new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 12

ProSper -- A Python Library for Probabilistic Sparse Coding with Non-Standard Priors and Superpositions

ProSper is a python library containing probabilistic algorithms to learn dictionaries. Given a set of data points, the implemented algorithms seek to learn the elementary components that have generated the data. The library widens the scope of dictionary learning approaches beyond implementations of standard approaches such as ICA, NMF or standard L1 sparse coding. The implemented algorithms are especially well-suited in cases when data consist of components that combine non-linearly and/or for data requiring flexible prior distributions. Furthermore, the implemented algorithms go beyond standard approaches by inferring prior and noise parameters of the data, and they provide rich a-posteriori approximations for inference. The library is designed to be extendable and it currently includes: Binary Sparse Coding (BSC), Ternary Sparse Coding (TSC), Discrete Sparse Coding (DSC), Maximal Causes Analysis (MCA), Maximum Magnitude Causes Analysis (MMCA), and Gaussian Sparse Coding (GSC, a recent spike-and-slab sparse coding approach). The algorithms are scalable due to a combination of variational approximations and parallelization. Implementations of all algorithms allow for parallel execution on multiple CPUs and multiple machines for medium to large-scale applications. Typical large-scale runs of the algorithms can use hundreds of CPUs to learn hundreds of dictionary elements from data with tens of millions of floating-point numbers such that models with several hundred thousand parameters can be optimized. The library is designed to have minimal dependencies and to be easy to use. It targets users of dictionary learning algorithms and Machine Learning researchers.

Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling

We identify and overcome two key obstacles in extending the success of BERT-style pre-training, or the masked image modeling, to convolutional networks (convnets): (i) convolution operation cannot handle irregular, random-masked input images; (ii) the single-scale nature of BERT pre-training is inconsistent with convnet's hierarchical structure. For (i), we treat unmasked pixels as sparse voxels of 3D point clouds and use sparse convolution to encode. This is the first use of sparse convolution for 2D masked modeling. For (ii), we develop a hierarchical decoder to reconstruct images from multi-scale encoded features. Our method called Sparse masKed modeling (SparK) is general: it can be used directly on any convolutional model without backbone modifications. We validate it on both classical (ResNet) and modern (ConvNeXt) models: on three downstream tasks, it surpasses both state-of-the-art contrastive learning and transformer-based masked modeling by similarly large margins (around +1.0%). Improvements on object detection and instance segmentation are more substantial (up to +3.5%), verifying the strong transferability of features learned. We also find its favorable scaling behavior by observing more gains on larger models. All this evidence reveals a promising future of generative pre-training on convnets. Codes and models are released at https://github.com/keyu-tian/SparK.

DASS: Differentiable Architecture Search for Sparse neural networks

The deployment of Deep Neural Networks (DNNs) on edge devices is hindered by the substantial gap between performance requirements and available processing power. While recent research has made significant strides in developing pruning methods to build a sparse network for reducing the computing overhead of DNNs, there remains considerable accuracy loss, especially at high pruning ratios. We find that the architectures designed for dense networks by differentiable architecture search methods are ineffective when pruning mechanisms are applied to them. The main reason is that the current method does not support sparse architectures in their search space and uses a search objective that is made for dense networks and does not pay any attention to sparsity. In this paper, we propose a new method to search for sparsity-friendly neural architectures. We do this by adding two new sparse operations to the search space and modifying the search objective. We propose two novel parametric SparseConv and SparseLinear operations in order to expand the search space to include sparse operations. In particular, these operations make a flexible search space due to using sparse parametric versions of linear and convolution operations. The proposed search objective lets us train the architecture based on the sparsity of the search space operations. Quantitative analyses demonstrate that our search architectures outperform those used in the stateof-the-art sparse networks on the CIFAR-10 and ImageNet datasets. In terms of performance and hardware effectiveness, DASS increases the accuracy of the sparse version of MobileNet-v2 from 73.44% to 81.35% (+7.91% improvement) with 3.87x faster inference time.

Role of Locality and Weight Sharing in Image-Based Tasks: A Sample Complexity Separation between CNNs, LCNs, and FCNs

Vision tasks are characterized by the properties of locality and translation invariance. The superior performance of convolutional neural networks (CNNs) on these tasks is widely attributed to the inductive bias of locality and weight sharing baked into their architecture. Existing attempts to quantify the statistical benefits of these biases in CNNs over locally connected convolutional neural networks (LCNs) and fully connected neural networks (FCNs) fall into one of the following categories: either they disregard the optimizer and only provide uniform convergence upper bounds with no separating lower bounds, or they consider simplistic tasks that do not truly mirror the locality and translation invariance as found in real-world vision tasks. To address these deficiencies, we introduce the Dynamic Signal Distribution (DSD) classification task that models an image as consisting of k patches, each of dimension d, and the label is determined by a d-sparse signal vector that can freely appear in any one of the k patches. On this task, for any orthogonally equivariant algorithm like gradient descent, we prove that CNNs require O(k+d) samples, whereas LCNs require Omega(kd) samples, establishing the statistical advantages of weight sharing in translation invariant tasks. Furthermore, LCNs need O(k(k+d)) samples, compared to Omega(k^2d) samples for FCNs, showcasing the benefits of locality in local tasks. Additionally, we develop information theoretic tools for analyzing randomized algorithms, which may be of interest for statistical research.

Superposed Episodic and Semantic Memory via Sparse Distributed Representation

The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.

Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation

In the realm of deep learning-based recommendation systems, the increasing computational demands, driven by the growing number of users and items, pose a significant challenge to practical deployment. This challenge is primarily twofold: reducing the model size while effectively learning user and item representations for efficient recommendations. Despite considerable advancements in model compression and architecture search, prevalent approaches face notable constraints. These include substantial additional computational costs from pre-training/re-training in model compression and an extensive search space in architecture design. Additionally, managing complexity and adhering to memory constraints is problematic, especially in scenarios with strict time or space limitations. Addressing these issues, this paper introduces a novel learning paradigm, Dynamic Sparse Learning (DSL), tailored for recommendation models. DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance and the model's sparsity distribution during the training. This approach ensures a consistent and minimal parameter budget throughout the full learning lifecycle, paving the way for "end-to-end" efficiency from training to inference. Our extensive experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.

The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs

Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its viability, its efficiency-accuracy trade-offs, and systematic scaling studies remain unexplored. To address this gap, we perform a careful comparison of training-free sparse attention methods at varying model scales, sequence lengths, and sparsity levels on a diverse collection of long-sequence tasks-including novel ones that rely on natural language while remaining controllable and easy to evaluate. Based on our experiments, we report a series of key findings: 1) an isoFLOPS analysis reveals that for very long sequences, larger and highly sparse models are preferable to smaller and dense ones. 2) The level of sparsity attainable while statistically guaranteeing accuracy preservation is higher during decoding than prefilling, and correlates with model size in the former. 3) There is no clear strategy that performs best across tasks and phases, with different units of sparsification or budget adaptivity needed for different scenarios. Even moderate sparsity levels often result in significant performance degradation on at least one task, highlighting that sparse attention is not a universal solution. 4) We introduce and validate novel scaling laws specifically tailored for sparse attention, providing evidence that our findings are likely to hold true beyond our range of experiments. Through these insights, we demonstrate that sparse attention is a key tool to enhance the capabilities of Transformer LLMs for processing longer sequences, but requires careful evaluation of trade-offs for performance-sensitive applications.

Kernel Heterogeneity Improves Sparseness of Natural Images Representations

Both biological and artificial neural networks inherently balance their performance with their operational cost, which balances their computational abilities. Typically, an efficient neuromorphic neural network is one that learns representations that reduce the redundancies and dimensionality of its input. This is for instance achieved in sparse coding, and sparse representations derived from natural images yield representations that are heterogeneous, both in their sampling of input features and in the variance of those features. Here, we investigated the connection between natural images' structure, particularly oriented features, and their corresponding sparse codes. We showed that representations of input features scattered across multiple levels of variance substantially improve the sparseness and resilience of sparse codes, at the cost of reconstruction performance. This echoes the structure of the model's input, allowing to account for the heterogeneously aleatoric structures of natural images. We demonstrate that learning kernel from natural images produces heterogeneity by balancing between approximate and dense representations, which improves all reconstruction metrics. Using a parametrized control of the kernels' heterogeneity used by a convolutional sparse coding algorithm, we show that heterogeneity emphasizes sparseness, while homogeneity improves representation granularity. In a broader context, these encoding strategy can serve as inputs to deep convolutional neural networks. We prove that such variance-encoded sparse image datasets enhance computational efficiency, emphasizing the benefits of kernel heterogeneity to leverage naturalistic and variant input structures and possible applications to improve the throughput of neuromorphic hardware.

Efficient 3D Recognition with Event-driven Spike Sparse Convolution

Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. Point clouds are sparse 3D spatial data, which suggests that SNNs should be well-suited for processing them. However, when applying SNNs to point clouds, they often exhibit limited performance and fewer application scenarios. We attribute this to inappropriate preprocessing and feature extraction methods. To address this issue, we first introduce the Spike Voxel Coding (SVC) scheme, which encodes the 3D point clouds into a sparse spike train space, reducing the storage requirements and saving time on point cloud preprocessing. Then, we propose a Spike Sparse Convolution (SSC) model for efficiently extracting 3D sparse point cloud features. Combining SVC and SSC, we design an efficient 3D SNN backbone (E-3DSNN), which is friendly with neuromorphic hardware. For instance, SSC can be implemented on neuromorphic chips with only minor modifications to the addressing function of vanilla spike convolution. Experiments on ModelNet40, KITTI, and Semantic KITTI datasets demonstrate that E-3DSNN achieves state-of-the-art (SOTA) results with remarkable efficiency. Notably, our E-3DSNN (1.87M) obtained 91.7\% top-1 accuracy on ModelNet40, surpassing the current best SNN baselines (14.3M) by 3.0\%. To our best knowledge, it is the first direct training 3D SNN backbone that can simultaneously handle various 3D computer vision tasks (e.g., classification, detection, and segmentation) with an event-driven nature. Code is available: https://github.com/bollossom/E-3DSNN/.

Sparse-vDiT: Unleashing the Power of Sparse Attention to Accelerate Video Diffusion Transformers

While Diffusion Transformers (DiTs) have achieved breakthroughs in video generation, this long sequence generation task remains constrained by the quadratic complexity of attention mechanisms, resulting in significant inference latency. Through detailed analysis of attention maps in Video Diffusion Transformer (vDiT), we identify three recurring sparsity patterns: diagonal, multi-diagonal, and vertical-stripe structures. And even 3-6\% attention heads can be skipped. Crucially, these patterns exhibit strong layer-depth and head-position correlations but show limited dependence on the input content. Leveraging these findings, we propose Sparse-vDiT, a sparsity acceleration framework for vDiT comprising: 1) Pattern-optimized sparse kernels that replace dense attention with computationally efficient implementations for each identified sparsity pattern. 2) An offline sparse diffusion search algorithm that selects the optimal sparse computation strategy per layer and head via hardware-aware cost modeling. After determining the optimal configuration, we fuse heads within the same layer that share the same attention strategy, enhancing inference efficiency. Integrated into state-of-the-art vDiT models (CogVideoX1.5, HunyuanVideo, and Wan2.1), Sparse-vDiT achieves 2.09times, 2.38times, and 1.67times theoretical FLOP reduction, and actual inference speedups of 1.76times, 1.85times, and 1.58times, respectively, while maintaining high visual fidelity, with PSNR values reaching 24.13, 27.09, and 22.59. Our work demonstrates that latent structural sparsity in vDiTs can be systematically exploited for long video synthesis.

