new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

May 28

Efficient N:M Sparse DNN Training Using Algorithm, Architecture, and Dataflow Co-Design

Sparse training is one of the promising techniques to reduce the computational cost of DNNs while retaining high accuracy. In particular, N:M fine-grained structured sparsity, where only N out of consecutive M elements can be nonzero, has attracted attention due to its hardware-friendly pattern and capability of achieving a high sparse ratio. However, the potential to accelerate N:M sparse DNN training has not been fully exploited, and there is a lack of efficient hardware supporting N:M sparse training. To tackle these challenges, this paper presents a computation-efficient training scheme for N:M sparse DNNs using algorithm, architecture, and dataflow co-design. At the algorithm level, a bidirectional weight pruning method, dubbed BDWP, is proposed to leverage the N:M sparsity of weights during both forward and backward passes of DNN training, which can significantly reduce the computational cost while maintaining model accuracy. At the architecture level, a sparse accelerator for DNN training, namely SAT, is developed to neatly support both the regular dense operations and the computation-efficient N:M sparse operations. At the dataflow level, multiple optimization methods ranging from interleave mapping, pre-generation of N:M sparse weights, and offline scheduling, are proposed to boost the computational efficiency of SAT. Finally, the effectiveness of our training scheme is evaluated on a Xilinx VCU1525 FPGA card using various DNN models and datasets. Experimental results show the SAT accelerator with the BDWP sparse training method under 2:8 sparse ratio achieves an average speedup of 1.75x over that with the dense training, accompanied by a negligible accuracy loss of 0.56% on average. Furthermore, our proposed training scheme significantly improves the training throughput by 2.97~25.22x and the energy efficiency by 1.36~3.58x over prior FPGA-based accelerators.

AccLLM: Accelerating Long-Context LLM Inference Via Algorithm-Hardware Co-Design

Recently, large language models (LLMs) have achieved huge success in the natural language processing (NLP) field, driving a growing demand to extend their deployment from the cloud to edge devices. However, deploying LLMs on resource-constrained edge devices poses significant challenges, including (1) intensive computations and huge model sizes, (2) great memory and bandwidth demands introduced by the autoregressive generation process, and (3) limited scalability for handling long sequences. To address these challenges, we propose AccLLM, a comprehensive acceleration framework that enables efficient and fast long-context LLM inference through algorithm and hardware co-design. At the algorithmic level, we integrate (1) pruning, (2) {\Lambda}-shaped attention, and (3) an innovative W2A8KV4 (2-bit weights, 8-bit activations, and 4-bit KV cache) quantization scheme, thus effectively reducing memory and bandwidth requirements while facilitating LLMs' long-sequence generation. At the hardware level, we design a dedicated FPGA-based accelerator with a reconfigurable computing engine to effectively and flexibly accommodate diverse operations arising from our compression algorithm, thereby fully translating the algorithmic innovations into tangible hardware efficiency. We validate AccLLM on the Xilinx Alveo U280 FPGA, demonstrating a 4.07x energy efficiency and a 2.98x throughput compared to the state-of-the-art work FlightLLM.

InTAR: Inter-Task Auto-Reconfigurable Accelerator Design for High Data Volume Variation in DNNs

The rise of deep neural networks (DNNs) has driven an increased demand for computing power and memory. Modern DNNs exhibit high data volume variation (HDV) across tasks, which poses challenges for FPGA acceleration: conventional accelerators rely on fixed execution patterns (dataflow or sequential) that can lead to pipeline stalls or necessitate frequent off-chip memory accesses. To address these challenges, we introduce the Inter-Task Auto-Reconfigurable Accelerator (InTAR), a novel accelerator design methodology for HDV applications on FPGAs. InTAR combines the high computational efficiency of sequential execution with the reduced off-chip memory overhead of dataflow execution. It switches execution patterns automatically with a static schedule determined before circuit design based on resource constraints and problem sizes. Unlike previous reconfigurable accelerators, InTAR encodes reconfiguration schedules during circuit design, allowing model-specific optimizations that allocate only the necessary logic and interconnects. Thus, InTAR achieves a high clock frequency with fewer resources and low reconfiguration time. Furthermore, InTAR supports high-level tools such as HLS for fast design generation. We implement a set of multi-task HDV DNN kernels using InTAR. Compared with dataflow and sequential accelerators, InTAR exhibits 1.8times and 7.1 times speedups correspondingly. Moreover, we extend InTAR to GPT-2 medium as a more complex example, which is 3.65 sim 39.14times faster and a 1.72 sim 10.44times more DSP efficient than SoTA accelerators (Allo and DFX) on FPGAs. Additionally, this design demonstrates 1.66 sim 7.17times better power efficiency than GPUs. Code: https://github.com/OswaldHe/InTAR

Trainable Fixed-Point Quantization for Deep Learning Acceleration on FPGAs

Quantization is a crucial technique for deploying deep learning models on resource-constrained devices, such as embedded FPGAs. Prior efforts mostly focus on quantizing matrix multiplications, leaving other layers like BatchNorm or shortcuts in floating-point form, even though fixed-point arithmetic is more efficient on FPGAs. A common practice is to fine-tune a pre-trained model to fixed-point for FPGA deployment, but potentially degrading accuracy. This work presents QFX, a novel trainable fixed-point quantization approach that automatically learns the binary-point position during model training. Additionally, we introduce a multiplier-free quantization strategy within QFX to minimize DSP usage. QFX is implemented as a PyTorch-based library that efficiently emulates fixed-point arithmetic, supported by FPGA HLS, in a differentiable manner during backpropagation. With minimal effort, models trained with QFX can readily be deployed through HLS, producing the same numerical results as their software counterparts. Our evaluation shows that compared to post-training quantization, QFX can quantize models trained with element-wise layers quantized to fewer bits and achieve higher accuracy on both CIFAR-10 and ImageNet datasets. We further demonstrate the efficacy of multiplier-free quantization using a state-of-the-art binarized neural network accelerator designed for an embedded FPGA (AMD Xilinx Ultra96 v2). We plan to release QFX in open-source format.

Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple Tasks

Neural Architecture Search (NAS) has demonstrated its power on various AI accelerating platforms such as Field Programmable Gate Arrays (FPGAs) and Graphic Processing Units (GPUs). However, it remains an open problem, how to integrate NAS with Application-Specific Integrated Circuits (ASICs), despite them being the most powerful AI accelerating platforms. The major bottleneck comes from the large design freedom associated with ASIC designs. Moreover, with the consideration that multiple DNNs will run in parallel for different workloads with diverse layer operations and sizes, integrating heterogeneous ASIC sub-accelerators for distinct DNNs in one design can significantly boost performance, and at the same time further complicate the design space. To address these challenges, in this paper we build ASIC template set based on existing successful designs, described by their unique dataflows, so that the design space is significantly reduced. Based on the templates, we further propose a framework, namely NASAIC, which can simultaneously identify multiple DNN architectures and the associated heterogeneous ASIC accelerator design, such that the design specifications (specs) can be satisfied, while the accuracy can be maximized. Experimental results show that compared with successive NAS and ASIC design optimizations which lead to design spec violations, NASAIC can guarantee the results to meet the design specs with 17.77%, 2.49x, and 2.32x reductions on latency, energy, and area and with 0.76% accuracy loss. To the best of the authors' knowledge, this is the first work on neural architecture and ASIC accelerator design co-exploration.

PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and Energy Extraction of Nuclear Detector Signals

Front-end electronics equipped with high-speed digitizers are being used and proposed for future nuclear detectors. Recent literature reveals that deep learning models, especially one-dimensional convolutional neural networks, are promising when dealing with digital signals from nuclear detectors. Simulations and experiments demonstrate the satisfactory accuracy and additional benefits of neural networks in this area. However, specific hardware accelerating such models for online operations still needs to be studied. In this work, we introduce PulseDL-II, a system-on-chip (SoC) specially designed for applications of event feature (time, energy, etc.) extraction from pulses with deep learning. Based on the previous version, PulseDL-II incorporates a RISC CPU into the system structure for better functional flexibility and integrity. The neural network accelerator in the SoC adopts a three-level (arithmetic unit, processing element, neural network) hierarchical architecture and facilitates parameter optimization of the digital design. Furthermore, we devise a quantization scheme compatible with deep learning frameworks (e.g., TensorFlow) within a selected subset of layer types. We validate the correct operations of PulseDL-II on field programmable gate arrays (FPGA) alone and with an experimental setup comprising a direct digital synthesis (DDS) and analog-to-digital converters (ADC). The proposed system achieved 60 ps time resolution and 0.40% energy resolution at signal to noise ratio (SNR) of 47.4 dB.

Algorithm-hardware Co-design for Deformable Convolution

FPGAs provide a flexible and efficient platform to accelerate rapidly-changing algorithms for computer vision. The majority of existing work focuses on accelerating image classification, while other fundamental vision problems, including object detection and instance segmentation, have not been adequately addressed. Compared with image classification, detection problems are more sensitive to the spatial variance of objects, and therefore, require specialized convolutions to aggregate spatial information. To address this, recent work proposes dynamic deformable convolution to augment regular convolutions. Regular convolutions process a fixed grid of pixels across all the spatial locations in an image, while dynamic deformable convolutions may access arbitrary pixels in the image and the access pattern is input-dependent and varies per spatial location. These properties lead to inefficient memory accesses of inputs with existing hardware. In this work, we first investigate the overhead of the deformable convolution on embedded FPGA SoCs, and then show the accuracy-latency tradeoffs for a set of algorithm modifications including full versus depthwise, fixed-shape, and limited-range. These modifications benefit the energy efficiency for embedded devices in general as they reduce the compute complexity. We then build an efficient object detection network with modified deformable convolutions and quantize the network using state-of-the-art quantization methods. We implement a unified hardware engine on FPGA to support all the operations in the network. Preliminary experiments show that little accuracy is compromised and speedup can be achieved with our co-design optimization for the deformable convolution.

