cross-sentence context. Our studies in low-resource and transfer settings reveal stable model performance despite a lack of annotated data with improvements of up to 47 F1 points when only 250 labeled sentences are available. Our results highlight the importance of specialized language models as CLIN-X for concept extraction in non-standard domains, but also show that our task-agnostic model architecture is robust across the tested tasks and languages so that domain- or task-specific adaptations are not required.

Clinical Text Summarization: Adapting Large Language Models Can Outperform Human Experts

Sifting through vast textual data and summarizing key information imposes a substantial burden on how clinicians allocate their time. Although large language models (LLMs) have shown immense promise in natural language processing (NLP) tasks, their efficacy across diverse clinical summarization tasks has not yet been rigorously examined. In this work, we employ domain adaptation methods on eight LLMs, spanning six datasets and four distinct summarization tasks: radiology reports, patient questions, progress notes, and doctor-patient dialogue. Our thorough quantitative assessment reveals trade-offs between models and adaptation methods in addition to instances where recent advances in LLMs may not lead to improved results. Further, in a clinical reader study with six physicians, we depict that summaries from the best adapted LLM are preferable to human summaries in terms of completeness and correctness. Our ensuing qualitative analysis delineates mutual challenges faced by both LLMs and human experts. Lastly, we correlate traditional quantitative NLP metrics with reader study scores to enhance our understanding of how these metrics align with physician preferences. Our research marks the first evidence of LLMs outperforming human experts in clinical text summarization across multiple tasks. This implies that integrating LLMs into clinical workflows could alleviate documentation burden, empowering clinicians to focus more on personalized patient care and other irreplaceable human aspects of medicine.

Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding

Large Language Models (LLMs) present immense potential in the medical field, yet concerns over data privacy, regulatory compliance, and model stability restrict their widespread adoption. Although the distillation of high-performing closed-source LLMs has proven effective for general tasks, their application in healthcare is limited due to reduced domain knowledge and remnants of alignment behavior hindering clinical tasks. To address these challenges, we propose Dialogue-Based Knowledge Encoding (DBKE). DBKE enhances models' implicit knowledge base and primes them for conversational recall, augmenting their conversational capabilities and enabling a soft alignment for subsequent use cases. By transforming dense academic source text into synthetic dialogue, DBKE broadens the model's knowledge base and enables a soft alignment that guides downstream behaviours. We present Clinical Camel, an open-source, healthcare-focused conversational model, to showcase the effectiveness of DBKE. Clinical Camel outperforms GPT-3.5 on the United States Medical Licensing Examination (USMLE) Step 1 and Step 3 with scores of 53.2 % and 58.2 %, respectively, compared to GPT-3.5's scores of 36.1 % and 55.7 %. Clinical Camel adeptly handles multi-stage clinical case problems, provides adaptive counseling, and generates clinical notes. However, it is prone to hallucinations, which pose a significant obstacle in safety-critical settings. The performance of Clinical Camel underscores the importance of continued research and development of open-source models for the safe and effective integration of LLMs in healthcare settings.

CaseReportBench: An LLM Benchmark Dataset for Dense Information Extraction in Clinical Case Reports

Rare diseases, including Inborn Errors of Metabolism (IEM), pose significant diagnostic challenges. Case reports serve as key but computationally underutilized resources to inform diagnosis. Clinical dense information extraction refers to organizing medical information into structured predefined categories. Large Language Models (LLMs) may enable scalable information extraction from case reports but are rarely evaluated for this task. We introduce CaseReportBench, an expert-annotated dataset for dense information extraction of case reports, focusing on IEMs. Using this dataset, we assess various models and prompting strategies, introducing novel approaches such as category-specific prompting and subheading-filtered data integration. Zero-shot chain-of-thought prompting offers little advantage over standard zero-shot prompting. Category-specific prompting improves alignment with the benchmark. The open-source model Qwen2.5-7B outperforms GPT-4o for this task. Our clinician evaluations show that LLMs can extract clinically relevant details from case reports, supporting rare disease diagnosis and management. We also highlight areas for improvement, such as LLMs' limitations in recognizing negative findings important for differential diagnosis. This work advances LLM-driven clinical natural language processing and paves the way for scalable medical AI applications.

Clinical Document Corpora and Assorted Domain Proxies: A Survey of Diversity in Corpus Design, with Focus on German Text Data

We survey clinical document corpora, with focus on German textual data. Due to rigid data privacy legislation in Germany these resources, with only few exceptions, are stored in safe clinical data spaces and locked against clinic-external researchers. This situation stands in stark contrast with established workflows in the field of natural language processing where easy accessibility and reuse of data collections are common practice. Hence, alternative corpus designs have been examined to escape from this data poverty. Besides machine translation of English clinical datasets and the generation of synthetic corpora with fictitious clinical contents, several other types of domain proxies have come up as substitutes for authentic clinical documents. Common instances of close proxies are medical journal publications, clinical therapy guidelines, drug labels, etc., more distant proxies include online encyclopedic medical articles or medical contents from social media channels. After PRISM-conformant screening of 359 hits from four bibliographic systems, 75 relevant documents were finally selected for this review and 59 distinct corpora were determined. We identified 24 real clinical corpora (from 40 publications) out of which only 5 are publicly distributable. 2 translations of real corpora and 3 synthetic ones complement the set of clinical corpora. 14 corpora were categorized as close domain proxies, 16 as distant ones. There is a clear divide between the large number of non-accessible authentic clinical German-language corpora and their publicly accessible substitutes: translated or synthetic, close or more distant proxies. So on first sight, the data bottleneck seems broken. Intuitively yet, differences in genre-specific writing style, wording and medical domain expertise in this typological space are also obvious. This raises the question how valid alternative corpus designs really are.