Conditional Latent Coding with Learnable Synthesized Reference for Deep Image Compression

In this paper, we study how to synthesize a dynamic reference from an external dictionary to perform conditional coding of the input image in the latent domain and how to learn the conditional latent synthesis and coding modules in an end-to-end manner. Our approach begins by constructing a universal image feature dictionary using a multi-stage approach involving modified spatial pyramid pooling, dimension reduction, and multi-scale feature clustering. For each input image, we learn to synthesize a conditioning latent by selecting and synthesizing relevant features from the dictionary, which significantly enhances the model's capability in capturing and exploring image source correlation. This conditional latent synthesis involves a correlation-based feature matching and alignment strategy, comprising a Conditional Latent Matching (CLM) module and a Conditional Latent Synthesis (CLS) module. The synthesized latent is then used to guide the encoding process, allowing for more efficient compression by exploiting the correlation between the input image and the reference dictionary. According to our theoretical analysis, the proposed conditional latent coding (CLC) method is robust to perturbations in the external dictionary samples and the selected conditioning latent, with an error bound that scales logarithmically with the dictionary size, ensuring stability even with large and diverse dictionaries. Experimental results on benchmark datasets show that our new method improves the coding performance by a large margin (up to 1.2 dB) with a very small overhead of approximately 0.5\% bits per pixel. Our code is publicly available at https://github.com/ydchen0806/CLC.

Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning

We propose a novel architecture and method of explainable classification with Concept Bottleneck Models (CBMs). While SOTA approaches to Image Classification task work as a black box, there is a growing demand for models that would provide interpreted results. Such a models often learn to predict the distribution over class labels using additional description of this target instances, called concepts. However, existing Bottleneck methods have a number of limitations: their accuracy is lower than that of a standard model and CBMs require an additional set of concepts to leverage. We provide a framework for creating Concept Bottleneck Model from pre-trained multi-modal encoder and new CLIP-like architectures. By introducing a new type of layers known as Concept Bottleneck Layers, we outline three methods for training them: with ell_1-loss, contrastive loss and loss function based on Gumbel-Softmax distribution (Sparse-CBM), while final FC layer is still trained with Cross-Entropy. We show a significant increase in accuracy using sparse hidden layers in CLIP-based bottleneck models. Which means that sparse representation of concepts activation vector is meaningful in Concept Bottleneck Models. Moreover, with our Concept Matrix Search algorithm we can improve CLIP predictions on complex datasets without any additional training or fine-tuning. The code is available at: https://github.com/Andron00e/SparseCBM.

SpaRTAN: Spatial Reinforcement Token-based Aggregation Network for Visual Recognition

The resurgence of convolutional neural networks (CNNs) in visual recognition tasks, exemplified by ConvNeXt, has demonstrated their capability to rival transformer-based architectures through advanced training methodologies and ViT-inspired design principles. However, both CNNs and transformers exhibit a simplicity bias, favoring straightforward features over complex structural representations. Furthermore, modern CNNs often integrate MLP-like blocks akin to those in transformers, but these blocks suffer from significant information redundancies, necessitating high expansion ratios to sustain competitive performance. To address these limitations, we propose SpaRTAN, a lightweight architectural design that enhances spatial and channel-wise information processing. SpaRTAN employs kernels with varying receptive fields, controlled by kernel size and dilation factor, to capture discriminative multi-order spatial features effectively. A wave-based channel aggregation module further modulates and reinforces pixel interactions, mitigating channel-wise redundancies. Combining the two modules, the proposed network can efficiently gather and dynamically contextualize discriminative features. Experimental results in ImageNet and COCO demonstrate that SpaRTAN achieves remarkable parameter efficiency while maintaining competitive performance. In particular, on the ImageNet-1k benchmark, SpaRTAN achieves 77. 7% accuracy with only 3.8M parameters and approximately 1.0 GFLOPs, demonstrating its ability to deliver strong performance through an efficient design. On the COCO benchmark, it achieves 50.0% AP, surpassing the previous benchmark by 1.2% with only 21.5M parameters. The code is publicly available at [https://github.com/henry-pay/SpaRTAN].

Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach

Recent progress in single-image super-resolution (SISR) has achieved remarkable performance, yet the computational costs of these methods remain a challenge for deployment on resource-constrained devices. Especially for transformer-based methods, the self-attention mechanism in such models brings great breakthroughs while incurring substantial computational costs. To tackle this issue, we introduce the Convolutional Transformer layer (ConvFormer) and the ConvFormer-based Super-Resolution network (CFSR), which offer an effective and efficient solution for lightweight image super-resolution tasks. In detail, CFSR leverages the large kernel convolution as the feature mixer to replace the self-attention module, efficiently modeling long-range dependencies and extensive receptive fields with a slight computational cost. Furthermore, we propose an edge-preserving feed-forward network, simplified as EFN, to obtain local feature aggregation and simultaneously preserve more high-frequency information. Extensive experiments demonstrate that CFSR can achieve an advanced trade-off between computational cost and performance when compared to existing lightweight SR methods. Compared to state-of-the-art methods, e.g. ShuffleMixer, the proposed CFSR achieves 0.39 dB gains on Urban100 dataset for x2 SR task while containing 26% and 31% fewer parameters and FLOPs, respectively. Code and pre-trained models are available at https://github.com/Aitical/CFSR.

White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is?

In this paper, we contend that a natural objective of representation learning is to compress and transform the distribution of the data, say sets of tokens, towards a low-dimensional Gaussian mixture supported on incoherent subspaces. The goodness of such a representation can be evaluated by a principled measure, called sparse rate reduction, that simultaneously maximizes the intrinsic information gain and extrinsic sparsity of the learned representation. From this perspective, popular deep network architectures, including transformers, can be viewed as realizing iterative schemes to optimize this measure. Particularly, we derive a transformer block from alternating optimization on parts of this objective: the multi-head self-attention operator compresses the representation by implementing an approximate gradient descent step on the coding rate of the features, and the subsequent multi-layer perceptron sparsifies the features. This leads to a family of white-box transformer-like deep network architectures, named CRATE, which are mathematically fully interpretable. We show, by way of a novel connection between denoising and compression, that the inverse to the aforementioned compressive encoding can be realized by the same class of CRATE architectures. Thus, the so-derived white-box architectures are universal to both encoders and decoders. Experiments show that these networks, despite their simplicity, indeed learn to compress and sparsify representations of large-scale real-world image and text datasets, and achieve performance very close to highly engineered transformer-based models: ViT, MAE, DINO, BERT, and GPT2. We believe the proposed computational framework demonstrates great potential in bridging the gap between theory and practice of deep learning, from a unified perspective of data compression. Code is available at: https://ma-lab-berkeley.github.io/CRATE .

Beyond ell_1 sparse coding in V1

Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ell_1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ell_1 norm is highly suboptimal compared to other functions suited to approximating ell_q with 0 leq q < 1 (including recently proposed Continuous Exact relaxations), both in terms of performance and in the production of features that are akin to signatures of the primary visual cortex. We show that ell_1 sparsity produces a denser code or employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. For all the penalty functions tested, a subset of the neurons develop orientation selectivity similarly to V1 neurons. When their code is sparse enough, the methods also develop receptive fields with varying functionalities, another signature of V1. Compared to other methods, soft thresholding achieves this level of sparsity at the expense of much degraded reconstruction performance, that more likely than not is not acceptable in biological vision. Our results indicate that V1 uses a sparsity inducing regularization that is closer to the ell_0 pseudo-norm rather than to the ell_1 norm.

A priori compression of convolutional neural networks for wave simulators

Convolutional neural networks are now seeing widespread use in a variety of fields, including image classification, facial and object recognition, medical imaging analysis, and many more. In addition, there are applications such as physics-informed simulators in which accurate forecasts in real time with a minimal lag are required. The present neural network designs include millions of parameters, which makes it difficult to install such complex models on devices that have limited memory. Compression techniques might be able to resolve these issues by decreasing the size of CNN models that are created by reducing the number of parameters that contribute to the complexity of the models. We propose a compressed tensor format of convolutional layer, a priori, before the training of the neural network. 3-way kernels or 2-way kernels in convolutional layers are replaced by one-way fiters. The overfitting phenomena will be reduced also. The time needed to make predictions or time required for training using the original Convolutional Neural Networks model would be cut significantly if there were fewer parameters to deal with. In this paper we present a method of a priori compressing convolutional neural networks for finite element (FE) predictions of physical data. Afterwards we validate our a priori compressed models on physical data from a FE model solving a 2D wave equation. We show that the proposed convolutinal compression technique achieves equivalent performance as classical convolutional layers with fewer trainable parameters and lower memory footprint.

Group channel pruning and spatial attention distilling for object detection

Due to the over-parameterization of neural networks, many model compression methods based on pruning and quantization have emerged. They are remarkable in reducing the size, parameter number, and computational complexity of the model. However, most of the models compressed by such methods need the support of special hardware and software, which increases the deployment cost. Moreover, these methods are mainly used in classification tasks, and rarely directly used in detection tasks. To address these issues, for the object detection network we introduce a three-stage model compression method: dynamic sparse training, group channel pruning, and spatial attention distilling. Firstly, to select out the unimportant channels in the network and maintain a good balance between sparsity and accuracy, we put forward a dynamic sparse training method, which introduces a variable sparse rate, and the sparse rate will change with the training process of the network. Secondly, to reduce the effect of pruning on network accuracy, we propose a novel pruning method called group channel pruning. In particular, we divide the network into multiple groups according to the scales of the feature layer and the similarity of module structure in the network, and then we use different pruning thresholds to prune the channels in each group. Finally, to recover the accuracy of the pruned network, we use an improved knowledge distillation method for the pruned network. Especially, we extract spatial attention information from the feature maps of specific scales in each group as knowledge for distillation. In the experiments, we use YOLOv4 as the object detection network and PASCAL VOC as the training dataset. Our method reduces the parameters of the model by 64.7 % and the calculation by 34.9%.