Scalable MatMul-free Language Modeling

Matrix multiplication (MatMul) typically dominates the overall computational cost of large language models (LLMs). This cost only grows as LLMs scale to larger embedding dimensions and context lengths. In this work, we show that MatMul operations can be completely eliminated from LLMs while maintaining strong performance at billion-parameter scales. Our experiments show that our proposed MatMul-free models achieve performance on-par with state-of-the-art Transformers that require far more memory during inference at a scale up to at least 2.7B parameters. We investigate the scaling laws and find that the performance gap between our MatMul-free models and full precision Transformers narrows as the model size increases. We also provide a GPU-efficient implementation of this model which reduces memory usage by up to 61% over an unoptimized baseline during training. By utilizing an optimized kernel during inference, our model's memory consumption can be reduced by more than 10x compared to unoptimized models. To properly quantify the efficiency of our architecture, we build a custom hardware solution on an FPGA which exploits lightweight operations beyond what GPUs are capable of. We processed billion-parameter scale models at 13W beyond human readable throughput, moving LLMs closer to brain-like efficiency. This work not only shows how far LLMs can be stripped back while still performing effectively, but also points at the types of operations future accelerators should be optimized for in processing the next generation of lightweight LLMs. Our code implementation is available at https://github.com/ridgerchu/matmulfreellm.

FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGAs

Transformer-based Large Language Models (LLMs) have made a significant impact on various domains. However, LLMs' efficiency suffers from both heavy computation and memory overheads. Compression techniques like sparsification and quantization are commonly used to mitigate the gap between LLM's computation/memory overheads and hardware capacity. However, existing GPU and transformer-based accelerators cannot efficiently process compressed LLMs, due to the following unresolved challenges: low computational efficiency, underutilized memory bandwidth, and large compilation overheads. This paper proposes FlightLLM, enabling efficient LLMs inference with a complete mapping flow on FPGAs. In FlightLLM, we highlight an innovative solution that the computation and memory overhead of LLMs can be solved by utilizing FPGA-specific resources (e.g., DSP48 and heterogeneous memory hierarchy). We propose a configurable sparse DSP chain to support different sparsity patterns with high computation efficiency. Second, we propose an always-on-chip decode scheme to boost memory bandwidth with mixed-precision support. Finally, to make FlightLLM available for real-world LLMs, we propose a length adaptive compilation method to reduce the compilation overhead. Implemented on the Xilinx Alveo U280 FPGA, FlightLLM achieves 6.0times higher energy efficiency and 1.8times better cost efficiency against commercial GPUs (e.g., NVIDIA V100S) on modern LLMs (e.g., LLaMA2-7B) using vLLM and SmoothQuant under the batch size of one. FlightLLM beats NVIDIA A100 GPU with 1.2times higher throughput using the latest Versal VHK158 FPGA.

SMASH: Sparse Matrix Atomic Scratchpad Hashing

Sparse matrices, more specifically SpGEMM kernels, are commonly found in a wide range of applications, spanning graph-based path-finding to machine learning algorithms (e.g., neural networks). A particular challenge in implementing SpGEMM kernels has been the pressure placed on DRAM memory. One approach to tackle this problem is to use an inner product method for the SpGEMM kernel implementation. While the inner product produces fewer intermediate results, it can end up saturating the memory bandwidth, given the high number of redundant fetches of the input matrix elements. Using an outer product-based SpGEMM kernel can reduce redundant fetches, but at the cost of increased overhead due to extra computation and memory accesses for producing/managing partial products. In this thesis, we introduce a novel SpGEMM kernel implementation based on the row-wise product approach. We leverage atomic instructions to merge intermediate partial products as they are generated. The use of atomic instructions eliminates the need to create partial product matrices. To evaluate our row-wise product approach, we map an optimized SpGEMM kernel to a custom accelerator designed to accelerate graph-based applications. The targeted accelerator is an experimental system named PIUMA, being developed by Intel. PIUMA provides several attractive features, including fast context switching, user-configurable caches, globally addressable memory, non-coherent caches, and asynchronous pipelines. We tailor our SpGEMM kernel to exploit many of the features of the PIUMA fabric. This thesis compares our SpGEMM implementation against prior solutions, all mapped to the PIUMA framework. We briefly describe some of the PIUMA architecture features and then delve into the details of our optimized SpGEMM kernel. Our SpGEMM kernel can achieve 9.4x speedup as compared to competing approaches.

QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge

Monocular Depth Estimation (MDE) has emerged as a pivotal task in computer vision, supporting numerous real-world applications. However, deploying accurate depth estimation models on resource-limited edge devices, especially Application-Specific Integrated Circuits (ASICs), is challenging due to the high computational and memory demands. Recent advancements in foundational depth estimation deliver impressive results but further amplify the difficulty of deployment on ASICs. To address this, we propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs. Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost. To mitigate the performance degradation, we introduce activation polishing and compensation algorithm applied before and after activation quantization, as well as a weight reconstruction method for minimizing errors in weight quantization. Furthermore, we design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability, enhancing throughput and efficiency. Experimental results demonstrate that our framework achieves competitive accuracy while enabling fast inference and higher energy efficiency on ASICs, bridging the gap between high-performance depth estimation and practical edge-device applicability. Code: https://github.com/shawnricecake/quart-depth

DRACO: Co-Optimizing Hardware Utilization, and Performance of DNNs on Systolic Accelerator

The number of processing elements (PEs) in a fixed-sized systolic accelerator is well matched for large and compute-bound DNNs; whereas, memory-bound DNNs suffer from PE underutilization and fail to achieve peak performance and energy efficiency. To mitigate this, specialized dataflow and/or micro-architectural techniques have been proposed. However, due to the longer development cycle and the rapid pace of evolution in the deep learning fields, these hardware-based solutions can be obsolete and ineffective in dealing with PE underutilization for state-of-the-art DNNs. In this work, we address the challenge of PE underutilization at the algorithm front and propose data reuse aware co-optimization (DRACO). This improves the PE utilization of memory-bound DNNs without any additional need for dataflow/micro-architecture modifications. Furthermore, unlike the previous co-optimization methods, DRACO not only maximizes performance and energy efficiency but also improves the predictive performance of DNNs. To the best of our knowledge, DRACO is the first work that resolves the resource underutilization challenge at the algorithm level and demonstrates a trade-off between computational efficiency, PE utilization, and predictive performance of DNN. Compared to the state-of-the-art row stationary dataflow, DRACO achieves 41.8% and 42.6% improvement in average PE utilization and inference latency (respectively) with negligible loss in predictive performance in MobileNetV1 on a 64times64 systolic array. DRACO provides seminal insights for utilization-aware DNN design methodologies that can fully leverage the computation power of systolic array-based hardware accelerators.

PIM-GPT: A Hybrid Process-in-Memory Accelerator for Autoregressive Transformers

Decoder-only Transformer models such as GPT have demonstrated superior performance in text generation, by autoregressively predicting the next token. However, the performance of GPT is bounded by low compute-to-memory-ratio and high memory access. Throughput-oriented architectures such as GPUs target parallel processing rather than sequential token generation, and are not efficient for GPT acceleration, particularly on-device inference applications. Process-in-memory (PIM) architectures can significantly reduce data movement and provide high computation parallelism, and are promising candidates to accelerate GPT inference. In this work, we propose PIM-GPT that aims to achieve high throughput, high energy efficiency and end-to-end acceleration of GPT inference. PIM-GPT leverages DRAM-based PIM solutions to perform multiply-accumulate (MAC) operations on the DRAM chips, greatly reducing data movement. A compact application-specific integrated chip (ASIC) is designed and synthesized to initiate instructions to PIM chips and support data communication along with necessary arithmetic computations. At the software level, the mapping scheme is designed to maximize data locality and computation parallelism by partitioning a matrix among DRAM channels and banks to utilize all in-bank computation resources concurrently. We develop an event-driven clock-cycle accurate simulator to validate the efficacy of the proposed PIM-GPT architecture. Overall, PIM-GPT achieves 41-137times, 631-1074times speedup and 339-1085times, 890-1632times energy efficiency over GPU and CPU baseline, respectively, on 8 GPT models with up to 1.4 billion parameters.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors

Machine Learning (ML) functions are becoming ubiquitous in latency- and privacy-sensitive IoT applications, prompting a shift toward near-sensor processing at the extreme edge and the consequent increasing adoption of Parallel Ultra-Low Power (PULP) IoT processors. These compute- and memory-constrained parallel architectures need to run efficiently a wide range of algorithms, including key Non-Neural ML kernels that compete favorably with Deep Neural Networks (DNNs) in terms of accuracy under severe resource constraints. In this paper, we focus on enabling efficient parallel execution of Non-Neural ML algorithms on two RISCV-based PULP platforms, namely GAP8, a commercial chip, and PULP-OPEN, a research platform running on an FPGA emulator. We optimized the parallel algorithms through a fine-grained analysis and intensive optimization to maximize the speedup, considering two alternative Floating-Point (FP) emulation libraries on GAP8 and the native FPU support on PULP-OPEN. Experimental results show that a target-optimized emulation library can lead to an average 1.61x runtime improvement and 37% energy reduction compared to a standard emulation library, while the native FPU support reaches up to 32.09x and 99%, respectively. In terms of parallel speedup, our design improves the sequential execution by 7.04x on average on the targeted octa-core platforms leading to energy and latency decrease up to 87%. Lastly, we present a comparison with the ARM Cortex-M4 microcontroller (MCU), a widely adopted commercial solution for edge deployments, which is 12.87x slower and 98% less energy-efficient than PULP-OPEN.