Clinical Prompt Learning with Frozen Language Models

Prompt learning is a new paradigm in the Natural Language Processing (NLP) field which has shown impressive performance on a number of natural language tasks with common benchmarking text datasets in full, few-shot, and zero-shot train-evaluation setups. Recently, it has even been observed that large but frozen pre-trained language models (PLMs) with prompt learning outperform smaller but fine-tuned models. However, as with many recent NLP trends, the performance of even the largest PLMs such as GPT-3 do not perform well on specialized domains (e.g. medical text), and the common practice to achieve State of the Art (SoTA) results still consists of pre-training and fine-tuning the PLMs on downstream tasks. The reliance on fine-tuning large PLMs is problematic in clinical settings where data is often held in non-GPU environments, and more resource efficient methods of training specialized domain models is crucial. We investigated the viability of prompt learning on clinically meaningful decision tasks and directly compared with more traditional fine-tuning methods. Results are partially in line with the prompt learning literature, with prompt learning able to match or improve on traditional fine-tuning with substantially fewer trainable parameters and requiring less training data. We argue that prompt learning therefore provides lower computational resource costs applicable to clinical settings, that can serve as an alternative to fine-tuning ever increasing in size PLMs. Complementary code to reproduce experiments presented in this work can be found at: https://github.com/NtaylorOX/Public_Clinical_Prompt.

ClinBench-HPB: A Clinical Benchmark for Evaluating LLMs in Hepato-Pancreato-Biliary Diseases

Hepato-pancreato-biliary (HPB) disorders represent a global public health challenge due to their high morbidity and mortality. Although large language models (LLMs) have shown promising performance in general medical question-answering tasks, the current evaluation benchmarks are mostly derived from standardized examinations or manually designed questions, lacking HPB coverage and clinical cases. To address these issues, we systematically eatablish an HPB disease evaluation benchmark comprising 3,535 closed-ended multiple-choice questions and 337 open-ended real diagnosis cases, which encompasses all the 33 main categories and 465 subcategories of HPB diseases defined in the International Statistical Classification of Diseases, 10th Revision (ICD-10). The multiple-choice questions are curated from public datasets and synthesized data, and the clinical cases are collected from prestigious medical journals, case-sharing platforms, and collaborating hospitals. By evalauting commercial and open-source general and medical LLMs on our established benchmark, namely ClinBench-HBP, we find that while commercial LLMs perform competently on medical exam questions, they exhibit substantial performance degradation on HPB diagnosis tasks, especially on complex, inpatient clinical cases. Those medical LLMs also show limited generalizability to HPB diseases. Our results reveal the critical limitations of current LLMs in the domain of HPB diseases, underscoring the imperative need for future medical LLMs to handle real, complex clinical diagnostics rather than simple medical exam questions. The benchmark will be released at https://clinbench-hpb.github.io.

From Questions to Clinical Recommendations: Large Language Models Driving Evidence-Based Clinical Decision Making

Clinical evidence, derived from rigorous research and data analysis, provides healthcare professionals with reliable scientific foundations for informed decision-making. Integrating clinical evidence into real-time practice is challenging due to the enormous workload, complex professional processes, and time constraints. This highlights the need for tools that automate evidence synthesis to support more efficient and accurate decision making in clinical settings. This study introduces Quicker, an evidence-based clinical decision support system powered by large language models (LLMs), designed to automate evidence synthesis and generate clinical recommendations modeled after standard clinical guideline development processes. Quicker implements a fully automated chain that covers all phases, from questions to clinical recommendations, and further enables customized decision-making through integrated tools and interactive user interfaces. To evaluate Quicker's capabilities, we developed the Q2CRBench-3 benchmark dataset, based on clinical guideline development records for three different diseases. Experimental results highlighted Quicker's strong performance, with fine-grained question decomposition tailored to user preferences, retrieval sensitivities comparable to human experts, and literature screening performance approaching comprehensive inclusion of relevant studies. In addition, Quicker-assisted evidence assessment effectively supported human reviewers, while Quicker's recommendations were more comprehensive and logically coherent than those of clinicians. In system-level testing, collaboration between a single reviewer and Quicker reduced the time required for recommendation development to 20-40 minutes. In general, our findings affirm the potential of Quicker to help physicians make quicker and more reliable evidence-based clinical decisions.

CliniQ: A Multi-faceted Benchmark for Electronic Health Record Retrieval with Semantic Match Assessment

Electronic Health Record (EHR) retrieval plays a pivotal role in various clinical tasks, but its development has been severely impeded by the lack of publicly available benchmarks. In this paper, we introduce a novel public EHR retrieval benchmark, CliniQ, to address this gap. We consider two retrieval settings: Single-Patient Retrieval and Multi-Patient Retrieval, reflecting various real-world scenarios. Single-Patient Retrieval focuses on finding relevant parts within a patient note, while Multi-Patient Retrieval involves retrieving EHRs from multiple patients. We build our benchmark upon 1,000 discharge summary notes along with the ICD codes and prescription labels from MIMIC-III, and collect 1,246 unique queries with 77,206 relevance judgments by further leveraging powerful LLMs as annotators. Additionally, we include a novel assessment of the semantic gap issue in EHR retrieval by categorizing matching types into string match and four types of semantic matches. On our proposed benchmark, we conduct a comprehensive evaluation of various retrieval methods, ranging from conventional exact match to popular dense retrievers. Our experiments find that BM25 sets a strong baseline and performs competitively to the dense retrievers, and general domain dense retrievers surprisingly outperform those designed for the medical domain. In-depth analyses on various matching types reveal the strengths and drawbacks of different methods, enlightening the potential for targeted improvement. We believe that our benchmark will stimulate the research communities to advance EHR retrieval systems.

Specialist vision-language models for clinical ophthalmology

Clinicians spend a significant amount of time reviewing medical images and transcribing their findings regarding patient diagnosis, referral and treatment in text form. Vision-language models (VLMs), which automatically interpret images and summarize their findings as text, have enormous potential to alleviate clinical workloads and increase patient access to high-quality medical care. While foundational models have stirred considerable interest in the medical community, it is unclear whether their general capabilities translate to real-world clinical utility. In this work, we show that foundation VLMs markedly underperform compared to practicing ophthalmologists on specialist tasks crucial to the care of patients with age-related macular degeneration (AMD). To address this, we initially identified the essential capabilities required for image-based clinical decision-making, and then developed a curriculum to selectively train VLMs in these skills. The resulting model, RetinaVLM, can be instructed to write reports that significantly outperform those written by leading foundation medical VLMs in disease staging (F1 score of 0.63 vs. 0.11) and patient referral (0.67 vs. 0.39), and approaches the diagnostic performance of junior ophthalmologists (who achieve 0.77 and 0.78 on the respective tasks). Furthermore, in a reader study involving two senior ophthalmologists with up to 32 years of experience, RetinaVLM's reports were found to be similarly correct (78.6% vs. 82.1%) and complete (both 78.6%) as reports written by junior ophthalmologists with up to 10 years of experience. These results demonstrate that our curriculum-based approach provides a blueprint for specializing generalist foundation medical VLMs to handle real-world clinical tasks.