Dilated Convolution with Learnable Spacings

This thesis presents and evaluates the Dilated Convolution with Learnable Spacings (DCLS) method. Through various supervised learning experiments in the fields of computer vision, audio, and speech processing, the DCLS method proves to outperform both standard and advanced convolution techniques. The research is organized into several steps, starting with an analysis of the literature and existing convolution techniques that preceded the development of the DCLS method. We were particularly interested in the methods that are closely related to our own and that remain essential to capture the nuances and uniqueness of our approach. The cornerstone of our study is the introduction and application of the DCLS method to convolutional neural networks (CNNs), as well as to hybrid architectures that rely on both convolutional and visual attention approaches. DCLS is shown to be particularly effective in tasks such as classification, semantic segmentation, and object detection. Initially using bilinear interpolation, the study also explores other interpolation methods, finding that Gaussian interpolation slightly improves performance. The DCLS method is further applied to spiking neural networks (SNNs) to enable synaptic delay learning within a neural network that could eventually be transferred to so-called neuromorphic chips. The results show that the DCLS method stands out as a new state-of-the-art technique in SNN audio classification for certain benchmark tasks in this field. These tasks involve datasets with a high temporal component. In addition, we show that DCLS can significantly improve the accuracy of artificial neural networks for the multi-label audio classification task. We conclude with a discussion of the chosen experimental setup, its limitations, the limitations of our method, and our results.

Dilated convolution with learnable spacings

Recent works indicate that convolutional neural networks (CNN) need large receptive fields (RF) to compete with visual transformers and their attention mechanism. In CNNs, RFs can simply be enlarged by increasing the convolution kernel sizes. Yet the number of trainable parameters, which scales quadratically with the kernel's size in the 2D case, rapidly becomes prohibitive, and the training is notoriously difficult. This paper presents a new method to increase the RF size without increasing the number of parameters. The dilated convolution (DC) has already been proposed for the same purpose. DC can be seen as a convolution with a kernel that contains only a few non-zero elements placed on a regular grid. Here we present a new version of the DC in which the spacings between the non-zero elements, or equivalently their positions, are no longer fixed but learnable via backpropagation thanks to an interpolation technique. We call this method "Dilated Convolution with Learnable Spacings" (DCLS) and generalize it to the n-dimensional convolution case. However, our main focus here will be on the 2D case. We first tried our approach on ResNet50: we drop-in replaced the standard convolutions with DCLS ones, which increased the accuracy of ImageNet1k classification at iso-parameters, but at the expense of the throughput. Next, we used the recent ConvNeXt state-of-the-art convolutional architecture and drop-in replaced the depthwise convolutions with DCLS ones. This not only increased the accuracy of ImageNet1k classification but also of typical downstream and robustness tasks, again at iso-parameters but this time with negligible cost on throughput, as ConvNeXt uses separable convolutions. Conversely, classic DC led to poor performance with both ResNet50 and ConvNeXt. The code of the method is available at: https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch.

Ten Lessons We Have Learned in the New "Sparseland": A Short Handbook for Sparse Neural Network Researchers

This article does not propose any novel algorithm or new hardware for sparsity. Instead, it aims to serve the "common good" for the increasingly prosperous Sparse Neural Network (SNN) research community. We attempt to summarize some most common confusions in SNNs, that one may come across in various scenarios such as paper review/rebuttal and talks - many drawn from the authors' own bittersweet experiences! We feel that doing so is meaningful and timely, since the focus of SNN research is notably shifting from traditional pruning to more diverse and profound forms of sparsity before, during, and after training. The intricate relationships between their scopes, assumptions, and approaches lead to misunderstandings, for non-experts or even experts in SNNs. In response, we summarize ten Q\&As of SNNs from many key aspects, including dense vs. sparse, unstructured sparse vs. structured sparse, pruning vs. sparse training, dense-to-sparse training vs. sparse-to-sparse training, static sparsity vs. dynamic sparsity, before-training/during-training vs. post-training sparsity, and many more. We strive to provide proper and generically applicable answers to clarify those confusions to the best extent possible. We hope our summary provides useful general knowledge for people who want to enter and engage with this exciting community; and also provides some "mind of ease" convenience for SNN researchers to explain their work in the right contexts. At the very least (and perhaps as this article's most insignificant target functionality), if you are writing/planning to write a paper or rebuttal in the field of SNNs, we hope some of our answers could help you!

Progressive Gradient Flow for Robust N:M Sparsity Training in Transformers

N:M Structured sparsity has garnered significant interest as a result of relatively modest overhead and improved efficiency. Additionally, this form of sparsity holds considerable appeal for reducing the memory footprint owing to their modest representation overhead. There have been efforts to develop training recipes for N:M structured sparsity, they primarily focus on low-sparsity regions (sim50\%). Nonetheless, performance of models trained using these approaches tends to decline when confronted with high-sparsity regions (>80\%). In this work, we study the effectiveness of existing sparse training recipes at high-sparsity regions and argue that these methods fail to sustain the model quality on par with low-sparsity regions. We demonstrate that the significant factor contributing to this disparity is the presence of elevated levels of induced noise in the gradient magnitudes. To mitigate this undesirable effect, we employ decay mechanisms to progressively restrict the flow of gradients towards pruned elements. Our approach improves the model quality by up to 2% and 5% in vision and language models at high sparsity regime, respectively. We also evaluate the trade-off between model accuracy and training compute cost in terms of FLOPs. At iso-training FLOPs, our method yields better performance compared to conventional sparse training recipes, exhibiting an accuracy improvement of up to 2%. The source code is available at https://github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity.

Efficient N:M Sparse DNN Training Using Algorithm, Architecture, and Dataflow Co-Design

Sparse training is one of the promising techniques to reduce the computational cost of DNNs while retaining high accuracy. In particular, N:M fine-grained structured sparsity, where only N out of consecutive M elements can be nonzero, has attracted attention due to its hardware-friendly pattern and capability of achieving a high sparse ratio. However, the potential to accelerate N:M sparse DNN training has not been fully exploited, and there is a lack of efficient hardware supporting N:M sparse training. To tackle these challenges, this paper presents a computation-efficient training scheme for N:M sparse DNNs using algorithm, architecture, and dataflow co-design. At the algorithm level, a bidirectional weight pruning method, dubbed BDWP, is proposed to leverage the N:M sparsity of weights during both forward and backward passes of DNN training, which can significantly reduce the computational cost while maintaining model accuracy. At the architecture level, a sparse accelerator for DNN training, namely SAT, is developed to neatly support both the regular dense operations and the computation-efficient N:M sparse operations. At the dataflow level, multiple optimization methods ranging from interleave mapping, pre-generation of N:M sparse weights, and offline scheduling, are proposed to boost the computational efficiency of SAT. Finally, the effectiveness of our training scheme is evaluated on a Xilinx VCU1525 FPGA card using various DNN models and datasets. Experimental results show the SAT accelerator with the BDWP sparse training method under 2:8 sparse ratio achieves an average speedup of 1.75x over that with the dense training, accompanied by a negligible accuracy loss of 0.56% on average. Furthermore, our proposed training scheme significantly improves the training throughput by 2.97~25.22x and the energy efficiency by 1.36~3.58x over prior FPGA-based accelerators.

The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training. In this paper, we focus on sparse training and highlight a perhaps counter-intuitive finding, that random pruning at initialization can be quite powerful for the sparse training of modern neural networks. Without any delicate pruning criteria or carefully pursued sparsity structures, we empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent. There are two key factors that contribute to this revival: (i) the network sizes matter: as the original dense networks grow wider and deeper, the performance of training a randomly pruned sparse network will quickly grow to matching that of its dense equivalent, even at high sparsity ratios; (ii) appropriate layer-wise sparsity ratios can be pre-chosen for sparse training, which shows to be another important performance booster. Simple as it looks, a randomly pruned subnetwork of Wide ResNet-50 can be sparsely trained to outperforming a dense Wide ResNet-50, on ImageNet. We also observed such randomly pruned networks outperform dense counterparts in other favorable aspects, such as out-of-distribution detection, uncertainty estimation, and adversarial robustness. Overall, our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning. Our source code can be found at https://github.com/VITA-Group/Random_Pruning.

Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization

The extensive need for computational resources poses a significant obstacle to deploying large-scale Deep Neural Networks (DNN) on devices with constrained resources. At the same time, studies have demonstrated that a significant number of these DNN parameters are redundant and extraneous. In this paper, we introduce a novel approach for learning structured sparse neural networks, aimed at bridging the DNN hardware deployment challenges. We develop a novel regularization technique, termed Weighted Group Sparse Envelope Function (WGSEF), generalizing the Sparse Envelop Function (SEF), to select (or nullify) neuron groups, thereby reducing redundancy and enhancing computational efficiency. The method speeds up inference time and aims to reduce memory demand and power consumption, thanks to its adaptability which lets any hardware specify group definitions, such as filters, channels, filter shapes, layer depths, a single parameter (unstructured), etc. The properties of the WGSEF enable the pre-definition of a desired sparsity level to be achieved at the training convergence. In the case of redundant parameters, this approach maintains negligible network accuracy degradation or can even lead to improvements in accuracy. Our method efficiently computes the WGSEF regularizer and its proximal operator, in a worst-case linear complexity relative to the number of group variables. Employing a proximal-gradient-based optimization technique, to train the model, it tackles the non-convex minimization problem incorporating the neural network loss and the WGSEF. Finally, we experiment and illustrate the efficiency of our proposed method in terms of the compression ratio, accuracy, and inference latency.

CoreMatching: A Co-adaptive Sparse Inference Framework with Token and Neuron Pruning for Comprehensive Acceleration of Vision-Language Models

Vision-Language Models (VLMs) excel across diverse tasks but suffer from high inference costs in time and memory. Token sparsity mitigates inefficiencies in token usage, while neuron sparsity reduces high-dimensional computations, both offering promising solutions to enhance efficiency. Recently, these two sparsity paradigms have evolved largely in parallel, fostering the prevailing assumption that they function independently. However, a fundamental yet underexplored question remains: Do they truly operate in isolation, or is there a deeper underlying interplay that has yet to be uncovered? In this paper, we conduct the first comprehensive investigation into this question. By introducing and analyzing the matching mechanism between Core Neurons and Core Tokens, we found that key neurons and tokens for inference mutually influence and reinforce each other. Building on this insight, we propose CoreMatching, a co-adaptive sparse inference framework, which leverages the synergy between token and neuron sparsity to enhance inference efficiency. Through theoretical analysis and efficiency evaluations, we demonstrate that the proposed method surpasses state-of-the-art baselines on ten image understanding tasks and three hardware devices. Notably, on the NVIDIA Titan Xp, it achieved 5x FLOPs reduction and a 10x overall speedup. Code is released at https://github.com/wangqinsi1/2025-ICML-CoreMatching/tree/main.

Efficient Content-Based Sparse Attention with Routing Transformers

Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic compute and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: it combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to Oleft(n^{1.5}dright) from Oleft(n^2dright) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity) as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192.