Hardware Acceleration of Neural Graphics

Rendering and inverse-rendering algorithms that drive conventional computer graphics have recently been superseded by neural representations (NR). NRs have recently been used to learn the geometric and the material properties of the scenes and use the information to synthesize photorealistic imagery, thereby promising a replacement for traditional rendering algorithms with scalable quality and predictable performance. In this work we ask the question: Does neural graphics (NG) need hardware support? We studied representative NG applications showing that, if we want to render 4k res. at 60FPS there is a gap of 1.5X-55X in the desired performance on current GPUs. For AR/VR applications, there is an even larger gap of 2-4 OOM between the desired performance and the required system power. We identify that the input encoding and the MLP kernels are the performance bottlenecks, consuming 72%,60% and 59% of application time for multi res. hashgrid, multi res. densegrid and low res. densegrid encodings, respectively. We propose a NG processing cluster, a scalable and flexible hardware architecture that directly accelerates the input encoding and MLP kernels through dedicated engines and supports a wide range of NG applications. We also accelerate the rest of the kernels by fusing them together in Vulkan, which leads to 9.94X kernel-level performance improvement compared to un-fused implementation of the pre-processing and the post-processing kernels. Our results show that, NGPC gives up to 58X end-to-end application-level performance improvement, for multi res. hashgrid encoding on average across the four NG applications, the performance benefits are 12X,20X,33X and 39X for the scaling factor of 8,16,32 and 64, respectively. Our results show that with multi res. hashgrid encoding, NGPC enables the rendering of 4k res. at 30FPS for NeRF and 8k res. at 120FPS for all our other NG applications.

A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC

Despite advances in the programmable logic capabilities of modern trigger systems, a significant bottleneck remains in the amount of data to be transported from the detector to off-detector logic where trigger decisions are made. We demonstrate that a neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression alleviating the data transmission problem while preserving critical information of the detector energy profile. For our application, we consider the high-granularity calorimeter from the CMS experiment at the CERN Large Hadron Collider. The advantage of the machine learning approach is in the flexibility and configurability of the algorithm. By changing the neural network weights, a unique data compression algorithm can be deployed for each sensor in different detector regions, and changing detector or collider conditions. To meet area, performance, and power constraints, we perform a quantization-aware training to create an optimized neural network hardware implementation. The design is achieved through the use of high-level synthesis tools and the hls4ml framework, and was processed through synthesis and physical layout flows based on a LP CMOS 65 nm technology node. The flow anticipates 200 Mrad of ionizing radiation to select gates, and reports a total area of 3.6 mm^2 and consumes 95 mW of power. The simulated energy consumption per inference is 2.4 nJ. This is the first radiation tolerant on-detector ASIC implementation of a neural network that has been designed for particle physics applications.

Revisiting VerilogEval: Newer LLMs, In-Context Learning, and Specification-to-RTL Tasks

The application of large-language models (LLMs) to digital hardware code generation is an emerging field. Most LLMs are primarily trained on natural language and software code. Hardware code, such as Verilog, represents only a small portion of the training data and few hardware benchmarks exist. To address this gap, the open-source VerilogEval benchmark was released in 2023, providing a consistent evaluation framework for LLMs on code completion tasks. It was tested on state-of-the-art models at the time including GPT-4. However, VerilogEval and other Verilog generation benchmarks lack failure analysis and, in present form, are not conducive to exploring prompting techniques. Also, since VerilogEval's release, both commercial and open-source models have seen continued development. In this work, we evaluate new commercial and open-source models of varying sizes against an improved VerilogEval benchmark suite. We enhance VerilogEval's infrastructure and dataset by automatically classifying failures, introduce new prompts for supporting in-context learning (ICL) examples, and extend the supported tasks to specification-to-RTL translation. We find a measurable improvement in commercial state-of-the-art models, with GPT-4 Turbo achieving a 59% pass rate on spec-to-RTL tasks. We also study the performance of open-source and domain-specific models that have emerged, and demonstrate that models can benefit substantially from ICL. We find that recently-released Llama 3.1 405B achieves a pass rate of 58%, effectively matching that of GPT-4 Turbo, and that the much smaller domain-specific RTL-Coder 6.7B models achieve an impressive 37% pass rate. However, prompt engineering is key to achieving good pass rates, and varies widely with model and task. A benchmark infrastructure that allows for prompt engineering and failure analysis is key to continued model development and deployment.

Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture with Task-level Sparsity via Mixture-of-Experts

Computer vision researchers are embracing two promising paradigms: Vision Transformers (ViTs) and Multi-task Learning (MTL), which both show great performance but are computation-intensive, given the quadratic complexity of self-attention in ViT and the need to activate an entire large MTL model for one task. M^3ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE), where only a small portion of subnetworks ("experts") are sparsely and dynamically activated based on the current task. M^3ViT achieves better accuracy and over 80% computation reduction but leaves challenges for efficient deployment on FPGA. Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations, including (1) a novel reordering mechanism for self-attention, which requires only constant bandwidth regardless of the target parallelism; (2) a fast single-pass softmax approximation; (3) an accurate and low-cost GELU approximation; (4) a unified and flexible computing unit that is shared by almost all computational layers to maximally reduce resource usage; and (5) uniquely for M^3ViT, a novel patch reordering method to eliminate memory access overhead. Edge-MoE achieves 2.24x and 4.90x better energy efficiency comparing with GPU and CPU, respectively. A real-time video demonstration is available online, along with our open-source code written using High-Level Synthesis.

M^3ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design

Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly. However, when deploying MTL onto those real-world systems that are often resource-constrained or latency-sensitive, two prominent challenges arise: (i) during training, simultaneously optimizing all tasks is often difficult due to gradient conflicts across tasks; (ii) at inference, current MTL regimes have to activate nearly the entire model even to just execute a single task. Yet most real systems demand only one or two tasks at each moment, and switch between tasks as needed: therefore such all tasks activated inference is also highly inefficient and non-scalable. In this paper, we present a model-accelerator co-design framework to enable efficient on-device MTL. Our framework, dubbed M^3ViT, customizes mixture-of-experts (MoE) layers into a vision transformer (ViT) backbone for MTL, and sparsely activates task-specific experts during training. Then at inference with any task of interest, the same design allows for activating only the task-corresponding sparse expert pathway, instead of the full model. Our new model design is further enhanced by hardware-level innovations, in particular, a novel computation reordering scheme tailored for memory-constrained MTL that achieves zero-overhead switching between tasks and can scale to any number of experts. When executing single-task inference, M^{3}ViT achieves higher accuracies than encoder-focused MTL methods, while significantly reducing 88% inference FLOPs. When implemented on a hardware platform of one Xilinx ZCU104 FPGA, our co-design framework reduces the memory requirement by 2.4 times, while achieving energy efficiency up to 9.23 times higher than a comparable FPGA baseline. Code is available at: https://github.com/VITA-Group/M3ViT.

Post-Training Quantization with Low-precision Minifloats and Integers on FPGAs

Post-Training Quantization (PTQ) is a powerful technique for model compression, reducing the precision of neural networks without additional training overhead. Recent works have investigated adopting 8-bit floating-point quantization (FP8) in the context of PTQ for model inference. However, the exploration of floating-point formats smaller than 8 bits and their comparison with integer quantization remains relatively limited. In this work, we present minifloats, which are reduced-precision floating-point formats capable of further reducing the memory footprint, latency, and energy cost of a model while approaching full-precision model accuracy. Our work presents a novel PTQ design-space exploration, comparing minifloat and integer quantization schemes across a range of 3 to 8 bits for both weights and activations. We examine the applicability of various PTQ techniques to minifloats, including weight equalization, bias correction, SmoothQuant, gradient-based learned rounding, and the GPTQ method. Our experiments validate the effectiveness of low-precision minifloats when compared to their integer counterparts across a spectrum of accuracy-precision trade-offs on a set of reference deep learning vision workloads. Finally, we evaluate our results against an FPGA-based hardware cost model, showing that integer quantization often remains the Pareto-optimal option, given its relatively smaller hardware resource footprint.

SambaNova SN40L: Scaling the AI Memory Wall with Dataflow and Composition of Experts

Monolithic large language models (LLMs) like GPT-4 have paved the way for modern generative AI applications. Training, serving, and maintaining monolithic LLMs at scale, however, remains prohibitively expensive and challenging. The disproportionate increase in compute-to-memory ratio of modern AI accelerators have created a memory wall, necessitating new methods to deploy AI. Composition of Experts (CoE) is an alternative modular approach that lowers the cost and complexity of training and serving. However, this approach presents two key challenges when using conventional hardware: (1) without fused operations, smaller models have lower operational intensity, which makes high utilization more challenging to achieve; and (2) hosting a large number of models can be either prohibitively expensive or slow when dynamically switching between them. In this paper, we describe how combining CoE, streaming dataflow, and a three-tier memory system scales the AI memory wall. We describe Samba-CoE, a CoE system with 150 experts and a trillion total parameters. We deploy Samba-CoE on the SambaNova SN40L Reconfigurable Dataflow Unit (RDU) - a commercial dataflow accelerator architecture that has been co-designed for enterprise inference and training applications. The chip introduces a new three-tier memory system with on-chip distributed SRAM, on-package HBM, and off-package DDR DRAM. A dedicated inter-RDU network enables scaling up and out over multiple sockets. We demonstrate speedups ranging from 2x to 13x on various benchmarks running on eight RDU sockets compared with an unfused baseline. We show that for CoE inference deployments, the 8-socket RDU Node reduces machine footprint by up to 19x, speeds up model switching time by 15x to 31x, and achieves an overall speedup of 3.7x over a DGX H100 and 6.6x over a DGX A100.