Computer Vision for Clinical Gait Analysis: A Gait Abnormality Video Dataset

Clinical gait analysis (CGA) using computer vision is an emerging field in artificial intelligence that faces barriers of accessible, real-world data, and clear task objectives. This paper lays the foundation for current developments in CGA as well as vision-based methods and datasets suitable for gait analysis. We introduce The Gait Abnormality in Video Dataset (GAVD) in response to our review of over 150 current gait-related computer vision datasets, which highlighted the need for a large and accessible gait dataset clinically annotated for CGA. GAVD stands out as the largest video gait dataset, comprising 1874 sequences of normal, abnormal and pathological gaits. Additionally, GAVD includes clinically annotated RGB data sourced from publicly available content on online platforms. It also encompasses over 400 subjects who have undergone clinical grade visual screening to represent a diverse range of abnormal gait patterns, captured in various settings, including hospital clinics and urban uncontrolled outdoor environments. We demonstrate the validity of the dataset and utility of action recognition models for CGA using pretrained models Temporal Segment Networks(TSN) and SlowFast network to achieve video abnormality detection of 94% and 92% respectively when tested on GAVD dataset. A GitHub repository https://github.com/Rahmyyy/GAVD consisting of convenient URL links, and clinically relevant annotation for CGA is provided for over 450 online videos, featuring diverse subjects performing a range of normal, pathological, and abnormal gait patterns.

Panacea: A foundation model for clinical trial search, summarization, design, and recruitment

Clinical trials are fundamental in developing new drugs, medical devices, and treatments. However, they are often time-consuming and have low success rates. Although there have been initial attempts to create large language models (LLMs) for clinical trial design and patient-trial matching, these models remain task-specific and not adaptable to diverse clinical trial tasks. To address this challenge, we propose a clinical trial foundation model named Panacea, designed to handle multiple tasks, including trial search, trial summarization, trial design, and patient-trial matching. We also assemble a large-scale dataset, named TrialAlign, of 793,279 trial documents and 1,113,207 trial-related scientific papers, to infuse clinical knowledge into the model by pre-training. We further curate TrialInstruct, which has 200,866 of instruction data for fine-tuning. These resources enable Panacea to be widely applicable for a range of clinical trial tasks based on user requirements. We evaluated Panacea on a new benchmark, named TrialPanorama, which covers eight clinical trial tasks. Our method performed the best on seven of the eight tasks compared to six cutting-edge generic or medicine-specific LLMs. Specifically, Panacea showed great potential to collaborate with human experts in crafting the design of eligibility criteria, study arms, and outcome measures, in multi-round conversations. In addition, Panacea achieved 14.42% improvement in patient-trial matching, 41.78% to 52.02% improvement in trial search, and consistently ranked at the top for five aspects of trial summarization. Our approach demonstrates the effectiveness of Panacea in clinical trials and establishes a comprehensive resource, including training data, model, and benchmark, for developing clinical trial foundation models, paving the path for AI-based clinical trial development.

PRISM: Patient Records Interpretation for Semantic Clinical Trial Matching using Large Language Models

Clinical trial matching is the task of identifying trials for which patients may be potentially eligible. Typically, this task is labor-intensive and requires detailed verification of patient electronic health records (EHRs) against the stringent inclusion and exclusion criteria of clinical trials. This process is manual, time-intensive, and challenging to scale up, resulting in many patients missing out on potential therapeutic options. Recent advancements in Large Language Models (LLMs) have made automating patient-trial matching possible, as shown in multiple concurrent research studies. However, the current approaches are confined to constrained, often synthetic datasets that do not adequately mirror the complexities encountered in real-world medical data. In this study, we present the first, end-to-end large-scale empirical evaluation of clinical trial matching using real-world EHRs. Our study showcases the capability of LLMs to accurately match patients with appropriate clinical trials. We perform experiments with proprietary LLMs, including GPT-4 and GPT-3.5, as well as our custom fine-tuned model called OncoLLM and show that OncoLLM, despite its significantly smaller size, not only outperforms GPT-3.5 but also matches the performance of qualified medical doctors. All experiments were carried out on real-world EHRs that include clinical notes and available clinical trials from a single cancer center in the United States.

ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish

Advances in natural language processing techniques, such as named entity recognition and normalization to widely used standardized terminologies like UMLS or SNOMED-CT, along with the digitalization of electronic health records, have significantly advanced clinical text analysis. This study presents ClinLinker, a novel approach employing a two-phase pipeline for medical entity linking that leverages the potential of in-domain adapted language models for biomedical text mining: initial candidate retrieval using a SapBERT-based bi-encoder and subsequent re-ranking with a cross-encoder, trained by following a contrastive-learning strategy to be tailored to medical concepts in Spanish. This methodology, focused initially on content in Spanish, substantially outperforming multilingual language models designed for the same purpose. This is true even for complex scenarios involving heterogeneous medical terminologies and being trained on a subset of the original data. Our results, evaluated using top-k accuracy at 25 and other top-k metrics, demonstrate our approach's performance on two distinct clinical entity linking Gold Standard corpora, DisTEMIST (diseases) and MedProcNER (clinical procedures), outperforming previous benchmarks by 40 points in DisTEMIST and 43 points in MedProcNER, both normalized to SNOMED-CT codes. These findings highlight our approach's ability to address language-specific nuances and set a new benchmark in entity linking, offering a potent tool for enhancing the utility of digital medical records. The resulting system is of practical value, both for large scale automatic generation of structured data derived from clinical records, as well as for exhaustive extraction and harmonization of predefined clinical variables of interest.