Re-ttention: Ultra Sparse Visual Generation via Attention Statistical Reshape

Diffusion Transformers (DiT) have become the de-facto model for generating high-quality visual content like videos and images. A huge bottleneck is the attention mechanism where complexity scales quadratically with resolution and video length. One logical way to lessen this burden is sparse attention, where only a subset of tokens or patches are included in the calculation. However, existing techniques fail to preserve visual quality at extremely high sparsity levels and might even incur non-negligible compute overheads. % To address this concern, we propose Re-ttention, which implements very high sparse attention for visual generation models by leveraging the temporal redundancy of Diffusion Models to overcome the probabilistic normalization shift within the attention mechanism. Specifically, Re-ttention reshapes attention scores based on the prior softmax distribution history in order to preserve the visual quality of the full quadratic attention at very high sparsity levels. % Experimental results on T2V/T2I models such as CogVideoX and the PixArt DiTs demonstrate that Re-ttention requires as few as 3.1\% of the tokens during inference, outperforming contemporary methods like FastDiTAttn, Sparse VideoGen and MInference. Further, we measure latency to show that our method can attain over 45\% end-to-end % and over 92\% self-attention latency reduction on an H100 GPU at negligible overhead cost. Code available online here: https://github.com/cccrrrccc/Re-ttention{https://github.com/cccrrrccc/Re-ttention}

Less is More: Focus Attention for Efficient DETR

DETR-like models have significantly boosted the performance of detectors and even outperformed classical convolutional models. However, all tokens are treated equally without discrimination brings a redundant computational burden in the traditional encoder structure. The recent sparsification strategies exploit a subset of informative tokens to reduce attention complexity maintaining performance through the sparse encoder. But these methods tend to rely on unreliable model statistics. Moreover, simply reducing the token population hinders the detection performance to a large extent, limiting the application of these sparse models. We propose Focus-DETR, which focuses attention on more informative tokens for a better trade-off between computation efficiency and model accuracy. Specifically, we reconstruct the encoder with dual attention, which includes a token scoring mechanism that considers both localization and category semantic information of the objects from multi-scale feature maps. We efficiently abandon the background queries and enhance the semantic interaction of the fine-grained object queries based on the scores. Compared with the state-of-the-art sparse DETR-like detectors under the same setting, our Focus-DETR gets comparable complexity while achieving 50.4AP (+2.2) on COCO. The code is available at https://github.com/huawei-noah/noah-research/tree/master/Focus-DETR and https://gitee.com/mindspore/models/tree/master/research/cv/Focus-DETR.

BiFormer: Vision Transformer with Bi-Level Routing Attention

As the core building block of vision transformers, attention is a powerful tool to capture long-range dependency. However, such power comes at a cost: it incurs a huge computation burden and heavy memory footprint as pairwise token interaction across all spatial locations is computed. A series of works attempt to alleviate this problem by introducing handcrafted and content-agnostic sparsity into attention, such as restricting the attention operation to be inside local windows, axial stripes, or dilated windows. In contrast to these approaches, we propose a novel dynamic sparse attention via bi-level routing to enable a more flexible allocation of computations with content awareness. Specifically, for a query, irrelevant key-value pairs are first filtered out at a coarse region level, and then fine-grained token-to-token attention is applied in the union of remaining candidate regions (\ie, routed regions). We provide a simple yet effective implementation of the proposed bi-level routing attention, which utilizes the sparsity to save both computation and memory while involving only GPU-friendly dense matrix multiplications. Built with the proposed bi-level routing attention, a new general vision transformer, named BiFormer, is then presented. As BiFormer attends to a small subset of relevant tokens in a query adaptive manner without distraction from other irrelevant ones, it enjoys both good performance and high computational efficiency, especially in dense prediction tasks. Empirical results across several computer vision tasks such as image classification, object detection, and semantic segmentation verify the effectiveness of our design. Code is available at https://github.com/rayleizhu/BiFormer.

FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores

Convolution models with long filters have demonstrated state-of-the-art reasoning abilities in many long-sequence tasks but lag behind the most optimized Transformers in wall-clock time. A major bottleneck is the Fast Fourier Transform (FFT)--which allows long convolutions to run in O(N logN) time in sequence length N but has poor hardware utilization. In this paper, we study how to optimize the FFT convolution. We find two key bottlenecks: the FFT does not effectively use specialized matrix multiply units, and it incurs expensive I/O between layers of the memory hierarchy. In response, we propose FlashFFTConv. FlashFFTConv uses a matrix decomposition that computes the FFT using matrix multiply units and enables kernel fusion for long sequences, reducing I/O. We also present two sparse convolution algorithms--1) partial convolutions and 2) frequency-sparse convolutions--which can be implemented simply by skipping blocks in the matrix decomposition, enabling further opportunities for memory and compute savings. FlashFFTConv speeds up exact FFT convolutions by up to 7.93times over PyTorch and achieves up to 4.4times speedup end-to-end. Given the same compute budget, FlashFFTConv allows Hyena-GPT-s to achieve 2.3 points better perplexity on the PILE and M2-BERT-base to achieve 3.3 points higher GLUE score--matching models with twice the parameter count. FlashFFTConv also achieves 96.1% accuracy on Path-512, a high-resolution vision task where no model had previously achieved better than 50%. Furthermore, partial convolutions enable longer-sequence models--yielding the first DNA model that can process the longest human genes (2.3M base pairs)--and frequency-sparse convolutions speed up pretrained models while maintaining or improving model quality.

Distillation-Supervised Convolutional Low-Rank Adaptation for Efficient Image Super-Resolution

Convolutional neural networks (CNNs) have been widely used in efficient image super-resolution. However, for CNN-based methods, performance gains often require deeper networks and larger feature maps, which increase complexity and inference costs. Inspired by LoRA's success in fine-tuning large language models, we explore its application to lightweight models and propose Distillation-Supervised Convolutional Low-Rank Adaptation (DSCLoRA), which improves model performance without increasing architectural complexity or inference costs. Specifically, we integrate ConvLoRA into the efficient SR network SPAN by replacing the SPAB module with the proposed SConvLB module and incorporating ConvLoRA layers into both the pixel shuffle block and its preceding convolutional layer. DSCLoRA leverages low-rank decomposition for parameter updates and employs a spatial feature affinity-based knowledge distillation strategy to transfer second-order statistical information from teacher models (pre-trained SPAN) to student models (ours). This method preserves the core knowledge of lightweight models and facilitates optimal solution discovery under certain conditions. Experiments on benchmark datasets show that DSCLoRA improves PSNR and SSIM over SPAN while maintaining its efficiency and competitive image quality. Notably, DSCLoRA ranked first in the Overall Performance Track of the NTIRE 2025 Efficient Super-Resolution Challenge. Our code and models are made publicly available at https://github.com/Yaozzz666/DSCF-SR.

Feature Coding in the Era of Large Models: Dataset, Test Conditions, and Benchmark

Large models have achieved remarkable performance across various tasks, yet they incur significant computational costs and privacy concerns during both training and inference. Distributed deployment has emerged as a potential solution, but it necessitates the exchange of intermediate information between model segments, with feature representations serving as crucial information carriers. To optimize information exchange, feature coding methods are applied to reduce transmission and storage overhead. Despite its importance, feature coding for large models remains an under-explored area. In this paper, we draw attention to large model feature coding and make three contributions to this field. First, we introduce a comprehensive dataset encompassing diverse features generated by three representative types of large models. Second, we establish unified test conditions, enabling standardized evaluation pipelines and fair comparisons across future feature coding studies. Third, we introduce two baseline methods derived from widely used image coding techniques and benchmark their performance on the proposed dataset. These contributions aim to advance the field of feature coding, facilitating more efficient large model deployment. All source code and the dataset are now available at https://github.com/chansongoal/FCM-LM/tree/master{https://github.com/chansongoal/FCM-LM/tree/master}.

Cross-Scale Context Extracted Hashing for Fine-Grained Image Binary Encoding

Deep hashing has been widely applied to large-scale image retrieval tasks owing to efficient computation and low storage cost by encoding high-dimensional image data into binary codes. Since binary codes do not contain as much information as float features, the essence of binary encoding is preserving the main context to guarantee retrieval quality. However, the existing hashing methods have great limitations on suppressing redundant background information and accurately encoding from Euclidean space to Hamming space by a simple sign function. In order to solve these problems, a Cross-Scale Context Extracted Hashing Network (CSCE-Net) is proposed in this paper. Firstly, we design a two-branch framework to capture fine-grained local information while maintaining high-level global semantic information. Besides, Attention guided Information Extraction module (AIE) is introduced between two branches, which suppresses areas of low context information cooperated with global sliding windows. Unlike previous methods, our CSCE-Net learns a content-related Dynamic Sign Function (DSF) to replace the original simple sign function. Therefore, the proposed CSCE-Net is context-sensitive and able to perform well on accurate image binary encoding. We further demonstrate that our CSCE-Net is superior to the existing hashing methods, which improves retrieval performance on standard benchmarks.

SwinJSCC: Taming Swin Transformer for Deep Joint Source-Channel Coding

As one of the key techniques to realize semantic communications, end-to-end optimized neural joint source-channel coding (JSCC) has made great progress over the past few years. A general trend in many recent works pushing the model adaptability or the application diversity of neural JSCC is based on the convolutional neural network (CNN) backbone, whose model capacity is yet limited, inherently leading to inferior system coding gain against traditional coded transmission systems. In this paper, we establish a new neural JSCC backbone that can also adapt flexibly to diverse channel conditions and transmission rates within a single model, our open-source project aims to promote the research in this field. Specifically, we show that with elaborate design, neural JSCC codec built on the emerging Swin Transformer backbone achieves superior performance than conventional neural JSCC codecs built upon CNN, while also requiring lower end-to-end processing latency. Paired with two spatial modulation modules that scale latent representations based on the channel state information and target transmission rate, our baseline SwinJSCC can further upgrade to a versatile version, which increases its capability to adapt to diverse channel conditions and rate configurations. Extensive experimental results show that our SwinJSCC achieves better or comparable performance versus the state-of-the-art engineered BPG + 5G LDPC coded transmission system with much faster end-to-end coding speed, especially for high-resolution images, in which case traditional CNN-based JSCC yet falls behind due to its limited model capacity.

Random Search as a Baseline for Sparse Neural Network Architecture Search

Sparse neural networks have shown similar or better generalization performance than their dense counterparts while having higher parameter efficiency. This has motivated a number of works to learn or search for high performing sparse networks. While reports of task performance or efficiency gains are impressive, standard baselines are lacking leading to poor comparability and unreliable reproducibility across methods. In this work, we propose Random Search as a baseline algorithm for finding good sparse configurations and study its performance. We apply Random Search on the node space of an overparameterized network with the goal of finding better initialized sparse sub-networks that are positioned more advantageously in the loss landscape. We record the post-training performances of the found sparse networks and at various levels of sparsity, and compare against both their fully connected parent networks and random sparse configurations at the same sparsity levels. First, we demonstrate performance at different levels of sparsity and highlight that a significant level of performance can still be preserved even when the network is highly sparse. Second, we observe that for this sparse architecture search task, initialized sparse networks found by Random Search neither perform better nor converge more efficiently than their random counterparts. Thus we conclude that Random Search may be viewed as a reasonable neutral baseline for sparsity search methods.