Leveraging ASIC AI Chips for Homomorphic Encryption

Cloud-based services are making the outsourcing of sensitive client data increasingly common. Although homomorphic encryption (HE) offers strong privacy guarantee, it requires substantially more resources than computing on plaintext, often leading to unacceptably large latencies in getting the results. HE accelerators have emerged to mitigate this latency issue, but with the high cost of ASICs. In this paper we show that HE primitives can be converted to AI operators and accelerated on existing ASIC AI accelerators, like TPUs, which are already widely deployed in the cloud. Adapting such accelerators for HE requires (1) supporting modular multiplication, (2) high-precision arithmetic in software, and (3) efficient mapping on matrix engines. We introduce the CROSS compiler (1) to adopt Barrett reduction to provide modular reduction support using multiplier and adder, (2) Basis Aligned Transformation (BAT) to convert high-precision multiplication as low-precision matrix-vector multiplication, (3) Matrix Aligned Transformation (MAT) to covert vectorized modular operation with reduction into matrix multiplication that can be efficiently processed on 2D spatial matrix engine. Our evaluation of CROSS on a Google TPUv4 demonstrates significant performance improvements, with up to 161x and 5x speedup compared to the previous work on many-core CPUs and V100. The kernel-level codes are open-sourced at https://github.com/google/jaxite/tree/main/jaxite_word.

CoDeNet: Efficient Deployment of Input-Adaptive Object Detection on Embedded FPGAs

Deploying deep learning models on embedded systems has been challenging due to limited computing resources. The majority of existing work focuses on accelerating image classification, while other fundamental vision problems, such as object detection, have not been adequately addressed. Compared with image classification, detection problems are more sensitive to the spatial variance of objects, and therefore, require specialized convolutions to aggregate spatial information. To address this need, recent work introduces dynamic deformable convolution to augment regular convolutions. However, this will lead to inefficient memory accesses of inputs with existing hardware. In this work, we harness the flexibility of FPGAs to develop a novel object detection pipeline with deformable convolutions. We show the speed-accuracy tradeoffs for a set of algorithm modifications including irregular-access versus limited-range and fixed-shape. We then Co-Design a Network CoDeNet with the modified deformable convolution and quantize it to 4-bit weights and 8-bit activations. With our high-efficiency implementation, our solution reaches 26.9 frames per second with a tiny model size of 0.76 MB while achieving 61.7 AP50 on the standard object detection dataset, Pascal VOC. With our higher accuracy implementation, our model gets to 67.1 AP50 on Pascal VOC with only 2.9 MB of parameters-20.9x smaller but 10% more accurate than Tiny-YOLO.

MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation

Large Language Models (LLMs) have recently shown promise in streamlining hardware design processes by encapsulating vast amounts of domain-specific data. In addition, they allow users to interact with the design processes through natural language instructions, thus making hardware design more accessible to developers. However, effectively leveraging LLMs in hardware design necessitates providing domain-specific data during inference (e.g., through in-context learning), fine-tuning, or pre-training. Unfortunately, existing publicly available hardware datasets are often limited in size, complexity, or detail, which hinders the effectiveness of LLMs in hardware design tasks. To address this issue, we first propose a set of criteria for creating high-quality hardware datasets that can effectively enhance LLM-assisted hardware design. Based on these criteria, we propose a Multi-Grained-Verilog (MG-Verilog) dataset, which encompasses descriptions at various levels of detail and corresponding code samples. To benefit the broader hardware design community, we have developed an open-source infrastructure that facilitates easy access, integration, and extension of the dataset to meet specific project needs. Furthermore, to fully exploit the potential of the MG-Verilog dataset, which varies in complexity and detail, we introduce a balanced fine-tuning scheme. This scheme serves as a unique use case to leverage the diverse levels of detail provided by the dataset. Extensive experiments demonstrate that the proposed dataset and fine-tuning scheme consistently improve the performance of LLMs in hardware design tasks.

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design

Machine learning is a prevalent approach to tame the complexity of design space exploration for domain-specific architectures. Using ML for design space exploration poses challenges. First, it's not straightforward to identify the suitable algorithm from an increasing pool of ML methods. Second, assessing the trade-offs between performance and sample efficiency across these methods is inconclusive. Finally, lack of a holistic framework for fair, reproducible, and objective comparison across these methods hinders progress of adopting ML-aided architecture design space exploration and impedes creating repeatable artifacts. To mitigate these challenges, we introduce ArchGym, an open-source gym and easy-to-extend framework that connects diverse search algorithms to architecture simulators. To demonstrate utility, we evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SoC for AR/VR workloads, encompassing over 21K experiments. Results suggest that with unlimited samples, ML algorithms are equally favorable to meet user-defined target specification if hyperparameters are tuned; no solution is necessarily better than another (e.g., reinforcement learning vs. Bayesian methods). We coin the term hyperparameter lottery to describe the chance for a search algorithm to find an optimal design provided meticulously selected hyperparameters. The ease of data collection and aggregation in ArchGym facilitates research in ML-aided architecture design space exploration. As a case study, we show this advantage by developing a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold reduction in simulation time. Code and data for ArchGym is available at https://bit.ly/ArchGym.

FlashDecoding++: Faster Large Language Model Inference on GPUs

As the Large Language Model (LLM) becomes increasingly important in various domains. However, the following challenges still remain unsolved in accelerating LLM inference: (1) Synchronized partial softmax update. The softmax operation requires a synchronized update operation among each partial softmax result, leading to ~20% overheads for the attention computation in LLMs. (2) Under-utilized computation of flat GEMM. The shape of matrices performing GEMM in LLM inference is flat, leading to under-utilized computation and >50% performance loss after padding zeros in previous designs. (3) Performance loss due to static dataflow. Kernel performance in LLM depends on varied input data features, hardware configurations, etc. A single and static dataflow may lead to a 50.25% performance loss for GEMMs of different shapes in LLM inference. We present FlashDecoding++, a fast LLM inference engine supporting mainstream LLMs and hardware back-ends. To tackle the above challenges, FlashDecoding++ creatively proposes: (1) Asynchronized softmax with unified max value. FlashDecoding++ introduces a unified max value technique for different partial softmax computations to avoid synchronization. (2) Flat GEMM optimization with double buffering. FlashDecoding++ points out that flat GEMMs with different shapes face varied bottlenecks. Then, techniques like double buffering are introduced. (3) Heuristic dataflow with hardware resource adaptation. FlashDecoding++ heuristically optimizes dataflow using different hardware resource considering input dynamics. Due to the versatility of optimizations in FlashDecoding++, FlashDecoding++ can achieve up to 4.86x and 2.18x speedup on both NVIDIA and AMD GPUs compared to Hugging Face implementations. FlashDecoding++ also achieves an average speedup of 1.37x compared to state-of-the-art LLM inference engines on mainstream LLMs.

Closing the Performance Gap with Modern C++

On the way to Exascale, programmers face the increasing challenge of having to support multiple hardware architectures from the same code base. At the same time, portability of code and performance are increasingly difficult to achieve as hardware architectures are becoming more and more diverse. Today's heterogeneous systems often include two or more completely distinct and incompatible hardware execution models, such as GPGPU's, SIMD vector units, and general purpose cores which conventionally have to be programmed using separate tool chains representing non-overlapping programming models. The recent revival of interest in the industry and the wider community for the C++ language has spurred a remarkable amount of standardization proposals and technical specifications in the arena of concurrency and parallelism. This recently includes an increasing amount of discussion around the need for a uniform, higher-level abstraction and programming model for parallelism in the C++ standard targeting heterogeneous and distributed computing. Such an abstraction should perfectly blend with existing, already standardized language and library features, but should also be generic enough to support future hardware developments. In this paper, we present the results from developing such a higher-level programming abstraction for parallelism in C++ which aims at enabling code and performance portability over a wide range of architectures and for various types of parallelism. We present and compare performance data obtained from running the well-known STREAM benchmark ported to our higher level C++ abstraction with the corresponding results from running it natively. We show that our abstractions enable performance at least as good as the comparable base-line benchmarks while providing a uniform programming API on all compared target architectures.