AgentMD: Empowering Language Agents for Risk Prediction with Large-Scale Clinical Tool Learning

Clinical calculators play a vital role in healthcare by offering accurate evidence-based predictions for various purposes such as prognosis. Nevertheless, their widespread utilization is frequently hindered by usability challenges, poor dissemination, and restricted functionality. Augmenting large language models with extensive collections of clinical calculators presents an opportunity to overcome these obstacles and improve workflow efficiency, but the scalability of the manual curation process poses a significant challenge. In response, we introduce AgentMD, a novel language agent capable of curating and applying clinical calculators across various clinical contexts. Using the published literature, AgentMD has automatically curated a collection of 2,164 diverse clinical calculators with executable functions and structured documentation, collectively named RiskCalcs. Manual evaluations show that RiskCalcs tools achieve an accuracy of over 80% on three quality metrics. At inference time, AgentMD can automatically select and apply the relevant RiskCalcs tools given any patient description. On the newly established RiskQA benchmark, AgentMD significantly outperforms chain-of-thought prompting with GPT-4 (87.7% vs. 40.9% in accuracy). Additionally, we also applied AgentMD to real-world clinical notes for analyzing both population-level and risk-level patient characteristics. In summary, our study illustrates the utility of language agents augmented with clinical calculators for healthcare analytics and patient care.

Clinical Decision Support System for Unani Medicine Practitioners

Like other fields of Traditional Medicines, Unani Medicines have been found as an effective medical practice for ages. It is still widely used in the subcontinent, particularly in Pakistan and India. However, Unani Medicines Practitioners are lacking modern IT applications in their everyday clinical practices. An Online Clinical Decision Support System may address this challenge to assist apprentice Unani Medicines practitioners in their diagnostic processes. The proposed system provides a web-based interface to enter the patient's symptoms, which are then automatically analyzed by our system to generate a list of probable diseases. The system allows practitioners to choose the most likely disease and inform patients about the associated treatment options remotely. The system consists of three modules: an Online Clinical Decision Support System, an Artificial Intelligence Inference Engine, and a comprehensive Unani Medicines Database. The system employs advanced AI techniques such as Decision Trees, Deep Learning, and Natural Language Processing. For system development, the project team used a technology stack that includes React, FastAPI, and MySQL. Data and functionality of the application is exposed using APIs for integration and extension with similar domain applications. The novelty of the project is that it addresses the challenge of diagnosing diseases accurately and efficiently in the context of Unani Medicines principles. By leveraging the power of technology, the proposed Clinical Decision Support System has the potential to ease access to healthcare services and information, reduce cost, boost practitioner and patient satisfaction, improve speed and accuracy of the diagnostic process, and provide effective treatments remotely. The application will be useful for Unani Medicines Practitioners, Patients, Government Drug Regulators, Software Developers, and Medical Researchers.

Extraction of Medication and Temporal Relation from Clinical Text using Neural Language Models

Clinical texts, represented in electronic medical records (EMRs), contain rich medical information and are essential for disease prediction, personalised information recommendation, clinical decision support, and medication pattern mining and measurement. Relation extractions between medication mentions and temporal information can further help clinicians better understand the patients' treatment history. To evaluate the performances of deep learning (DL) and large language models (LLMs) in medication extraction and temporal relations classification, we carry out an empirical investigation of MedTem project using several advanced learning structures including BiLSTM-CRF and CNN-BiLSTM for a clinical domain named entity recognition (NER), and BERT-CNN for temporal relation extraction (RE), in addition to the exploration of different word embedding techniques. Furthermore, we also designed a set of post-processing roles to generate structured output on medications and the temporal relation. Our experiments show that CNN-BiLSTM slightly wins the BiLSTM-CRF model on the i2b2-2009 clinical NER task yielding 75.67, 77.83, and 78.17 for precision, recall, and F1 scores using Macro Average. BERT-CNN model also produced reasonable evaluation scores 64.48, 67.17, and 65.03 for P/R/F1 using Macro Avg on the temporal relation extraction test set from i2b2-2012 challenges. Code and Tools from MedTem will be hosted at https://github.com/HECTA-UoM/MedTem

Clinically-Inspired Multi-Agent Transformers for Disease Trajectory Forecasting from Multimodal Data

Deep neural networks are often applied to medical images to automate the problem of medical diagnosis. However, a more clinically relevant question that practitioners usually face is how to predict the future trajectory of a disease. Current methods for prognosis or disease trajectory forecasting often require domain knowledge and are complicated to apply. In this paper, we formulate the prognosis prediction problem as a one-to-many prediction problem. Inspired by a clinical decision-making process with two agents -- a radiologist and a general practitioner -- we predict prognosis with two transformer-based components that share information with each other. The first transformer in this framework aims to analyze the imaging data, and the second one leverages its internal states as inputs, also fusing them with auxiliary clinical data. The temporal nature of the problem is modeled within the transformer states, allowing us to treat the forecasting problem as a multi-task classification, for which we propose a novel loss. We show the effectiveness of our approach in predicting the development of structural knee osteoarthritis changes and forecasting Alzheimer's disease clinical status directly from raw multi-modal data. The proposed method outperforms multiple state-of-the-art baselines with respect to performance and calibration, both of which are needed for real-world applications. An open-source implementation of our method is made publicly available at https://github.com/Oulu-IMEDS/CLIMATv2.