ELA: Efficient Local Attention for Deep Convolutional Neural Networks

The attention mechanism has gained significant recognition in the field of computer vision due to its ability to effectively enhance the performance of deep neural networks. However, existing methods often struggle to effectively utilize spatial information or, if they do, they come at the cost of reducing channel dimensions or increasing the complexity of neural networks. In order to address these limitations, this paper introduces an Efficient Local Attention (ELA) method that achieves substantial performance improvements with a simple structure. By analyzing the limitations of the Coordinate Attention method, we identify the lack of generalization ability in Batch Normalization, the adverse effects of dimension reduction on channel attention, and the complexity of attention generation process. To overcome these challenges, we propose the incorporation of 1D convolution and Group Normalization feature enhancement techniques. This approach enables accurate localization of regions of interest by efficiently encoding two 1D positional feature maps without the need for dimension reduction, while allowing for a lightweight implementation. We carefully design three hyperparameters in ELA, resulting in four different versions: ELA-T, ELA-B, ELA-S, and ELA-L, to cater to the specific requirements of different visual tasks such as image classification, object detection and sementic segmentation. ELA can be seamlessly integrated into deep CNN networks such as ResNet, MobileNet, and DeepLab. Extensive evaluations on the ImageNet, MSCOCO, and Pascal VOC datasets demonstrate the superiority of the proposed ELA module over current state-of-the-art methods in all three aforementioned visual tasks.

From Flat to Hierarchical: Extracting Sparse Representations with Matching Pursuit

Motivated by the hypothesis that neural network representations encode abstract, interpretable features as linearly accessible, approximately orthogonal directions, sparse autoencoders (SAEs) have become a popular tool in interpretability. However, recent work has demonstrated phenomenology of model representations that lies outside the scope of this hypothesis, showing signatures of hierarchical, nonlinear, and multi-dimensional features. This raises the question: do SAEs represent features that possess structure at odds with their motivating hypothesis? If not, does avoiding this mismatch help identify said features and gain further insights into neural network representations? To answer these questions, we take a construction-based approach and re-contextualize the popular matching pursuits (MP) algorithm from sparse coding to design MP-SAE -- an SAE that unrolls its encoder into a sequence of residual-guided steps, allowing it to capture hierarchical and nonlinearly accessible features. Comparing this architecture with existing SAEs on a mixture of synthetic and natural data settings, we show: (i) hierarchical concepts induce conditionally orthogonal features, which existing SAEs are unable to faithfully capture, and (ii) the nonlinear encoding step of MP-SAE recovers highly meaningful features, helping us unravel shared structure in the seemingly dichotomous representation spaces of different modalities in a vision-language model, hence demonstrating the assumption that useful features are solely linearly accessible is insufficient. We also show that the sequential encoder principle of MP-SAE affords an additional benefit of adaptive sparsity at inference time, which may be of independent interest. Overall, we argue our results provide credence to the idea that interpretability should begin with the phenomenology of representations, with methods emerging from assumptions that fit it.

Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging

Neural networks can be significantly compressed by pruning, yielding sparse models with reduced storage and computational demands while preserving predictive performance. Model soups (Wortsman et al., 2022) enhance generalization and out-of-distribution (OOD) performance by averaging the parameters of multiple models into a single one, without increasing inference time. However, achieving both sparsity and parameter averaging is challenging as averaging arbitrary sparse models reduces the overall sparsity due to differing sparse connectivities. This work addresses these challenges by demonstrating that exploring a single retraining phase of Iterative Magnitude Pruning (IMP) with varied hyperparameter configurations such as batch ordering or weight decay yields models suitable for averaging, sharing identical sparse connectivity by design. Averaging these models significantly enhances generalization and OOD performance over their individual counterparts. Building on this, we introduce Sparse Model Soups (SMS), a novel method for merging sparse models by initiating each prune-retrain cycle with the averaged model from the previous phase. SMS preserves sparsity, exploits sparse network benefits, is modular and fully parallelizable, and substantially improves IMP's performance. We further demonstrate that SMS can be adapted to enhance state-of-the-art pruning-during-training approaches.

To prune, or not to prune: exploring the efficacy of pruning for model compression

Model pruning seeks to induce sparsity in a deep neural network's various connection matrices, thereby reducing the number of nonzero-valued parameters in the model. Recent reports (Han et al., 2015; Narang et al., 2017) prune deep networks at the cost of only a marginal loss in accuracy and achieve a sizable reduction in model size. This hints at the possibility that the baseline models in these experiments are perhaps severely over-parameterized at the outset and a viable alternative for model compression might be to simply reduce the number of hidden units while maintaining the model's dense connection structure, exposing a similar trade-off in model size and accuracy. We investigate these two distinct paths for model compression within the context of energy-efficient inference in resource-constrained environments and propose a new gradual pruning technique that is simple and straightforward to apply across a variety of models/datasets with minimal tuning and can be seamlessly incorporated within the training process. We compare the accuracy of large, but pruned models (large-sparse) and their smaller, but dense (small-dense) counterparts with identical memory footprint. Across a broad range of neural network architectures (deep CNNs, stacked LSTM, and seq2seq LSTM models), we find large-sparse models to consistently outperform small-dense models and achieve up to 10x reduction in number of non-zero parameters with minimal loss in accuracy.

SparCL: Sparse Continual Learning on the Edge

Existing work in continual learning (CL) focuses on mitigating catastrophic forgetting, i.e., model performance deterioration on past tasks when learning a new task. However, the training efficiency of a CL system is under-investigated, which limits the real-world application of CL systems under resource-limited scenarios. In this work, we propose a novel framework called Sparse Continual Learning(SparCL), which is the first study that leverages sparsity to enable cost-effective continual learning on edge devices. SparCL achieves both training acceleration and accuracy preservation through the synergy of three aspects: weight sparsity, data efficiency, and gradient sparsity. Specifically, we propose task-aware dynamic masking (TDM) to learn a sparse network throughout the entire CL process, dynamic data removal (DDR) to remove less informative training data, and dynamic gradient masking (DGM) to sparsify the gradient updates. Each of them not only improves efficiency, but also further mitigates catastrophic forgetting. SparCL consistently improves the training efficiency of existing state-of-the-art (SOTA) CL methods by at most 23X less training FLOPs, and, surprisingly, further improves the SOTA accuracy by at most 1.7%. SparCL also outperforms competitive baselines obtained from adapting SOTA sparse training methods to the CL setting in both efficiency and accuracy. We also evaluate the effectiveness of SparCL on a real mobile phone, further indicating the practical potential of our method.

Training-free and Adaptive Sparse Attention for Efficient Long Video Generation

Generating high-fidelity long videos with Diffusion Transformers (DiTs) is often hindered by significant latency, primarily due to the computational demands of attention mechanisms. For instance, generating an 8-second 720p video (110K tokens) with HunyuanVideo takes about 600 PFLOPs, with around 500 PFLOPs consumed by attention computations. To address this issue, we propose AdaSpa, the first Dynamic Pattern and Online Precise Search sparse attention method. Firstly, to realize the Dynamic Pattern, we introduce a blockified pattern to efficiently capture the hierarchical sparsity inherent in DiTs. This is based on our observation that sparse characteristics of DiTs exhibit hierarchical and blockified structures between and within different modalities. This blockified approach significantly reduces the complexity of attention computation while maintaining high fidelity in the generated videos. Secondly, to enable Online Precise Search, we propose the Fused LSE-Cached Search with Head-adaptive Hierarchical Block Sparse Attention. This method is motivated by our finding that DiTs' sparse pattern and LSE vary w.r.t. inputs, layers, and heads, but remain invariant across denoising steps. By leveraging this invariance across denoising steps, it adapts to the dynamic nature of DiTs and allows for precise, real-time identification of sparse indices with minimal overhead. AdaSpa is implemented as an adaptive, plug-and-play solution and can be integrated seamlessly with existing DiTs, requiring neither additional fine-tuning nor a dataset-dependent profiling. Extensive experiments validate that AdaSpa delivers substantial acceleration across various models while preserving video quality, establishing itself as a robust and scalable approach to efficient video generation.

LSNet: See Large, Focus Small

Vision network designs, including Convolutional Neural Networks and Vision Transformers, have significantly advanced the field of computer vision. Yet, their complex computations pose challenges for practical deployments, particularly in real-time applications. To tackle this issue, researchers have explored various lightweight and efficient network designs. However, existing lightweight models predominantly leverage self-attention mechanisms and convolutions for token mixing. This dependence brings limitations in effectiveness and efficiency in the perception and aggregation processes of lightweight networks, hindering the balance between performance and efficiency under limited computational budgets. In this paper, we draw inspiration from the dynamic heteroscale vision ability inherent in the efficient human vision system and propose a ``See Large, Focus Small'' strategy for lightweight vision network design. We introduce LS (Large-Small) convolution, which combines large-kernel perception and small-kernel aggregation. It can efficiently capture a wide range of perceptual information and achieve precise feature aggregation for dynamic and complex visual representations, thus enabling proficient processing of visual information. Based on LS convolution, we present LSNet, a new family of lightweight models. Extensive experiments demonstrate that LSNet achieves superior performance and efficiency over existing lightweight networks in various vision tasks. Codes and models are available at https://github.com/jameslahm/lsnet.

R-Sparse: Rank-Aware Activation Sparsity for Efficient LLM Inference

Large Language Models (LLMs), while demonstrating remarkable capabilities across various applications, present significant challenges during inference due to their substantial model size, especially when deployed on edge devices. Activation sparsity offers a promising solution to reduce computation and memory movement, enabling more efficient inference, particularly for small-batch on-device applications. However, current approaches face limitations with non-ReLU activation function, which are foundational to most advanced LLMs, or require heavy continual training. Additionally, the difficulty in predicting active channels and limited achievable sparsity ratios constrain the effectiveness of activation sparsity-based methods. In this paper, we introduce R-Sparse, a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs. We conducted two preliminary investigations into how different components contribute to the output within a single linear layer and found two key observations: (i) the non-sparse components of the input function can be regarded as a few bias terms, and (ii) The full computation can be effectively approximated by an appropriate combination of input channels and weight singular values. Building on this, we replace the linear layers in LLMs with a rank-aware sparse inference method that leverages the sparsity of input channels and singular value components, eliminating the need for active channel prediction like the output sparsity based approaches. Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity, resulting in a significant 43% end-to-end efficient improvements with customized kernels.

The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers

This paper studies the curious phenomenon for machine learning models with Transformer architectures that their activation maps are sparse. By activation map we refer to the intermediate output of the multi-layer perceptrons (MLPs) after a ReLU activation function, and by sparse we mean that on average very few entries (e.g., 3.0% for T5-Base and 6.3% for ViT-B16) are nonzero for each input to MLP. Moreover, larger Transformers with more layers and wider MLP hidden dimensions are sparser as measured by the percentage of nonzero entries. Through extensive experiments we demonstrate that the emergence of sparsity is a prevalent phenomenon that occurs for both natural language processing and vision tasks, on both training and evaluation data, for Transformers of various configurations, at layers of all depth levels, as well as for other architectures including MLP-mixers and 2-layer MLPs. We show that sparsity also emerges using training datasets with random labels, or with random inputs, or with infinite amount of data, demonstrating that sparsity is not a result of a specific family of datasets. We discuss how sparsity immediately implies a way to significantly reduce the FLOP count and improve efficiency for Transformers. Moreover, we demonstrate perhaps surprisingly that enforcing an even sparser activation via Top-k thresholding with a small value of k brings a collection of desired but missing properties for Transformers, namely less sensitivity to noisy training data, more robustness to input corruptions, and better calibration for their prediction confidence.