Exploring the Performance Improvement of Tensor Processing Engines through Transformation in the Bit-weight Dimension of MACs

General matrix-matrix multiplication (GEMM) is a cornerstone of AI computations, making tensor processing engines (TPEs) increasingly critical in GPUs and domain-specific architectures. Existing architectures primarily optimize dataflow or operand reuse strategies. However, considering the interaction between matrix multiplication and multiply-accumulators (MACs) offers greater optimization potential. This work introduces a novel hardware perspective on matrix multiplication, focusing on the bit-weight dimension of MACs. We propose a finer-grained TPE notation using matrix triple loops as an example, introducing new methods for designing and optimizing PE microarchitectures. Based on this notation and its transformations, we propose four optimization techniques that improve timing, area, and power consumption. Implementing our design in RTL using the SMIC-28nm process, we evaluate its effectiveness across four classic TPE architectures: systolic array, 3D-Cube, multiplier-adder tree, and 2D-Matrix. Our techniques achieve area efficiency improvements of 1.27x, 1.28x, 1.56x, and 1.44x, and energy efficiency gains of 1.04x, 1.56x, 1.49x, and 1.20x, respectively. Applied to a bit-slice architecture, our approach achieves a 12.10x improvement in energy efficiency and 2.85x in area efficiency compared to Laconic. Our Verilog HDL code, along with timing, area, and power reports, is available at https://github.com/wqzustc/High-Performance-Tensor-Processing-Engines

LUT Tensor Core: Lookup Table Enables Efficient Low-Bit LLM Inference Acceleration

As large language model (LLM) inference demands ever-greater resources, there is a rapid growing trend of using low-bit weights to shrink memory usage and boost inference efficiency. However, these low-bit LLMs introduce the need for mixed-precision matrix multiplication (mpGEMM), which is a crucial yet under-explored operation that involves multiplying lower-precision weights with higher-precision activations. Unfortunately, current hardware does not natively support mpGEMM, resulting in indirect and inefficient dequantization-based implementations. To address the mpGEMM requirements in low-bit LLMs, we explored the lookup table (LUT)-based approach for mpGEMM. However, a conventional LUT implementation falls short of its potential. To fully harness the power of LUT-based mpGEMM, we introduce LUT Tensor Core, a software-hardware co-design optimized for low-bit LLM inference. Specifically, we introduce software-based operator fusion and table symmetrization techniques to optimize table precompute and table storage, respectively. Then, LUT Tensor Core proposes the hardware design featuring an elongated tiling shape design to enhance table reuse and a bit-serial design to support various precision combinations in mpGEMM. Moreover, we design an end-to-end compilation stack with new instructions for LUT-based mpGEMM, enabling efficient LLM compilation and optimizations. The evaluation on low-bit LLMs (e.g., BitNet, LLAMA) shows that LUT Tensor Core achieves more than a magnitude of improvements on both compute density and energy efficiency.

Insights into DeepSeek-V3: Scaling Challenges and Reflections on Hardware for AI Architectures

The rapid scaling of large language models (LLMs) has unveiled critical limitations in current hardware architectures, including constraints in memory capacity, computational efficiency, and interconnection bandwidth. DeepSeek-V3, trained on 2,048 NVIDIA H800 GPUs, demonstrates how hardware-aware model co-design can effectively address these challenges, enabling cost-efficient training and inference at scale. This paper presents an in-depth analysis of the DeepSeek-V3/R1 model architecture and its AI infrastructure, highlighting key innovations such as Multi-head Latent Attention (MLA) for enhanced memory efficiency, Mixture of Experts (MoE) architectures for optimized computation-communication trade-offs, FP8 mixed-precision training to unlock the full potential of hardware capabilities, and a Multi-Plane Network Topology to minimize cluster-level network overhead. Building on the hardware bottlenecks encountered during DeepSeek-V3's development, we engage in a broader discussion with academic and industry peers on potential future hardware directions, including precise low-precision computation units, scale-up and scale-out convergence, and innovations in low-latency communication fabrics. These insights underscore the critical role of hardware and model co-design in meeting the escalating demands of AI workloads, offering a practical blueprint for innovation in next-generation AI systems.

FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

Deep learning techniques have provided significant improvements in hyperspectral image (HSI) classification. The current deep learning based HSI classifiers follow a patch-based learning framework by dividing the image into overlapping patches. As such, these methods are local learning methods, which have a high computational cost. In this paper, a fast patch-free global learning (FPGA) framework is proposed for HSI classification. In FPGA, an encoder-decoder based FCN is utilized to consider the global spatial information by processing the whole image, which results in fast inference. However, it is difficult to directly utilize the encoder-decoder based FCN for HSI classification as it always fails to converge due to the insufficiently diverse gradients caused by the limited training samples. To solve the divergence problem and maintain the abilities of FCN of fast inference and global spatial information mining, a global stochastic stratified sampling strategy is first proposed by transforming all the training samples into a stochastic sequence of stratified samples. This strategy can obtain diverse gradients to guarantee the convergence of the FCN in the FPGA framework. For a better design of FCN architecture, FreeNet, which is a fully end-to-end network for HSI classification, is proposed to maximize the exploitation of the global spatial information and boost the performance via a spectral attention based encoder and a lightweight decoder. A lateral connection module is also designed to connect the encoder and decoder, fusing the spatial details in the encoder and the semantic features in the decoder. The experimental results obtained using three public benchmark datasets suggest that the FPGA framework is superior to the patch-based framework in both speed and accuracy for HSI classification. Code has been made available at: https://github.com/Z-Zheng/FreeNet.

Agile-Quant: Activation-Guided Quantization for Faster Inference of LLMs on the Edge

Large Language Models (LLMs) stand out for their impressive performance in intricate language modeling tasks. However, their demanding computational and memory needs pose obstacles for broad use on edge devices. Quantization is then introduced to boost LLMs' on-device efficiency. Recent works show that 8-bit or lower weight quantization is feasible with minimal impact on end-to-end task performance, while the activation is still not quantized. On the other hand, mainstream commodity edge devices still struggle to execute these sub-8-bit quantized networks effectively. In this paper, we propose Agile-Quant, an activation-guided quantization framework for popular Large Language Models (LLMs), and implement an end-to-end accelerator on multiple edge devices for faster inference. Considering the hardware profiling and activation analysis, we first introduce a basic activation quantization strategy to balance the trade-off of task performance and real inference speed. Then we leverage the activation-aware token pruning technique to reduce the outliers and the adverse impact on attentivity. Ultimately, we utilize the SIMD-based 4-bit multiplier and our efficient TRIP matrix multiplication to implement the accelerator for LLMs on the edge. We apply our framework on different scales of LLMs including LLaMA, OPT, and BLOOM with 4-bit or 8-bit for the activation and 4-bit for the weight quantization. Experiments show that Agile-Quant achieves simultaneous quantization of model weights and activations while maintaining task performance comparable to existing weight-only quantization methods. Moreover, in the 8- and 4-bit scenario, Agile-Quant achieves an on-device speedup of up to 2.55x compared to its FP16 counterparts across multiple edge devices, marking a pioneering advancement in this domain.

Accurate Block Quantization in LLMs with Outliers

The demand for inference on extremely large scale LLMs has seen enormous growth in the recent months. It made evident the colossal shortage of dedicated hardware capable of efficient and fast processing of the involved compute and memory movement. The problem is aggravated by the exploding raise in the lengths of the sequences being processed, since those require efficient on-chip storage of the KV-cache of size proportional to the sequence length. To make the required compute feasible and fit the involved data into available memory, numerous quantization techniques have been proposed that allow accurate quantization for both weights and activations. One of the main recent breakthroughs in this direction was introduction of the family of Block Floating Point (BFP) formats characterized by a block of mantissas with a shared scale factor. These enable memory- power-, and compute- efficient hardware support of the tensor operations and provide extremely good quantization accuracy. The main issues preventing widespread application of block formats is caused by the presence of outliers in weights and activations since those affect the accuracy of the other values in the same block. In this paper, we focus on the most critical problem of limited KV-cache storage. We propose a novel approach enabling usage of low precision BFP formats without compromising the resulting model accuracy. We exploit the common channel-wise patterns exhibited by the outliers to rearrange them in such a way, that their quantization quality is significantly improved. The methodology yields 2x savings in the memory footprint without significant degradation of the model's accuracy. Importantly, the rearrangement of channels happens at the compile time and thus has no impact on the inference latency.

CARMA: Context-Aware Runtime Reconfiguration for Energy-Efficient Sensor Fusion

Autonomous systems (AS) are systems that can adapt and change their behavior in response to unanticipated events and include systems such as aerial drones, autonomous vehicles, and ground/aquatic robots. AS require a wide array of sensors, deep-learning models, and powerful hardware platforms to perceive and safely operate in real-time. However, in many contexts, some sensing modalities negatively impact perception while increasing the system's overall energy consumption. Since AS are often energy-constrained edge devices, energy-efficient sensor fusion methods have been proposed. However, existing methods either fail to adapt to changing scenario conditions or to optimize energy efficiency system-wide. We propose CARMA: a context-aware sensor fusion approach that uses context to dynamically reconfigure the computation flow on a Field-Programmable Gate Array (FPGA) at runtime. By clock-gating unused sensors and model sub-components, CARMA significantly reduces the energy used by a multi-sensory object detector without compromising performance. We use a Deep-learning Processor Unit (DPU) based reconfiguration approach to minimize the latency of model reconfiguration. We evaluate multiple context-identification strategies, propose a novel system-wide energy-performance joint optimization, and evaluate scenario-specific perception performance. Across challenging real-world sensing contexts, CARMA outperforms state-of-the-art methods with up to 1.3x speedup and 73% lower energy consumption.