Few-Shot Learning for Clinical Natural Language Processing Using Siamese Neural Networks

Clinical Natural Language Processing (NLP) has become an emerging technology in healthcare that leverages a large amount of free-text data in electronic health records (EHRs) to improve patient care, support clinical decisions, and facilitate clinical and translational science research. Recently, deep learning has achieved state-of-the-art performance in many clinical NLP tasks. However, training deep learning models usually requires large annotated datasets, which are normally not publicly available and can be time-consuming to build in clinical domains. Working with smaller annotated datasets is typical in clinical NLP and therefore, ensuring that deep learning models perform well is crucial for the models to be used in real-world applications. A widely adopted approach is fine-tuning existing Pre-trained Language Models (PLMs), but these attempts fall short when the training dataset contains only a few annotated samples. Few-Shot Learning (FSL) has recently been investigated to tackle this problem. Siamese Neural Network (SNN) has been widely utilized as an FSL approach in computer vision, but has not been studied well in NLP. Furthermore, the literature on its applications in clinical domains is scarce. In this paper, we propose two SNN-based FSL approaches for clinical NLP, including Pre-Trained SNN (PT-SNN) and SNN with Second-Order Embeddings (SOE-SNN). We evaluated the proposed approaches on two clinical tasks, namely clinical text classification and clinical named entity recognition. We tested three few-shot settings including 4-shot, 8-shot, and 16-shot learning. Both clinical NLP tasks were benchmarked using three PLMs, including BERT,BioBERT, and BioClinicalBERT. The experimental results verified the effectiveness of the proposed SNN-based FSL approaches in both NLP tasks.

Clinical-Longformer and Clinical-BigBird: Transformers for long clinical sequences

Transformers-based models, such as BERT, have dramatically improved the performance for various natural language processing tasks. The clinical knowledge enriched model, namely ClinicalBERT, also achieved state-of-the-art results when performed on clinical named entity recognition and natural language inference tasks. One of the core limitations of these transformers is the substantial memory consumption due to their full self-attention mechanism. To overcome this, long sequence transformer models, e.g. Longformer and BigBird, were proposed with the idea of sparse attention mechanism to reduce the memory usage from quadratic to the sequence length to a linear scale. These models extended the maximum input sequence length from 512 to 4096, which enhanced the ability of modeling long-term dependency and consequently achieved optimal results in a variety of tasks. Inspired by the success of these long sequence transformer models, we introduce two domain enriched language models, namely Clinical-Longformer and Clinical-BigBird, which are pre-trained from large-scale clinical corpora. We evaluate both pre-trained models using 10 baseline tasks including named entity recognition, question answering, and document classification tasks. The results demonstrate that Clinical-Longformer and Clinical-BigBird consistently and significantly outperform ClinicalBERT as well as other short-sequence transformers in all downstream tasks. We have made our source code available at [https://github.com/luoyuanlab/Clinical-Longformer] the pre-trained models available for public download at: [https://huggingface.co/yikuan8/Clinical-Longformer].

Named Clinical Entity Recognition Benchmark

This technical report introduces a Named Clinical Entity Recognition Benchmark for evaluating language models in healthcare, addressing the crucial natural language processing (NLP) task of extracting structured information from clinical narratives to support applications like automated coding, clinical trial cohort identification, and clinical decision support. The leaderboard provides a standardized platform for assessing diverse language models, including encoder and decoder architectures, on their ability to identify and classify clinical entities across multiple medical domains. A curated collection of openly available clinical datasets is utilized, encompassing entities such as diseases, symptoms, medications, procedures, and laboratory measurements. Importantly, these entities are standardized according to the Observational Medical Outcomes Partnership (OMOP) Common Data Model, ensuring consistency and interoperability across different healthcare systems and datasets, and a comprehensive evaluation of model performance. Performance of models is primarily assessed using the F1-score, and it is complemented by various assessment modes to provide comprehensive insights into model performance. The report also includes a brief analysis of models evaluated to date, highlighting observed trends and limitations. By establishing this benchmarking framework, the leaderboard aims to promote transparency, facilitate comparative analyses, and drive innovation in clinical entity recognition tasks, addressing the need for robust evaluation methods in healthcare NLP.

Do We Still Need Clinical Language Models?

Although recent advances in scaling large language models (LLMs) have resulted in improvements on many NLP tasks, it remains unclear whether these models trained primarily with general web text are the right tool in highly specialized, safety critical domains such as clinical text. Recent results have suggested that LLMs encode a surprising amount of medical knowledge. This raises an important question regarding the utility of smaller domain-specific language models. With the success of general-domain LLMs, is there still a need for specialized clinical models? To investigate this question, we conduct an extensive empirical analysis of 12 language models, ranging from 220M to 175B parameters, measuring their performance on 3 different clinical tasks that test their ability to parse and reason over electronic health records. As part of our experiments, we train T5-Base and T5-Large models from scratch on clinical notes from MIMIC III and IV to directly investigate the efficiency of clinical tokens. We show that relatively small specialized clinical models substantially outperform all in-context learning approaches, even when finetuned on limited annotated data. Further, we find that pretraining on clinical tokens allows for smaller, more parameter-efficient models that either match or outperform much larger language models trained on general text. We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.

Am I eligible? Natural Language Inference for Clinical Trial Patient Recruitment: the Patient's Point of View

Recruiting patients to participate in clinical trials can be challenging and time-consuming. Usually, participation in a clinical trial is initiated by a healthcare professional and proposed to the patient. Promoting clinical trials directly to patients via online recruitment might help to reach them more efficiently. In this study, we address the case where a patient is initiating their own recruitment process and wants to determine whether they are eligible for a given clinical trial, using their own language to describe their medical profile. To study whether this creates difficulties in the patient trial matching process, we design a new dataset and task, Natural Language Inference for Patient Recruitment (NLI4PR), in which patient language profiles must be matched to clinical trials. We create it by adapting the TREC 2022 Clinical Trial Track dataset, which provides patients' medical profiles, and rephrasing them manually using patient language. We also use the associated clinical trial reports where the patients are either eligible or excluded. We prompt several open-source Large Language Models on our task and achieve from 56.5 to 71.8 of F1 score using patient language, against 64.7 to 73.1 for the same task using medical language. When using patient language, we observe only a small loss in performance for the best model, suggesting that having the patient as a starting point could be adopted to help recruit patients for clinical trials. The corpus and code bases are all freely available on our Github and HuggingFace repositories.