Sparse Iso-FLOP Transformations for Maximizing Training Efficiency

Recent works have explored the use of weight sparsity to improve the training efficiency (test accuracy w.r.t training FLOPs) of deep neural networks (DNNs). These works aim to reduce training FLOPs but training with sparse weights often leads to accuracy loss or requires longer training schedules, making the resulting training efficiency less clear. In contrast, we focus on using sparsity to increase accuracy while using the same FLOPs as the dense model and show training efficiency gains through higher accuracy. In this work, we introduce Sparse-IFT, a family of Sparse Iso-FLOP Transformations which are used as drop-in replacements for dense layers to improve their representational capacity and FLOP efficiency. Each transformation is parameterized by a single hyperparameter (sparsity level) and provides a larger search space to find optimal sparse masks. Without changing any training hyperparameters, replacing dense layers with Sparse-IFT leads to significant improvements across computer vision (CV) and natural language processing (NLP) tasks, including ResNet-18 on ImageNet (+3.5%) and GPT-3 Small on WikiText-103 (-0.4 PPL), both matching larger dense model variants that use 2x or more FLOPs. To our knowledge, this is the first work to demonstrate the use of sparsity for improving the accuracy of dense models via a simple-to-use set of sparse transformations. Code is available at: https://github.com/CerebrasResearch/Sparse-IFT.

Invertible Diffusion Models for Compressed Sensing

While deep neural networks (NN) significantly advance image compressed sensing (CS) by improving reconstruction quality, the necessity of training current CS NNs from scratch constrains their effectiveness and hampers rapid deployment. Although recent methods utilize pre-trained diffusion models for image reconstruction, they struggle with slow inference and restricted adaptability to CS. To tackle these challenges, this paper proposes Invertible Diffusion Models (IDM), a novel efficient, end-to-end diffusion-based CS method. IDM repurposes a large-scale diffusion sampling process as a reconstruction model, and fine-tunes it end-to-end to recover original images directly from CS measurements, moving beyond the traditional paradigm of one-step noise estimation learning. To enable such memory-intensive end-to-end fine-tuning, we propose a novel two-level invertible design to transform both (1) multi-step sampling process and (2) noise estimation U-Net in each step into invertible networks. As a result, most intermediate features are cleared during training to reduce up to 93.8% GPU memory. In addition, we develop a set of lightweight modules to inject measurements into noise estimator to further facilitate reconstruction. Experiments demonstrate that IDM outperforms existing state-of-the-art CS networks by up to 2.64dB in PSNR. Compared to the recent diffusion-based approach DDNM, our IDM achieves up to 10.09dB PSNR gain and 14.54 times faster inference. Code is available at https://github.com/Guaishou74851/IDM.

Boost Vision Transformer with GPU-Friendly Sparsity and Quantization

The transformer extends its success from the language to the vision domain. Because of the stacked self-attention and cross-attention blocks, the acceleration deployment of vision transformer on GPU hardware is challenging and also rarely studied. This paper thoroughly designs a compression scheme to maximally utilize the GPU-friendly 2:4 fine-grained structured sparsity and quantization. Specially, an original large model with dense weight parameters is first pruned into a sparse one by 2:4 structured pruning, which considers the GPU's acceleration of 2:4 structured sparse pattern with FP16 data type, then the floating-point sparse model is further quantized into a fixed-point one by sparse-distillation-aware quantization aware training, which considers GPU can provide an extra speedup of 2:4 sparse calculation with integer tensors. A mixed-strategy knowledge distillation is used during the pruning and quantization process. The proposed compression scheme is flexible to support supervised and unsupervised learning styles. Experiment results show GPUSQ-ViT scheme achieves state-of-the-art compression by reducing vision transformer models 6.4-12.7 times on model size and 30.3-62 times on FLOPs with negligible accuracy degradation on ImageNet classification, COCO detection and ADE20K segmentation benchmarking tasks. Moreover, GPUSQ-ViT can boost actual deployment performance by 1.39-1.79 times and 3.22-3.43 times of latency and throughput on A100 GPU, and 1.57-1.69 times and 2.11-2.51 times improvement of latency and throughput on AGX Orin.

Supervised Compression for Resource-Constrained Edge Computing Systems

There has been much interest in deploying deep learning algorithms on low-powered devices, including smartphones, drones, and medical sensors. However, full-scale deep neural networks are often too resource-intensive in terms of energy and storage. As a result, the bulk part of the machine learning operation is therefore often carried out on an edge server, where the data is compressed and transmitted. However, compressing data (such as images) leads to transmitting information irrelevant to the supervised task. Another popular approach is to split the deep network between the device and the server while compressing intermediate features. To date, however, such split computing strategies have barely outperformed the aforementioned naive data compression baselines due to their inefficient approaches to feature compression. This paper adopts ideas from knowledge distillation and neural image compression to compress intermediate feature representations more efficiently. Our supervised compression approach uses a teacher model and a student model with a stochastic bottleneck and learnable prior for entropy coding (Entropic Student). We compare our approach to various neural image and feature compression baselines in three vision tasks and found that it achieves better supervised rate-distortion performance while maintaining smaller end-to-end latency. We furthermore show that the learned feature representations can be tuned to serve multiple downstream tasks.

Continual Learning with Dynamic Sparse Training: Exploring Algorithms for Effective Model Updates

Continual learning (CL) refers to the ability of an intelligent system to sequentially acquire and retain knowledge from a stream of data with as little computational overhead as possible. To this end; regularization, replay, architecture, and parameter isolation approaches were introduced to the literature. Parameter isolation using a sparse network which enables to allocate distinct parts of the neural network to different tasks and also allows to share of parameters between tasks if they are similar. Dynamic Sparse Training (DST) is a prominent way to find these sparse networks and isolate them for each task. This paper is the first empirical study investigating the effect of different DST components under the CL paradigm to fill a critical research gap and shed light on the optimal configuration of DST for CL if it exists. Therefore, we perform a comprehensive study in which we investigate various DST components to find the best topology per task on well-known CIFAR100 and miniImageNet benchmarks in a task-incremental CL setup since our primary focus is to evaluate the performance of various DST criteria, rather than the process of mask selection. We found that, at a low sparsity level, Erdos-Renyi Kernel (ERK) initialization utilizes the backbone more efficiently and allows to effectively learn increments of tasks. At a high sparsity level, however, uniform initialization demonstrates more reliable and robust performance. In terms of growth strategy; performance is dependent on the defined initialization strategy, and the extent of sparsity. Finally, adaptivity within DST components is a promising way for better continual learners.

SparseSSP: 3D Subcellular Structure Prediction from Sparse-View Transmitted Light Images

Traditional fluorescence staining is phototoxic to live cells, slow, and expensive; thus, the subcellular structure prediction (SSP) from transmitted light (TL) images is emerging as a label-free, faster, low-cost alternative. However, existing approaches utilize 3D networks for one-to-one voxel level dense prediction, which necessitates a frequent and time-consuming Z-axis imaging process. Moreover, 3D convolutions inevitably lead to significant computation and GPU memory overhead. Therefore, we propose an efficient framework, SparseSSP, predicting fluorescent intensities within the target voxel grid in an efficient paradigm instead of relying entirely on 3D topologies. In particular, SparseSSP makes two pivotal improvements to prior works. First, SparseSSP introduces a one-to-many voxel mapping paradigm, which permits the sparse TL slices to reconstruct the subcellular structure. Secondly, we propose a hybrid dimensions topology, which folds the Z-axis information into channel features, enabling the 2D network layers to tackle SSP under low computational cost. We conduct extensive experiments to validate the effectiveness and advantages of SparseSSP on diverse sparse imaging ratios, and our approach achieves a leading performance compared to pure 3D topologies. SparseSSP reduces imaging frequencies compared to previous dense-view SSP (i.e., the number of imaging is reduced up to 87.5% at most), which is significant in visualizing rapid biological dynamics on low-cost devices and samples.

Reprogramming under constraints: Revisiting efficient and reliable transferability of lottery tickets

In the era of foundation models with huge pre-training budgets, the downstream tasks have been shifted to the narrative of efficient and fast adaptation. For classification-based tasks in the domain of computer vision, the two most efficient approaches have been linear probing (LP) and visual prompting/reprogramming (VP); the former aims to learn a classifier in the form of a linear head on the features extracted by the pre-trained model, while the latter maps the input data to the domain of the source data on which the model was originally pre-trained on. Although extensive studies have demonstrated the differences between LP and VP in terms of downstream performance, we explore the capabilities of the two aforementioned methods via the sparsity axis: (a) Data sparsity: the impact of few-shot adaptation and (b) Model sparsity: the impact of lottery tickets (LT). We demonstrate that LT are not universal reprogrammers, i.e., for certain target datasets, reprogramming an LT yields significantly lower performance than the reprogrammed dense model although their corresponding upstream performance is similar. Further, we demonstrate that the calibration of dense models is always superior to that of their lottery ticket counterparts under both LP and VP regimes. Our empirical study opens a new avenue of research into VP for sparse models and encourages further understanding of the performance beyond the accuracy achieved by VP under constraints of sparsity. Code and logs can be accessed at https://github.com/landskape-ai/Reprogram_LT.

Efficient LLM Training and Serving with Heterogeneous Context Sharding among Attention Heads

Existing LLM training and inference frameworks struggle in boosting efficiency with sparsity while maintaining the integrity of context and model architecture. Inspired by the sharding concept in database and the fact that attention parallelizes over heads on accelerators, we propose Sparsely-Sharded (S2) Attention, an attention algorithm that allocates heterogeneous context partitions for different attention heads to divide and conquer. S2-Attention enforces each attention head to only attend to a partition of contexts following a strided sparsity pattern, while the full context is preserved as the union of all the shards. As attention heads are processed in separate thread blocks, the context reduction for each head can thus produce end-to-end speed-up and memory reduction. At inference, LLMs trained with S2-Attention can then take the KV cache reduction as free meals with guaranteed model quality preserve. In experiments, we show S2-Attentioncan provide as much as (1) 25.3X wall-clock attention speed-up over FlashAttention-2, resulting in 6X reduction in end-to-end training time and 10X inference latency, (2) on-par model training quality compared to default attention, (3)perfect needle retrieval accuracy over 32K context window. On top of the algorithm, we build DKernel, an LLM training and inference kernel library that allows users to customize sparsity patterns for their own models. We open-sourced DKerneland make it compatible with Megatron, Pytorch, and vLLM.

SEA: Sparse Linear Attention with Estimated Attention Mask

The transformer architecture has driven breakthroughs in recent years on tasks which require modeling pairwise relationships between sequential elements, as is the case in natural language understanding. However, long seqeuences pose a problem due to the quadratic complexity of the attention operation. Previous research has aimed to lower the complexity by sparsifying or linearly approximating the attention matrix. Yet, these approaches cannot straightforwardly distill knowledge from a teacher's attention matrix and often require complete retraining from scratch. Furthermore, previous sparse and linear approaches lose interpretability if they cannot produce full attention matrices. To address these challenges, we propose SEA: Sparse linear attention with an Estimated Attention mask. SEA estimates the attention matrix with linear complexity via kernel-based linear attention, then subsequently creates a sparse attention matrix with a top-k selection to perform a sparse attention operation. For language modeling tasks (Wikitext2), previous linear and sparse attention methods show roughly two-fold worse perplexity scores over the quadratic OPT-1.3B baseline, while SEA achieves better perplexity than OPT-1.3B, using roughly half the memory of OPT-1.3B, providing interpretable attention matrix. We believe that our work will have a large practical impact, as it opens the possibility of running large transformers on resource-limited devices with less memory.