Reduced Precision Floating-Point Optimization for Deep Neural Network On-Device Learning on MicroControllers

Enabling On-Device Learning (ODL) for Ultra-Low-Power Micro-Controller Units (MCUs) is a key step for post-deployment adaptation and fine-tuning of Deep Neural Network (DNN) models in future TinyML applications. This paper tackles this challenge by introducing a novel reduced precision optimization technique for ODL primitives on MCU-class devices, leveraging the State-of-Art advancements in RISC-V RV32 architectures with support for vectorized 16-bit floating-point (FP16) Single-Instruction Multiple-Data (SIMD) operations. Our approach for the Forward and Backward steps of the Back-Propagation training algorithm is composed of specialized shape transform operators and Matrix Multiplication (MM) kernels, accelerated with parallelization and loop unrolling. When evaluated on a single training step of a 2D Convolution layer, the SIMD-optimized FP16 primitives result up to 1.72times faster than the FP32 baseline on a RISC-V-based 8+1-core MCU. An average computing efficiency of 3.11 Multiply and Accumulate operations per clock cycle (MAC/clk) and 0.81 MAC/clk is measured for the end-to-end training tasks of a ResNet8 and a DS-CNN for Image Classification and Keyword Spotting, respectively -- requiring 17.1 ms and 6.4 ms on the target platform to compute a training step on a single sample. Overall, our approach results more than two orders of magnitude faster than existing ODL software frameworks for single-core MCUs and outperforms by 1.6 times previous FP32 parallel implementations on a Continual Learning setup.

Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization

Logic synthesis, a pivotal stage in chip design, entails optimizing chip specifications encoded in hardware description languages like Verilog into highly efficient implementations using Boolean logic gates. The process involves a sequential application of logic minimization heuristics (``synthesis recipe"), with their arrangement significantly impacting crucial metrics such as area and delay. Addressing the challenge posed by the broad spectrum of design complexities - from variations of past designs (e.g., adders and multipliers) to entirely novel configurations (e.g., innovative processor instructions) - requires a nuanced `synthesis recipe` guided by human expertise and intuition. This study conducts a thorough examination of learning and search techniques for logic synthesis, unearthing a surprising revelation: pre-trained agents, when confronted with entirely novel designs, may veer off course, detrimentally affecting the search trajectory. We present ABC-RL, a meticulously tuned alpha parameter that adeptly adjusts recommendations from pre-trained agents during the search process. Computed based on similarity scores through nearest neighbor retrieval from the training dataset, ABC-RL yields superior synthesis recipes tailored for a wide array of hardware designs. Our findings showcase substantial enhancements in the Quality-of-result (QoR) of synthesized circuits, boasting improvements of up to 24.8% compared to state-of-the-art techniques. Furthermore, ABC-RL achieves an impressive up to 9x reduction in runtime (iso-QoR) when compared to current state-of-the-art methodologies.

Combined Scheduling, Memory Allocation and Tensor Replacement for Minimizing Off-Chip Data Accesses of DNN Accelerators

Specialized hardware accelerators have been extensively used for Deep Neural Networks (DNNs) to provide power/performance benefits. These accelerators contain specialized hardware that supports DNN operators, and scratchpad memory for storing the tensor operands. Often, the size of the scratchpad is insufficient to store all the tensors needed for the computation, and additional data accesses are needed to move tensors back and forth from host memory during the computation with significant power/performance overhead. The volume of these additional data accesses depends on the operator schedule, and memory allocation (specific locations selected for the tensors in the scratchpad). We propose an optimization framework, named COSMA, for mapping DNNs to an accelerator that finds the optimal operator schedule, memory allocation and tensor replacement that minimizes the additional data accesses. COSMA provides an Integer Linear Programming (ILP) formulation to generate the optimal solution for mapping a DNN to the accelerator for a given scratchpad size. We demonstrate that, using an off-the-shelf ILP solver, COSMA obtains the optimal solution in seconds for a wide-range of state-of-the-art DNNs for different applications. Further, it out-performs existing methods by reducing on average 84% of the non-compulsory data accesses. We further propose a divide-and-conquer heuristic to scale up to certain complex DNNs generated by Neural Architecture Search, and this heuristic solution reduces on average 85% data accesses compared with other works.

Potential and Limitation of High-Frequency Cores and Caches

This paper explores the potential of cryogenic semiconductor computing and superconductor electronics as promising alternatives to traditional semiconductor devices. As semiconductor devices face challenges such as increased leakage currents and reduced performance at higher temperatures, these novel technologies offer high performance and low power computation. Conventional semiconductor electronics operating at cryogenic temperatures (below -150{\deg}C or 123.15 K) can benefit from reduced leakage currents and improved electron mobility. On the other hand, superconductor electronics, operating below 10 K, allow electrons to flow without resistance, offering the potential for ultra-low-power, high-speed computation. This study presents a comprehensive performance modeling and analysis of these technologies and provides insights into their potential benefits and limitations. We implement models of in-order and out-of-order cores operating at high clock frequencies associated with superconductor electronics and cryogenic semiconductor computing in gem5. We evaluate the performance of these components using workloads representative of real-world applications like NPB, SPEC CPU2006, and GAPBS. Our results show the potential speedups achievable by these components and the limitations posed by cache bandwidth. This work provides valuable insights into the performance implications and design trade-offs associated with cryogenic and superconductor technologies, laying the foundation for future research in this field using gem5.

VeriReason: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced Verilog Generation

Automating Register Transfer Level (RTL) code generation using Large Language Models (LLMs) offers substantial promise for streamlining digital circuit design and reducing human effort. However, current LLM-based approaches face significant challenges with training data scarcity, poor specification-code alignment, lack of verification mechanisms, and balancing generalization with specialization. Inspired by DeepSeek-R1, we introduce VeriReason, a framework integrating supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning for RTL generation. Using curated training examples and a feedback-driven reward model, VeriReason combines testbench evaluations with structural heuristics while embedding self-checking capabilities for autonomous error correction. On the VerilogEval Benchmark, VeriReason delivers significant improvements: achieving 83.1% functional correctness on the VerilogEval Machine benchmark, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo. Additionally, our approach demonstrates up to a 2.8X increase in first-attempt functional correctness compared to baseline methods and exhibits robust generalization to unseen designs. To our knowledge, VeriReason represents the first system to successfully integrate explicit reasoning capabilities with reinforcement learning for Verilog generation, establishing a new state-of-the-art for automated RTL synthesis. The models and datasets are available at: https://huggingface.co/collections/AI4EDA-CASE Code is Available at: https://github.com/NellyW8/VeriReason

Language Modeling on a SpiNNaker 2 Neuromorphic Chip

As large language models continue to scale in size rapidly, so too does the computational power required to run them. Event-based networks on neuromorphic devices offer a potential way to reduce energy consumption for inference significantly. However, to date, most event-based networks that can run on neuromorphic hardware, including spiking neural networks (SNNs), have not achieved task performance even on par with LSTM models for language modeling. As a result, language modeling on neuromorphic devices has seemed a distant prospect. In this work, we demonstrate the first-ever implementation of a language model on a neuromorphic device - specifically the SpiNNaker 2 chip - based on a recently published event-based architecture called the EGRU. SpiNNaker 2 is a many-core neuromorphic chip designed for large-scale asynchronous processing, while the EGRU is architected to leverage such hardware efficiently while maintaining competitive task performance. This implementation marks the first time a neuromorphic language model matches LSTMs, setting the stage for taking task performance to the level of large language models. We also demonstrate results on a gesture recognition task based on inputs from a DVS camera. Overall, our results showcase the feasibility of this neuro-inspired neural network in hardware, highlighting significant gains versus conventional hardware in energy efficiency for the common use case of single batch inference.

FlashRNN: Optimizing Traditional RNNs on Modern Hardware

While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn

Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration

Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems grow in complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compiler optimization, etc.) quickly results in a combinatorial explosion of design space. This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role assigned to each agent. We test this hypothesis by designing domain-specific DRAM memory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search.

Quartet: Native FP4 Training Can Be Optimal for Large Language Models

The rapid advancement of large language models (LLMs) has been paralleled by unprecedented increases in computational demands, with training costs for state-of-the-art models doubling every few months. Training models directly in low-precision arithmetic offers a solution, by improving both computational throughput and energy efficiency. Specifically, NVIDIA's recent Blackwell architecture facilitates extremely low-precision operations, specifically FP4 variants, promising substantial efficiency gains. Yet, current algorithms for training LLMs in FP4 precision face significant accuracy degradation and often rely on mixed-precision fallbacks. In this paper, we systematically investigate hardware-supported FP4 training and introduce Quartet, a new approach enabling accurate, end-to-end FP4 training with all the major computations (in e.g. linear layers) being performed in low precision. Through extensive evaluations on Llama-type models, we reveal a new low-precision scaling law that quantifies performance trade-offs across varying bit-widths and allows us to identify a "near-optimal" low-precision training technique in terms of accuracy-vs-computation, called Quartet. We implement Quartet using optimized CUDA kernels tailored for NVIDIA Blackwell GPUs, and show that it can achieve state-of-the-art accuracy for FP4 precision, successfully training billion-scale models. Our method demonstrates that fully FP4-based training is a competitive alternative to standard-precision and FP8 training. Our code is available at https://github.com/IST-DASLab/Quartet.

OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization

Transformer-based large language models (LLMs) have achieved great success with the growing model size. LLMs' size grows by 240times every two years, which outpaces the hardware progress and makes model inference increasingly costly. Model quantization is a promising approach to mitigate the widening gap between LLM size and hardware capacity. However, the existence of outliers, values with significant magnitudes, in LLMs makes existing quantization methods less effective. Prior outlier-aware quantization schemes adopt sparsity encoding techniques to separate outliers from normal values where the process requires global coordination (e.g., a global sparsity coordination list). This incurs complex encoding/decoding hardware logics and an extra orchestration controller for the computation between outlier and normal values. As such, it is not hardware-efficient and hence only achieves sub-optimal quantization benefits. We propose OliVe, an algorithm/architecture co-designed solution that adopts an outlier-victim pair (OVP) quantization and handles outlier values locally with low hardware overheads and high performance gains. The key insight of OliVe is that outliers are important while the normal values next to them are not. Thus those normal values (called victims) can be sacrificed to accommodate outliers. This enables a memory-aligned OVP encoding scheme, which can be efficiently integrated to the existing hardware accelerators like systolic array and tensor core. As a result, OliVe-based accelerator surpasses the existing outlier-aware accelerator, GOBO, by 4.5times speedup and 4.0times energy reduction, respectively, with a superior model accuracy.

Universal Checkpointing: Efficient and Flexible Checkpointing for Large Scale Distributed Training

Existing checkpointing approaches seem ill-suited for distributed training even though hardware limitations make model parallelism, i.e., sharding model state across multiple accelerators, a requirement for model scaling. Consolidating distributed model state into a single checkpoint unacceptably slows down training, and is impractical at extreme scales. Distributed checkpoints, in contrast, are tightly coupled to the model parallelism and hardware configurations of the training run, and thus unusable on different configurations. To address this problem, we propose Universal Checkpointing, a technique that enables efficient checkpoint creation while providing the flexibility of resuming on arbitrary parallelism strategy and hardware configurations. Universal Checkpointing unlocks unprecedented capabilities for large-scale training such as improved resilience to hardware failures through continued training on remaining healthy hardware, and reduced training time through opportunistic exploitation of elastic capacity. The key insight of Universal Checkpointing is the selection of the optimal representation in each phase of the checkpointing life cycle: distributed representation for saving, and consolidated representation for loading. This is achieved using two key mechanisms. First, the universal checkpoint format, which consists of a consolidated representation of each model parameter and metadata for mapping parameter fragments into training ranks of arbitrary model-parallelism configuration. Second, the universal checkpoint language, a simple but powerful specification language for converting distributed checkpoints into the universal checkpoint format. Our evaluation demonstrates the effectiveness and generality of Universal Checkpointing on state-of-the-art model architectures and a wide range of parallelism techniques.

Splitwise: Efficient generative LLM inference using phase splitting

Recent innovations in generative large language models (LLMs) have made their applications and use-cases ubiquitous. This has led to large-scale deployments of these models, using complex, expensive, and power-hungry AI accelerators, most commonly GPUs. These developments make LLM inference efficiency an important challenge. Based on our extensive characterization, we find that there are two main phases during an LLM inference request: a compute-intensive prompt computation, and a memory-intensive token generation, each with distinct latency, throughput, memory, and power characteristics. Despite state-of-the-art batching and scheduling, the token generation phase underutilizes compute resources. Specifically, unlike compute-intensive prompt computation phases, token generation phases do not require the compute capability of the latest GPUs, and can be run with lower power and cost. With Splitwise, we propose splitting the two phases of a LLM inference request on to separate machines. This allows us to use hardware that is well-suited for each phase, and provision resources independently per phase. However, splitting an inference request across machines requires state transfer from the machine running prompt computation over to the machine generating tokens. We implement and optimize this state transfer using the fast back-plane interconnects available in today's GPU clusters. We use the Splitwise technique to design LLM inference clusters using the same or different types of machines for the prompt computation and token generation phases. Our clusters are optimized for three key objectives: throughput, cost, and power. In particular, we show that we can achieve 1.4x higher throughput at 20% lower cost than current designs. Alternatively, we can achieve 2.35x more throughput with the same cost and power budgets.

MELTing point: Mobile Evaluation of Language Transformers

Transformers have revolutionized the machine learning landscape, gradually making their way into everyday tasks and equipping our computers with "sparks of intelligence". However, their runtime requirements have prevented them from being broadly deployed on mobile. As personal devices become increasingly powerful and prompt privacy becomes an ever more pressing issue, we explore the current state of mobile execution of Large Language Models (LLMs). To achieve this, we have created our own automation infrastructure, MELT, which supports the headless execution and benchmarking of LLMs on device, supporting different models, devices and frameworks, including Android, iOS and Nvidia Jetson devices. We evaluate popular instruction fine-tuned LLMs and leverage different frameworks to measure their end-to-end and granular performance, tracing their memory and energy requirements along the way. Our analysis is the first systematic study of on-device LLM execution, quantifying performance, energy efficiency and accuracy across various state-of-the-art models and showcases the state of on-device intelligence in the era of hyperscale models. Results highlight the performance heterogeneity across targets and corroborates that LLM inference is largely memory-bound. Quantization drastically reduces memory requirements and renders execution viable, but at a non-negligible accuracy cost. Drawing from its energy footprint and thermal behavior, the continuous execution of LLMs remains elusive, as both factors negatively affect user experience. Last, our experience shows that the ecosystem is still in its infancy, and algorithmic as well as hardware breakthroughs can significantly shift the execution cost. We expect NPU acceleration, and framework-hardware co-design to be the biggest bet towards efficient standalone execution, with the alternative of offloading tailored towards edge deployments.

70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float

Large Language Models (LLMs) have grown rapidly in size, creating significant challenges for efficient deployment on resource-constrained hardware. In this paper, we introduce Dynamic-Length Float (DFloat11), a lossless compression framework that reduces LLM size by 30% while preserving outputs that are bit-for-bit identical to the original model. DFloat11 is motivated by the low entropy in the BFloat16 weight representation of LLMs, which reveals significant inefficiency in existing storage format. By applying entropy coding, DFloat11 assigns dynamic-length encodings to weights based on frequency, achieving near information-optimal compression without any loss of precision. To facilitate efficient inference with dynamic-length encodings, we develop a custom GPU kernel for fast online decompression. Our design incorporates the following: (i) decomposition of memory-intensive lookup tables (LUTs) into compact LUTs that fit in GPU SRAM, (ii) a two-phase kernel for coordinating thread read/write positions using lightweight auxiliary variables, and (iii) transformer-block-level decompression to minimize latency. Experiments on recent models, including Llama-3.1, Qwen-2.5, and Gemma-3, validates our hypothesis that DFloat11 achieves around 30% model size reduction while preserving bit-for-bit exact outputs. Compared to a potential alternative of offloading parts of an uncompressed model to the CPU to meet memory constraints, DFloat11 achieves 1.9-38.8x higher throughput in token generation. With a fixed GPU memory budget, DFloat11 enables 5.3-13.17x longer context lengths than uncompressed models. Notably, our method enables lossless inference of Llama-3.1-405B, an 810GB model, on a single node equipped with 8x80GB GPUs. Our code and models are available at https://github.com/LeanModels/DFloat11.

Benchmarking and Dissecting the Nvidia Hopper GPU Architecture

Graphics processing units (GPUs) are continually evolving to cater to the computational demands of contemporary general-purpose workloads, particularly those driven by artificial intelligence (AI) utilizing deep learning techniques. A substantial body of studies have been dedicated to dissecting the microarchitectural metrics characterizing diverse GPU generations, which helps researchers understand the hardware details and leverage them to optimize the GPU programs. However, the latest Hopper GPUs present a set of novel attributes, including new tensor cores supporting FP8, DPX, and distributed shared memory. Their details still remain mysterious in terms of performance and operational characteristics. In this research, we propose an extensive benchmarking study focused on the Hopper GPU. The objective is to unveil its microarchitectural intricacies through an examination of the new instruction-set architecture (ISA) of Nvidia GPUs and the utilization of new CUDA APIs. Our approach involves two main aspects. Firstly, we conduct conventional latency and throughput comparison benchmarks across the three most recent GPU architectures, namely Hopper, Ada, and Ampere. Secondly, we delve into a comprehensive discussion and benchmarking of the latest Hopper features, encompassing the Hopper DPX dynamic programming (DP) instruction set, distributed shared memory, and the availability of FP8 tensor cores. The microbenchmarking results we present offer a deeper understanding of the novel GPU AI function units and programming features introduced by the Hopper architecture. This newfound understanding is expected to greatly facilitate software optimization and modeling efforts for GPU architectures. To the best of our knowledge, this study makes the first attempt to demystify the tensor core performance and programming instruction sets unique to Hopper GPUs.

Exploring Highly Quantised Neural Networks for Intrusion Detection in Automotive CAN

Vehicles today comprise intelligent systems like connected autonomous driving and advanced driving assistance systems (ADAS) to enhance the driving experience, which is enabled through increased connectivity to infrastructure and fusion of information from different sensing modes. However, the rising connectivity coupled with the legacy network architecture within vehicles can be exploited for launching active and passive attacks on critical vehicle systems and directly affecting the safety of passengers. Machine learning-based intrusion detection models have been shown to successfully detect multiple targeted attack vectors in recent literature, whose deployments are enabled through quantised neural networks targeting low-power platforms. Multiple models are often required to simultaneously detect multiple attack vectors, increasing the area, (resource) cost, and energy consumption. In this paper, we present a case for utilising custom-quantised MLP's (CQMLP) as a multi-class classification model, capable of detecting multiple attacks from the benign flow of controller area network (CAN) messages. The specific quantisation and neural architecture are determined through a joint design space exploration, resulting in our choice of the 2-bit precision and the n-layer MLP. Our 2-bit version is trained using Brevitas and optimised as a dataflow hardware model through the FINN toolflow from AMD/Xilinx, targeting an XCZU7EV device. We show that the 2-bit CQMLP model, when integrated as the IDS, can detect malicious attack messages (DoS, fuzzing, and spoofing attack) with a very high accuracy of 99.9%, on par with the state-of-the-art methods in the literature. Furthermore, the dataflow model can perform line rate detection at a latency of 0.11 ms from message reception while consuming 0.23 mJ/inference, making it ideally suited for integration with an ECU in critical CAN networks.