CUPCase: Clinically Uncommon Patient Cases and Diagnoses Dataset

Medical benchmark datasets significantly contribute to developing Large Language Models (LLMs) for medical knowledge extraction, diagnosis, summarization, and other uses. Yet, current benchmarks are mainly derived from exam questions given to medical students or cases described in the medical literature, lacking the complexity of real-world patient cases that deviate from classic textbook abstractions. These include rare diseases, uncommon presentations of common diseases, and unexpected treatment responses. Here, we construct Clinically Uncommon Patient Cases and Diagnosis Dataset (CUPCase) based on 3,562 real-world case reports from BMC, including diagnoses in open-ended textual format and as multiple-choice options with distractors. Using this dataset, we evaluate the ability of state-of-the-art LLMs, including both general-purpose and Clinical LLMs, to identify and correctly diagnose a patient case, and test models' performance when only partial information about cases is available. Our findings show that general-purpose GPT-4o attains the best performance in both the multiple-choice task (average accuracy of 87.9%) and the open-ended task (BERTScore F1 of 0.764), outperforming several LLMs with a focus on the medical domain such as Meditron-70B and MedLM-Large. Moreover, GPT-4o was able to maintain 87% and 88% of its performance with only the first 20% of tokens of the case presentation in multiple-choice and free text, respectively, highlighting the potential of LLMs to aid in early diagnosis in real-world cases. CUPCase expands our ability to evaluate LLMs for clinical decision support in an open and reproducible manner.

Multimodal AI predicts clinical outcomes of drug combinations from preclinical data

Predicting clinical outcomes from preclinical data is essential for identifying safe and effective drug combinations. Current models rely on structural or target-based features to identify high-efficacy, low-toxicity drug combinations. However, these approaches fail to incorporate the multimodal data necessary for accurate, clinically-relevant predictions. Here, we introduce MADRIGAL, a multimodal AI model that learns from structural, pathway, cell viability, and transcriptomic data to predict drug combination effects across 953 clinical outcomes and 21842 compounds, including combinations of approved drugs and novel compounds in development. MADRIGAL uses a transformer bottleneck module to unify preclinical drug data modalities while handling missing data during training and inference--a major challenge in multimodal learning. It outperforms single-modality methods and state-of-the-art models in predicting adverse drug interactions. MADRIGAL performs virtual screening of anticancer drug combinations and supports polypharmacy management for type II diabetes and metabolic dysfunction-associated steatohepatitis (MASH). It identifies transporter-mediated drug interactions. MADRIGAL predicts resmetirom, the first and only FDA-approved drug for MASH, among therapies with the most favorable safety profile. It supports personalized cancer therapy by integrating genomic profiles from cancer patients. Using primary acute myeloid leukemia samples and patient-derived xenograft models, it predicts the efficacy of personalized drug combinations. Integrating MADRIGAL with a large language model allows users to describe clinical outcomes in natural language, improving safety assessment by identifying potential adverse interactions and toxicity risks. MADRIGAL provides a multimodal approach for designing combination therapies with improved predictive accuracy and clinical relevance.

Context Clues: Evaluating Long Context Models for Clinical Prediction Tasks on EHRs

Foundation Models (FMs) trained on Electronic Health Records (EHRs) have achieved state-of-the-art results on numerous clinical prediction tasks. However, most existing EHR FMs have context windows of <1k tokens. This prevents them from modeling full patient EHRs which can exceed 10k's of events. Recent advancements in subquadratic long-context architectures (e.g., Mamba) offer a promising solution. However, their application to EHR data has not been well-studied. We address this gap by presenting the first systematic evaluation of the effect of context length on modeling EHR data. We find that longer context models improve predictive performance -- our Mamba-based model surpasses the prior state-of-the-art on 9/14 tasks on the EHRSHOT prediction benchmark. For clinical applications, however, model performance alone is insufficient -- robustness to the unique properties of EHR is crucial. Thus, we also evaluate models across three previously underexplored properties of EHR data: (1) the prevalence of "copy-forwarded" diagnoses which creates artificial repetition of tokens within EHR sequences; (2) the irregular time intervals between EHR events which can lead to a wide range of timespans within a context window; and (3) the natural increase in disease complexity over time which makes later tokens in the EHR harder to predict than earlier ones. Stratifying our EHRSHOT results, we find that higher levels of each property correlate negatively with model performance, but that longer context models are more robust to more extreme levels of these properties. Our work highlights the potential for using long-context architectures to model EHR data, and offers a case study for identifying new challenges in modeling sequential data motivated by domains outside of natural language. We release our models and code at: https://github.com/som-shahlab/long_context_clues

Accelerating Clinical Evidence Synthesis with Large Language Models

Synthesizing clinical evidence largely relies on systematic reviews of clinical trials and retrospective analyses from medical literature. However, the rapid expansion of publications presents challenges in efficiently identifying, summarizing, and updating clinical evidence. Here, we introduce TrialMind, a generative artificial intelligence (AI) pipeline for facilitating human-AI collaboration in three crucial tasks for evidence synthesis: study search, screening, and data extraction. To assess its performance, we chose published systematic reviews to build the benchmark dataset, named TrialReviewBench, which contains 100 systematic reviews and the associated 2,220 clinical studies. Our results show that TrialMind excels across all three tasks. In study search, it generates diverse and comprehensive search queries to achieve high recall rates (Ours 0.711-0.834 v.s. Human baseline 0.138-0.232). For study screening, TrialMind surpasses traditional embedding-based methods by 30% to 160%. In data extraction, it outperforms a GPT-4 baseline by 29.6% to 61.5%. We further conducted user studies to confirm its practical utility. Compared to manual efforts, human-AI collaboration using TrialMind yielded a 71.4% recall lift and 44.2% time savings in study screening and a 23.5% accuracy lift and 63.4% time savings in data extraction. Additionally, when comparing synthesized clinical evidence presented in forest plots, medical experts favored TrialMind's outputs over GPT-4's outputs in 62.5% to 100% of cases. These findings show the promise of LLM-based approaches like TrialMind to accelerate clinical evidence synthesis via streamlining study search, screening, and data extraction from medical literature, with exceptional performance improvement when working with human experts.