Fast Sparse ConvNets

Historically, the pursuit of efficient inference has been one of the driving forces behind research into new deep learning architectures and building blocks. Some recent examples include: the squeeze-and-excitation module, depthwise separable convolutions in Xception, and the inverted bottleneck in MobileNet v2. Notably, in all of these cases, the resulting building blocks enabled not only higher efficiency, but also higher accuracy, and found wide adoption in the field. In this work, we further expand the arsenal of efficient building blocks for neural network architectures; but instead of combining standard primitives (such as convolution), we advocate for the replacement of these dense primitives with their sparse counterparts. While the idea of using sparsity to decrease the parameter count is not new, the conventional wisdom is that this reduction in theoretical FLOPs does not translate into real-world efficiency gains. We aim to correct this misconception by introducing a family of efficient sparse kernels for ARM and WebAssembly, which we open-source for the benefit of the community as part of the XNNPACK library. Equipped with our efficient implementation of sparse primitives, we show that sparse versions of MobileNet v1, MobileNet v2 and EfficientNet architectures substantially outperform strong dense baselines on the efficiency-accuracy curve. On Snapdragon 835 our sparse networks outperform their dense equivalents by 1.3-2.4times -- equivalent to approximately one entire generation of MobileNet-family improvement. We hope that our findings will facilitate wider adoption of sparsity as a tool for creating efficient and accurate deep learning architectures.

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Deep Neural Networks (DNNs) have been a large driver and enabler for AI breakthroughs in recent years. These models have been getting larger in their attempt to become more accurate and tackle new upcoming use-cases, including AR/VR and intelligent assistants. However, the training process of such large models is a costly and time-consuming process, which typically yields a single model to fit all targets. To mitigate this, various techniques have been proposed in the literature, including pruning, sparsification or quantization of the model weights and updates. While able to achieve high compression rates, they often incur computational overheads or accuracy penalties. Alternatively, factorization methods have been leveraged to incorporate low-rank compression in the training process. Similarly, such techniques (e.g.,~SVD) frequently rely on the computationally expensive decomposition of layers and are potentially sub-optimal for non-linear models, such as DNNs. In this work, we take a further step in designing efficient low-rank models and propose Maestro, a framework for trainable low-rank layers. Instead of regularly applying a priori decompositions such as SVD, the low-rank structure is built into the training process through a generalized variant of Ordered Dropout. This method imposes an importance ordering via sampling on the decomposed DNN structure. Our theoretical analysis demonstrates that our method recovers the SVD decomposition of linear mapping on uniformly distributed data and PCA for linear autoencoders. We further apply our technique on DNNs and empirically illustrate that Maestro enables the extraction of lower footprint models that preserve model performance while allowing for graceful accuracy-latency tradeoff for the deployment to devices of different capabilities.

Post-Training Sparse Attention with Double Sparsity

The inference process for large language models is slow and memory-intensive, with one of the most critical bottlenecks being excessive Key-Value (KV) cache accesses. This paper introduces "Double Sparsity," a novel post-training sparse attention technique designed to alleviate this bottleneck by reducing KV cache access. Double Sparsity combines token sparsity, which focuses on utilizing only the important tokens for computing self-attention, with channel sparsity, an approach that uses important feature channels for identifying important tokens. Our key insight is that the pattern of channel sparsity is relatively static, allowing us to use offline calibration to make it efficient at runtime, thereby enabling accurate and efficient identification of important tokens. Moreover, this method can be combined with offloading to achieve significant memory usage reduction. Experimental results demonstrate that Double Sparsity can achieve 1{16} token and channel sparsity with minimal impact on accuracy across various tasks, including wiki-2 perplexity, key-value retrieval, and long context benchmarks with models including Llama-2-7B, Llama-2-70B, and Mixtral-8x7B. It brings up to a 14.1times acceleration in attention operations and a 1.9times improvement in end-to-end inference on GPUs. With offloading, it achieves a decoding speed acceleration of 16.3times compared to state-of-the-art solutions at a sequence length of 256K. Our code is publicly available at https://github.com/andy-yang-1/DoubleSparse.

Learned Compression for Compressed Learning

Modern sensors produce increasingly rich streams of high-resolution data. Due to resource constraints, machine learning systems discard the vast majority of this information via resolution reduction. Compressed-domain learning allows models to operate on compact latent representations, allowing higher effective resolution for the same budget. However, existing compression systems are not ideal for compressed learning. Linear transform coding and end-to-end learned compression systems reduce bitrate, but do not uniformly reduce dimensionality; thus, they do not meaningfully increase efficiency. Generative autoencoders reduce dimensionality, but their adversarial or perceptual objectives lead to significant information loss. To address these limitations, we introduce WaLLoC (Wavelet Learned Lossy Compression), a neural codec architecture that combines linear transform coding with nonlinear dimensionality-reducing autoencoders. WaLLoC sandwiches a shallow, asymmetric autoencoder and entropy bottleneck between an invertible wavelet packet transform. Across several key metrics, WaLLoC outperforms the autoencoders used in state-of-the-art latent diffusion models. WaLLoC does not require perceptual or adversarial losses to represent high-frequency detail, providing compatibility with modalities beyond RGB images and stereo audio. WaLLoC's encoder consists almost entirely of linear operations, making it exceptionally efficient and suitable for mobile computing, remote sensing, and learning directly from compressed data. We demonstrate WaLLoC's capability for compressed-domain learning across several tasks, including image classification, colorization, document understanding, and music source separation. Our code, experiments, and pre-trained audio and image codecs are available at https://ut-sysml.org/walloc

On the Efficiency of Convolutional Neural Networks

Since the breakthrough performance of AlexNet in 2012, convolutional neural networks (convnets) have grown into extremely powerful vision models. Deep learning researchers have used convnets to perform vision tasks with accuracy that was unachievable a decade ago. Confronted with the immense computation that convnets use, deep learning researchers also became interested in efficiency. However, the engineers who deployed efficient convnets soon realized that they were slower than the previous generation, despite using fewer operations. Many reverted to older models that ran faster. Hence researchers switched the objective of their search from arithmetic complexity to latency and produced a new wave of models that performed better. Paradoxically, these models also used more operations. Skepticism grew among researchers and engineers alike about the relevance of arithmetic complexity. Contrary to the prevailing view that latency and arithmetic complexity are irreconcilable, a simple formula relates both through computational efficiency. This insight enabled us to co-optimize the separate factors that determine latency. We observed that the degenerate conv2d layers that produce the best accuracy--complexity trade-off also use significant memory resources and have low computational efficiency. We devised block fusion algorithms to implement all the layers of a residual block in a single kernel, thereby creating temporal locality, avoiding communication, and reducing workspace size. Our ConvFirst model with block-fusion kernels has less arithmetic complexity and greater computational efficiency than baseline models and kernels, and ran approximately four times as fast as ConvNeXt. We also created novel tools, including efficiency gap plots and waterline analysis. Our unified approach to convnet efficiency envisions a new era of models and kernels that achieve greater accuracy at lower cost.

Deep Open-Set Recognition for Silicon Wafer Production Monitoring

The chips contained in any electronic device are manufactured over circular silicon wafers, which are monitored by inspection machines at different production stages. Inspection machines detect and locate any defect within the wafer and return a Wafer Defect Map (WDM), i.e., a list of the coordinates where defects lie, which can be considered a huge, sparse, and binary image. In normal conditions, wafers exhibit a small number of randomly distributed defects, while defects grouped in specific patterns might indicate known or novel categories of failures in the production line. Needless to say, a primary concern of semiconductor industries is to identify these patterns and intervene as soon as possible to restore normal production conditions. Here we address WDM monitoring as an open-set recognition problem to accurately classify WDM in known categories and promptly detect novel patterns. In particular, we propose a comprehensive pipeline for wafer monitoring based on a Submanifold Sparse Convolutional Network, a deep architecture designed to process sparse data at an arbitrary resolution, which is trained on the known classes. To detect novelties, we define an outlier detector based on a Gaussian Mixture Model fitted on the latent representation of the classifier. Our experiments on a real dataset of WDMs show that directly processing full-resolution WDMs by Submanifold Sparse Convolutions yields superior classification performance on known classes than traditional Convolutional Neural Networks, which require a preliminary binning to reduce the size of the binary images representing WDMs. Moreover, our solution outperforms state-of-the-art open-set recognition solutions in detecting novelties.

Training for temporal sparsity in deep neural networks, application in video processing

Activation sparsity improves compute efficiency and resource utilization in sparsity-aware neural network accelerators. As the predominant operation in DNNs is multiply-accumulate (MAC) of activations with weights to compute inner products, skipping operations where (at least) one of the two operands is zero can make inference more efficient in terms of latency and power. Spatial sparsification of activations is a popular topic in DNN literature and several methods have already been established to bias a DNN for it. On the other hand, temporal sparsity is an inherent feature of bio-inspired spiking neural networks (SNNs), which neuromorphic processing exploits for hardware efficiency. Introducing and exploiting spatio-temporal sparsity, is a topic much less explored in DNN literature, but in perfect resonance with the trend in DNN, to shift from static signal processing to more streaming signal processing. Towards this goal, in this paper we introduce a new DNN layer (called Delta Activation Layer), whose sole purpose is to promote temporal sparsity of activations during training. A Delta Activation Layer casts temporal sparsity into spatial activation sparsity to be exploited when performing sparse tensor multiplications in hardware. By employing delta inference and ``the usual'' spatial sparsification heuristics during training, the resulting model learns to exploit not only spatial but also temporal activation sparsity (for a given input data distribution). One may use the Delta Activation Layer either during vanilla training or during a refinement phase. We have implemented Delta Activation Layer as an extension of the standard Tensoflow-Keras library, and applied it to train deep neural networks on the Human Action Recognition (UCF101) dataset. We report an almost 3x improvement of activation sparsity, with recoverable loss of model accuracy after longer training.