Infusing clinical knowledge into tokenisers for language models

This study introduces a novel knowledge enhanced tokenisation mechanism, K-Tokeniser, for clinical text processing. Technically, at initialisation stage, K-Tokeniser populates global representations of tokens based on semantic types of domain concepts (such as drugs or diseases) from either a domain ontology like Unified Medical Language System or the training data of the task related corpus. At training or inference stage, sentence level localised context will be utilised for choosing the optimal global token representation to realise the semantic-based tokenisation. To avoid pretraining using the new tokeniser, an embedding initialisation approach is proposed to generate representations for new tokens. Using three transformer-based language models, a comprehensive set of experiments are conducted on four real-world datasets for evaluating K-Tokeniser in a wide range of clinical text analytics tasks including clinical concept and relation extraction, automated clinical coding, clinical phenotype identification, and clinical research article classification. Overall, our models demonstrate consistent improvements over their counterparts in all tasks. In particular, substantial improvements are observed in the automated clinical coding task with 13\% increase on Micro F_1 score. Furthermore, K-Tokeniser also shows significant capacities in facilitating quicker converge of language models. Specifically, using K-Tokeniser, the language models would only require 50\% of the training data to achieve the best performance of the baseline tokeniser using all training data in the concept extraction task and less than 20\% of the data for the automated coding task. It is worth mentioning that all these improvements require no pre-training process, making the approach generalisable.

CLARA: Clinical Report Auto-completion

Generating clinical reports from raw recordings such as X-rays and electroencephalogram (EEG) is an essential and routine task for doctors. However, it is often time-consuming to write accurate and detailed reports. Most existing methods try to generate the whole reports from the raw input with limited success because 1) generated reports often contain errors that need manual review and correction, 2) it does not save time when doctors want to write additional information into the report, and 3) the generated reports are not customized based on individual doctors' preference. We propose {\it CL}inic{\it A}l {\it R}eport {\it A}uto-completion (CLARA), an interactive method that generates reports in a sentence by sentence fashion based on doctors' anchor words and partially completed sentences. CLARA searches for most relevant sentences from existing reports as the template for the current report. The retrieved sentences are sequentially modified by combining with the input feature representations to create the final report. In our experimental evaluation, CLARA achieved 0.393 CIDEr and 0.248 BLEU-4 on X-ray reports and 0.482 CIDEr and 0.491 BLEU-4 for EEG reports for sentence-level generation, which is up to 35% improvement over the best baseline. Also via our qualitative evaluation, CLARA is shown to produce reports which have a significantly higher level of approval by doctors in a user study (3.74 out of 5 for CLARA vs 2.52 out of 5 for the baseline).

MedAlign: A Clinician-Generated Dataset for Instruction Following with Electronic Medical Records

The ability of large language models (LLMs) to follow natural language instructions with human-level fluency suggests many opportunities in healthcare to reduce administrative burden and improve quality of care. However, evaluating LLMs on realistic text generation tasks for healthcare remains challenging. Existing question answering datasets for electronic health record (EHR) data fail to capture the complexity of information needs and documentation burdens experienced by clinicians. To address these challenges, we introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data. MedAlign is curated by 15 clinicians (7 specialities), includes clinician-written reference responses for 303 instructions, and provides 276 longitudinal EHRs for grounding instruction-response pairs. We used MedAlign to evaluate 6 general domain LLMs, having clinicians rank the accuracy and quality of each LLM response. We found high error rates, ranging from 35% (GPT-4) to 68% (MPT-7B-Instruct), and an 8.3% drop in accuracy moving from 32k to 2k context lengths for GPT-4. Finally, we report correlations between clinician rankings and automated natural language generation metrics as a way to rank LLMs without human review. We make MedAlign available under a research data use agreement to enable LLM evaluations on tasks aligned with clinician needs and preferences.

Large Language Models Encode Clinical Knowledge

Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.

ArgMed-Agents: Explainable Clinical Decision Reasoning with LLM Disscusion via Argumentation Schemes

There are two main barriers to using large language models (LLMs) in clinical reasoning. Firstly, while LLMs exhibit significant promise in Natural Language Processing (NLP) tasks, their performance in complex reasoning and planning falls short of expectations. Secondly, LLMs use uninterpretable methods to make clinical decisions that are fundamentally different from the clinician's cognitive processes. This leads to user distrust. In this paper, we present a multi-agent framework called ArgMed-Agents, which aims to enable LLM-based agents to make explainable clinical decision reasoning through interaction. ArgMed-Agents performs self-argumentation iterations via Argumentation Scheme for Clinical Discussion (a reasoning mechanism for modeling cognitive processes in clinical reasoning), and then constructs the argumentation process as a directed graph representing conflicting relationships. Ultimately, use symbolic solver to identify a series of rational and coherent arguments to support decision. We construct a formal model of ArgMed-Agents and present conjectures for theoretical guarantees. ArgMed-Agents enables LLMs to mimic the process of clinical argumentative reasoning by generating explanations of reasoning in a self-directed manner. The setup experiments show that ArgMed-Agents not only improves accuracy in complex clinical decision reasoning problems compared to other prompt methods, but more importantly, it provides users with decision explanations that increase their confidence.

The Minimum Information about CLinical Artificial Intelligence Checklist for Generative Modeling Research (MI-CLAIM-GEN)

Recent advances in generative models, including large language models (LLMs), vision language models (VLMs), and diffusion models, have accelerated the field of natural language and image processing in medicine and marked a significant paradigm shift in how biomedical models can be developed and deployed. While these models are highly adaptable to new tasks, scaling and evaluating their usage presents new challenges not addressed in previous frameworks. In particular, the ability of these models to produce useful outputs with little to no specialized training data ("zero-" or "few-shot" approaches), as well as the open-ended nature of their outputs, necessitate the development of new guidelines for robust reporting of clinical generative model research. In response to gaps in standards and best practices for the development of clinical AI tools identified by US Executive Order 141103 and several emerging national networks for clinical AI evaluation, we begin to formalize some of these guidelines by building on the original MI-CLAIM checklist. The new checklist, MI-CLAIM-GEN (Table 1), aims to address differences in training, evaluation, interpretability, and reproducibility of new generative models compared to non-generative ("predictive") AI models. This MI-CLAIM-GEN checklist also seeks to clarify cohort selection reporting with unstructured clinical data and adds additional items on alignment with ethical standards for clinical AI research.

From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models

Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.

Lightweight Transformers for Clinical Natural Language Processing

Specialised pre-trained language models are becoming more frequent in NLP since they can potentially outperform models trained on generic texts. BioBERT and BioClinicalBERT are two examples of such models that have shown promise in medical NLP tasks. Many of these models are overparametrised and resource-intensive, but thanks to techniques like Knowledge Distillation (KD), it is possible to create smaller versions that perform almost as well as their larger counterparts. In this work, we specifically focus on development of compact language models for processing clinical texts (i.e. progress notes, discharge summaries etc). We developed a number of efficient lightweight clinical transformers using knowledge distillation and continual learning, with the number of parameters ranging from 15 million to 65 million. These models performed comparably to larger models such as BioBERT and ClinicalBioBERT and significantly outperformed other compact models trained on general or biomedical data. Our extensive evaluation was done across several standard datasets and covered a wide range of clinical text-mining tasks, including Natural Language Inference, Relation Extraction, Named Entity Recognition, and Sequence Classification. To our knowledge, this is the first comprehensive study specifically focused on creating efficient and compact transformers for clinical NLP tasks. The models and code used in this study can be found on our Huggingface profile at https://huggingface.co/nlpie and Github page at https://github.com/nlpie-research/Lightweight-Clinical-Transformers, respectively, promoting reproducibility of our results.

DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language Processing

The meaningful use of electronic health records (EHR) continues to progress in the digital era with clinical decision support systems augmented by artificial intelligence. A priority in improving provider experience is to overcome information overload and reduce the cognitive burden so fewer medical errors and cognitive biases are introduced during patient care. One major type of medical error is diagnostic error due to systematic or predictable errors in judgment that rely on heuristics. The potential for clinical natural language processing (cNLP) to model diagnostic reasoning in humans with forward reasoning from data to diagnosis and potentially reduce the cognitive burden and medical error has not been investigated. Existing tasks to advance the science in cNLP have largely focused on information extraction and named entity recognition through classification tasks. We introduce a novel suite of tasks coined as Diagnostic Reasoning Benchmarks, DR.BENCH, as a new benchmark for developing and evaluating cNLP models with clinical diagnostic reasoning ability. The suite includes six tasks from ten publicly available datasets addressing clinical text understanding, medical knowledge reasoning, and diagnosis generation. DR.BENCH is the first clinical suite of tasks designed to be a natural language generation framework to evaluate pre-trained language models. Experiments with state-of-the-art pre-trained generative language models using large general domain models and models that were continually trained on a medical corpus demonstrate opportunities for improvement when evaluated in DR. BENCH. We share DR. BENCH as a publicly available GitLab repository with a systematic approach to load and evaluate models for the cNLP community.

Forecasting Patient Demand at Urgent Care Clinics using Machine Learning

Urgent care clinics and emergency departments around the world periodically suffer from extended wait times beyond patient expectations due to inadequate staffing levels. These delays have been linked with adverse clinical outcomes. Previous research into forecasting demand this domain has mostly used a collection of statistical techniques, with machine learning approaches only now beginning to emerge in recent literature. The forecasting problem for this domain is difficult and has also been complicated by the COVID-19 pandemic which has introduced an additional complexity to this estimation due to typical demand patterns being disrupted. This study explores the ability of machine learning methods to generate accurate patient presentations at two large urgent care clinics located in Auckland, New Zealand. A number of machine learning algorithms were explored in order to determine the most effective technique for this problem domain, with the task of making forecasts of daily patient demand three months in advance. The study also performed an in-depth analysis into the model behaviour in respect to the exploration of which features are most effective at predicting demand and which features are capable of adaptation to the volatility caused by the COVID-19 pandemic lockdowns. The results showed that ensemble-based methods delivered the most accurate and consistent solutions on average, generating improvements in the range of 23%-27% over the existing in-house methods for estimating the daily demand.

GatorTron: A Large Clinical Language Model to Unlock Patient Information from Unstructured Electronic Health Records

There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.

Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario

This work presents biomedical and clinical language models for Spanish by experimenting with different pretraining choices, such as masking at word and subword level, varying the vocabulary size and testing with domain data, looking for better language representations. Interestingly, in the absence of enough clinical data to train a model from scratch, we applied mixed-domain pretraining and cross-domain transfer approaches to generate a performant bio-clinical model suitable for real-world clinical data. We evaluated our models on Named Entity Recognition (NER) tasks for biomedical documents and challenging hospital discharge reports. When compared against the competitive mBERT and BETO models, we outperform them in all NER tasks by a significant margin. Finally, we studied the impact of the model's vocabulary on the NER performances by offering an interesting vocabulary-centric analysis. The results confirm that domain-specific pretraining is fundamental to achieving higher performances in downstream NER tasks, even within a mid-resource scenario. To the best of our knowledge, we provide the first biomedical and clinical transformer-based pretrained language models for Spanish, intending to boost native Spanish NLP applications in biomedicine. Our best models are freely available in the HuggingFace hub: https://huggingface.co/BSC-TeMU.

RadGraph: Extracting Clinical Entities and Relations from Radiology Reports

Extracting structured clinical information from free-text radiology reports can enable the use of radiology report information for a variety of critical healthcare applications. In our work, we present RadGraph, a dataset of entities and relations in full-text chest X-ray radiology reports based on a novel information extraction schema we designed to structure radiology reports. We release a development dataset, which contains board-certified radiologist annotations for 500 radiology reports from the MIMIC-CXR dataset (14,579 entities and 10,889 relations), and a test dataset, which contains two independent sets of board-certified radiologist annotations for 100 radiology reports split equally across the MIMIC-CXR and CheXpert datasets. Using these datasets, we train and test a deep learning model, RadGraph Benchmark, that achieves a micro F1 of 0.82 and 0.73 on relation extraction on the MIMIC-CXR and CheXpert test sets respectively. Additionally, we release an inference dataset, which contains annotations automatically generated by RadGraph Benchmark across 220,763 MIMIC-CXR reports (around 6 million entities and 4 million relations) and 500 CheXpert reports (13,783 entities and 9,908 relations) with mappings to associated chest radiographs. Our freely available dataset can facilitate a wide range of research in medical natural language processing, as well as computer vision and multi-modal learning when linked to chest radiographs.