Optimal Weighted Convolution for Classification and Denosing

We introduce a novel weighted convolution operator that enhances traditional convolutional neural networks (CNNs) by integrating a spatial density function into the convolution operator. This extension enables the network to differentially weight neighbouring pixels based on their relative position to the reference pixel, improving spatial characterisation and feature extraction. The proposed operator maintains the same number of trainable parameters and is fully compatible with existing CNN architectures. Although developed for 2D image data, the framework is generalisable to signals on regular grids of arbitrary dimensions, such as 3D volumetric data or 1D time series. We propose an efficient implementation of the weighted convolution by pre-computing the density function and achieving execution times comparable to standard convolution layers. We evaluate our method on two deep learning tasks: image classification using the CIFAR-100 dataset [KH+09] and image denoising using the DIV2K dataset [AT17]. Experimental results with state-of-the-art classification (e.g., VGG [SZ15], ResNet [HZRS16]) and denoising (e.g., DnCNN [ZZC+17], NAFNet [CCZS22]) methods show that the weighted convolution improves performance with respect to standard convolution across different quantitative metrics. For example, VGG achieves an accuracy of 66.94% with weighted convolution versus 56.89% with standard convolution on the classification problem, while DnCNN improves the PSNR value from 20.17 to 22.63 on the denoising problem. All models were trained on the CINECA Leonardo cluster to reduce the execution time and improve the tuning of the density function values. The PyTorch implementation of the weighted convolution is publicly available at: https://github.com/cammarasana123/weightedConvolution2.0.

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.

Combiner: Full Attention Transformer with Sparse Computation Cost

Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.

Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs

The ever-increasing large language models (LLMs), though opening a potential path for the upcoming artificial general intelligence, sadly drops a daunting obstacle on the way towards their on-device deployment. As one of the most well-established pre-LLMs approaches in reducing model complexity, network pruning appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or re-training) necessity under the massive volumes of model parameter and training data. To close this industry-academia gap, we introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach that slightly updates sparse LLMs without the expensive backpropagation and any weight updates. Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs, in the fashion of performing iterative weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose, DSnoT particularly takes into account the anticipated reduction in reconstruction error for pruning and growing, as well as the variance w.r.t. different input data for growing each weight. This practice can be executed efficiently in linear time since its obviates the need of backpropagation for fine-tuning LLMs. Extensive experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks demonstrate the effectiveness of DSnoT in enhancing the performance of sparse LLMs, especially at high sparsity levels. For instance, DSnoT is able to outperform the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B. Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs. Codes are available at https://github.com/zyxxmu/DSnoT.

Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers

Vision Transformers (ViT) have shown their competitive advantages performance-wise compared to convolutional neural networks (CNNs) though they often come with high computational costs. To this end, previous methods explore different attention patterns by limiting a fixed number of spatially nearby tokens to accelerate the ViT's multi-head self-attention (MHSA) operations. However, such structured attention patterns limit the token-to-token connections to their spatial relevance, which disregards learned semantic connections from a full attention mask. In this work, we propose a novel approach to learn instance-dependent attention patterns, by devising a lightweight connectivity predictor module to estimate the connectivity score of each pair of tokens. Intuitively, two tokens have high connectivity scores if the features are considered relevant either spatially or semantically. As each token only attends to a small number of other tokens, the binarized connectivity masks are often very sparse by nature and therefore provide the opportunity to accelerate the network via sparse computations. Equipped with the learned unstructured attention pattern, sparse attention ViT (Sparsifiner) produces a superior Pareto-optimal trade-off between FLOPs and top-1 accuracy on ImageNet compared to token sparsity. Our method reduces 48% to 69% FLOPs of MHSA while the accuracy drop is within 0.4%. We also show that combining attention and token sparsity reduces ViT FLOPs by over 60%.

Brain Captioning: Decoding human brain activity into images and text

Every day, the human brain processes an immense volume of visual information, relying on intricate neural mechanisms to perceive and interpret these stimuli. Recent breakthroughs in functional magnetic resonance imaging (fMRI) have enabled scientists to extract visual information from human brain activity patterns. In this study, we present an innovative method for decoding brain activity into meaningful images and captions, with a specific focus on brain captioning due to its enhanced flexibility as compared to brain decoding into images. Our approach takes advantage of cutting-edge image captioning models and incorporates a unique image reconstruction pipeline that utilizes latent diffusion models and depth estimation. We utilized the Natural Scenes Dataset, a comprehensive fMRI dataset from eight subjects who viewed images from the COCO dataset. We employed the Generative Image-to-text Transformer (GIT) as our backbone for captioning and propose a new image reconstruction pipeline based on latent diffusion models. The method involves training regularized linear regression models between brain activity and extracted features. Additionally, we incorporated depth maps from the ControlNet model to further guide the reconstruction process. We evaluate our methods using quantitative metrics for both generated captions and images. Our brain captioning approach outperforms existing methods, while our image reconstruction pipeline generates plausible images with improved spatial relationships. In conclusion, we demonstrate significant progress in brain decoding, showcasing the enormous potential of integrating vision and language to better understand human cognition. Our approach provides a flexible platform for future research, with potential applications in various fields, including neural art, style transfer, and portable devices.

Quick and Robust Feature Selection: the Strength of Energy-efficient Sparse Training for Autoencoders

Major complications arise from the recent increase in the amount of high-dimensional data, including high computational costs and memory requirements. Feature selection, which identifies the most relevant and informative attributes of a dataset, has been introduced as a solution to this problem. Most of the existing feature selection methods are computationally inefficient; inefficient algorithms lead to high energy consumption, which is not desirable for devices with limited computational and energy resources. In this paper, a novel and flexible method for unsupervised feature selection is proposed. This method, named QuickSelection, introduces the strength of the neuron in sparse neural networks as a criterion to measure the feature importance. This criterion, blended with sparsely connected denoising autoencoders trained with the sparse evolutionary training procedure, derives the importance of all input features simultaneously. We implement QuickSelection in a purely sparse manner as opposed to the typical approach of using a binary mask over connections to simulate sparsity. It results in a considerable speed increase and memory reduction. When tested on several benchmark datasets, including five low-dimensional and three high-dimensional datasets, the proposed method is able to achieve the best trade-off of classification and clustering accuracy, running time, and maximum memory usage, among widely used approaches for feature selection. Besides, our proposed method requires the least amount of energy among the state-of-the-art autoencoder-based feature selection methods.

Cross-Shaped Windows Transformer with Self-supervised Pretraining for Clinically Significant Prostate Cancer Detection in Bi-parametric MRI

Multiparametric magnetic resonance imaging (mpMRI) has demonstrated promising results in prostate cancer (PCa) detection using deep convolutional neural networks (CNNs). Recently, transformers have achieved competitive performance compared to CNNs in computer vision. Large-scale transformers need abundant annotated data for training, which are difficult to obtain in medical imaging. Self-supervised learning can effectively leverage unlabeled data to extract useful semantic representations without annotation and its associated costs. This can improve model performance on downstream tasks with limited labelled data and increase generalizability. We introduce a novel end-to-end Cross-Shaped windows (CSwin) transformer UNet model, CSwin UNet, to detect clinically significant prostate cancer (csPCa) in prostate bi-parametric MR imaging (bpMRI) and demonstrate the effectiveness of our proposed self-supervised pre-training framework. Using a large prostate bpMRI dataset with 1500 patients, we first pre-train CSwin transformer using multi-task self-supervised learning to improve data-efficiency and network generalizability. We then finetuned using lesion annotations to perform csPCa detection. Five-fold cross validation shows that self-supervised CSwin UNet achieves 0.888 AUC and 0.545 Average Precision (AP), significantly outperforming four state-of-the-art models (Swin UNETR, DynUNet, Attention UNet, UNet). Using a separate bpMRI dataset with 158 patients, we evaluated our model robustness to external hold-out data. Self-supervised CSwin UNet achieves 0.79 AUC and 0.45 AP, still outperforming all other comparable methods and demonstrating generalization to a dataset shift.

FeatEnHancer: Enhancing Hierarchical Features for Object Detection and Beyond Under Low-Light Vision

Extracting useful visual cues for the downstream tasks is especially challenging under low-light vision. Prior works create enhanced representations by either correlating visual quality with machine perception or designing illumination-degrading transformation methods that require pre-training on synthetic datasets. We argue that optimizing enhanced image representation pertaining to the loss of the downstream task can result in more expressive representations. Therefore, in this work, we propose a novel module, FeatEnHancer, that hierarchically combines multiscale features using multiheaded attention guided by task-related loss function to create suitable representations. Furthermore, our intra-scale enhancement improves the quality of features extracted at each scale or level, as well as combines features from different scales in a way that reflects their relative importance for the task at hand. FeatEnHancer is a general-purpose plug-and-play module and can be incorporated into any low-light vision pipeline. We show with extensive experimentation that the enhanced representation produced with FeatEnHancer significantly and consistently improves results in several low-light vision tasks, including dark object detection (+5.7 mAP on ExDark), face detection (+1.5 mAPon DARK FACE), nighttime semantic segmentation (+5.1 mIoU on ACDC ), and video object detection (+1.8 mAP on DarkVision), highlighting the effectiveness of enhancing hierarchical features under low-light vision.

TVConv: Efficient Translation Variant Convolution for Layout-aware Visual Processing

As convolution has empowered many smart applications, dynamic convolution further equips it with the ability to adapt to diverse inputs. However, the static and dynamic convolutions are either layout-agnostic or computation-heavy, making it inappropriate for layout-specific applications, e.g., face recognition and medical image segmentation. We observe that these applications naturally exhibit the characteristics of large intra-image (spatial) variance and small cross-image variance. This observation motivates our efficient translation variant convolution (TVConv) for layout-aware visual processing. Technically, TVConv is composed of affinity maps and a weight-generating block. While affinity maps depict pixel-paired relationships gracefully, the weight-generating block can be explicitly overparameterized for better training while maintaining efficient inference. Although conceptually simple, TVConv significantly improves the efficiency of the convolution and can be readily plugged into various network architectures. Extensive experiments on face recognition show that TVConv reduces the computational cost by up to 3.1x and improves the corresponding throughput by 2.3x while maintaining a high accuracy compared to the depthwise convolution. Moreover, for the same computation cost, we boost the mean accuracy by up to 4.21%. We also conduct experiments on the optic disc/cup segmentation task and obtain better generalization performance, which helps mitigate the critical data scarcity issue. Code is available at https://github.com/JierunChen/TVConv.

Hyperspherical embedding for novel class classification

Deep learning models have become increasingly useful in many different industries. On the domain of image classification, convolutional neural networks proved the ability to learn robust features for the closed set problem, as shown in many different datasets, such as MNIST FASHIONMNIST, CIFAR10, CIFAR100, and IMAGENET. These approaches use deep neural networks with dense layers with softmax activation functions in order to learn features that can separate classes in a latent space. However, this traditional approach is not useful for identifying classes unseen on the training set, known as the open set problem. A similar problem occurs in scenarios involving learning on small data. To tackle both problems, few-shot learning has been proposed. In particular, metric learning learns features that obey constraints of a metric distance in the latent space in order to perform classification. However, while this approach proves to be useful for the open set problem, current implementation requires pair-wise training, where both positive and negative examples of similar images are presented during the training phase, which limits the applicability of these approaches in large data or large class scenarios given the combinatorial nature of the possible inputs.In this paper, we present a constraint-based approach applied to the representations in the latent space under the normalized softmax loss, proposed by[18]. We experimentally validate the proposed approach for the classification of unseen classes on different datasets using both metric learning and the normalized softmax loss, on disjoint and joint scenarios. Our results show that not only our proposed strategy can be efficiently trained on larger set of classes, as it does not require pairwise learning, but also present better classification results than the metric learning strategies surpassing its accuracy by a significant margin.