BitMoD: Bit-serial Mixture-of-Datatype LLM Acceleration

Large language models (LLMs) have demonstrated remarkable performance across various machine learning tasks. Yet the substantial memory footprint of LLMs significantly hinders their deployment. In this paper, we improve the accessibility of LLMs through BitMoD, an algorithm-hardware co-design solution that enables efficient LLM acceleration at low weight precision. On the algorithm side, BitMoD introduces fine-grained data type adaptation that uses a different numerical data type to quantize a group of (e.g., 128) weights. Through the careful design of these new data types, BitMoD is able to quantize LLM weights to very low precision (e.g., 4 bits and 3 bits) while maintaining high accuracy. On the hardware side, BitMoD employs a bit-serial processing element to easily support multiple numerical precisions and data types; our hardware design includes two key innovations: First, it employs a unified representation to process different weight data types, thus reducing the hardware cost. Second, it adopts a bit-serial dequantization unit to rescale the per-group partial sum with minimal hardware overhead. Our evaluation on six representative LLMs demonstrates that BitMoD significantly outperforms state-of-the-art LLM quantization and acceleration methods. For discriminative tasks, BitMoD can quantize LLM weights to 4-bit with <!0.5% accuracy loss on average. For generative tasks, BitMoD is able to quantize LLM weights to 3-bit while achieving better perplexity than prior LLM quantization scheme. Combining the superior model performance with an efficient accelerator design, BitMoD achieves an average of 1.69times and 1.48times speedups compared to prior LLM accelerators ANT and OliVe, respectively.

Towards Accurate and Efficient Sub-8-Bit Integer Training

Neural network training is a memory- and compute-intensive task. Quantization, which enables low-bitwidth formats in training, can significantly mitigate the workload. To reduce quantization error, recent methods have developed new data formats and additional pre-processing operations on quantizers. However, it remains quite challenging to achieve high accuracy and efficiency simultaneously. In this paper, we explore sub-8-bit integer training from its essence of gradient descent optimization. Our integer training framework includes two components: ShiftQuant to realize accurate gradient estimation, and L1 normalization to smoothen the loss landscape. ShiftQuant attains performance that approaches the theoretical upper bound of group quantization. Furthermore, it liberates group quantization from inefficient memory rearrangement. The L1 normalization facilitates the implementation of fully quantized normalization layers with impressive convergence accuracy. Our method frees sub-8-bit integer training from pre-processing and supports general devices. This framework achieves negligible accuracy loss across various neural networks and tasks (0.92% on 4-bit ResNets, 0.61% on 6-bit Transformers). The prototypical implementation of ShiftQuant achieves more than 1.85times/15.3% performance improvement on CPU/GPU compared to its FP16 counterparts, and 33.9% resource consumption reduction on FPGA than the FP16 counterparts. The proposed fully-quantized L1 normalization layers achieve more than 35.54% improvement in throughout on CPU compared to traditional L2 normalization layers. Moreover, theoretical analysis verifies the advancement of our method.

Resistive memory-based zero-shot liquid state machine for multimodal event data learning

The human brain is a complex spiking neural network (SNN) that learns multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, the brain achieves this with minimal power consumption, using event-based signals that propagate within its structure. However, mimicking the human brain in neuromorphic hardware presents both hardware and software challenges. Hardware limitations, such as the slowdown of Moore's law and the von Neumann bottleneck, hinder the efficiency of digital computers. On the software side, SNNs are known for their difficult training, especially when learning multimodal signals. To overcome these challenges, we propose a hardware-software co-design that combines a fixed and random liquid state machine (LSM) SNN encoder with trainable artificial neural network (ANN) projections. The LSM is physically implemented using analogue resistive memory, leveraging the inherent stochasticity of resistive switching to generate random weights. This highly efficient and nanoscale in-memory computing approach effectively addresses the von Neumann bottleneck and the slowdown of Moore's law. The ANN projections are implemented digitally, allowing for easy optimization using contrastive loss, which helps to overcome the difficulties associated with SNN training. We experimentally implement this co-design on a 40nm 256Kb in-memory computing macro. We first demonstrate LSM-based event encoding through supervised classification and linear probing on the N-MNIST and N-TIDIGITS datasets.

MixPE: Quantization and Hardware Co-design for Efficient LLM Inference

Transformer-based large language models (LLMs) have achieved remarkable success as model sizes continue to grow, yet their deployment remains challenging due to significant computational and memory demands. Quantization has emerged as a promising solution, and state-of-the-art quantization algorithms for LLMs introduce the need for mixed-precision matrix multiplication (mpGEMM), where lower-precision weights are multiplied with higher-precision activations. Despite its benefits, current hardware accelerators such as GPUs and TPUs lack native support for efficient mpGEMM, leading to inefficient dequantization operations in the main sequential loop. To address this limitation, we introduce MixPE, a specialized mixed-precision processing element designed for efficient low-bit quantization in LLM inference. MixPE leverages two key innovations to minimize dequantization overhead and unlock the full potential of low-bit quantization. First, recognizing that scale and zero point are shared within each quantization group, we propose performing dequantization after per-group mpGEMM, significantly reducing dequantization overhead. Second, instead of relying on conventional multipliers, MixPE utilizes efficient shift\&add operations for multiplication, optimizing both computation and energy efficiency. Our experimental results demonstrate that MixPE surpasses the state-of-the-art quantization accelerators by 2.6times speedup and 1.4times energy reduction.

Understanding GEMM Performance and Energy on NVIDIA Ada Lovelace: A Machine Learning-Based Analytical Approach

Analytical framework for predicting General Matrix Multiplication (GEMM) performance on modern GPUs, focusing on runtime, power consumption, and energy efficiency. Our study employs two approaches: a custom-implemented tiled matrix multiplication kernel for fundamental analysis, and NVIDIA's CUTLASS library for comprehensive performance data collection across advanced configurations. Using the NVIDIA RTX 4070 as our experimental platform, we developed a Random Forest-based prediction model with multi-output regression capability. Through analysis of both naive tiled matrix multiplication with varying tile sizes (1 to 32) and 16,128 CUTLASS GEMM operations across diverse configurations, we identified critical performance patterns related to matrix dimensions, thread block configurations, and memory access patterns. Our framework achieved exceptional accuracy with an R^2 score of 0.98 for runtime prediction (mean error 15.57%) and 0.78 for power prediction (median error 5.42%). The system successfully predicts performance across matrix sizes, demonstrating robust scaling behavior. Our results show that optimal tile size selection can improve performance by up to 3.2x while reducing power consumption by 22% compared to baseline configurations. Analysis of shared memory utilization and SM occupancy reveals that tile sizes of 16x16 achieve the best balance between parallelism and resource usage. The implementation of our framework, including prediction models and analysis tools, is available as an open-source project at GPPerf [https://github.com/pavlyhalim/GPPerf].

Towards LLM-Powered Verilog RTL Assistant: Self-Verification and Self-Correction

We explore the use of Large Language Models (LLMs) to generate high-quality Register-Transfer Level (RTL) code with minimal human interference. The traditional RTL design workflow requires human experts to manually write high-quality RTL code, which is time-consuming and error-prone. With the help of emerging LLMs, developers can describe their requirements to LLMs which then generate corresponding code in Python, C, Java, and more. Adopting LLMs to generate RTL design in hardware description languages is not trivial, given the complex nature of hardware design and the generated design has to meet the timing and physical constraints. We propose VeriAssist, an LLM-powered programming assistant for Verilog RTL design workflow. VeriAssist takes RTL design descriptions as input and generates high-quality RTL code with corresponding test benches. VeriAssist enables the LLM to self-correct and self-verify the generated code by adopting an automatic prompting system and integrating RTL simulator in the code generation loop. To generate an RTL design, VeriAssist first generates the initial RTL code and corresponding test benches, followed by a self-verification step that walks through the code with test cases to reason the code behavior at different time steps, and finally it self-corrects the code by reading the compilation and simulation results and generating final RTL code that fixes errors in compilation and simulation. This design fully leverages the LLMs' capabilities on multi-turn interaction and chain-of-thought reasoning to improve the quality of the generated code. We evaluate VeriAssist with various benchmark suites and find it significantly improves both syntax and functionality correctness over existing LLM implementations, thus minimizing human intervention and making RTL design more accessible to novice designers.

Model Quantization and Hardware Acceleration for Vision Transformers: A Comprehensive Survey

Vision Transformers (ViTs) have recently garnered considerable attention, emerging as a promising alternative to convolutional neural networks (CNNs) in several vision-related applications. However, their large model sizes and high computational and memory demands hinder deployment, especially on resource-constrained devices. This underscores the necessity of algorithm-hardware co-design specific to ViTs, aiming to optimize their performance by tailoring both the algorithmic structure and the underlying hardware accelerator to each other's strengths. Model quantization, by converting high-precision numbers to lower-precision, reduces the computational demands and memory needs of ViTs, allowing the creation of hardware specifically optimized for these quantized algorithms, boosting efficiency. This article provides a comprehensive survey of ViTs quantization and its hardware acceleration. We first delve into the unique architectural attributes of ViTs and their runtime characteristics. Subsequently, we examine the fundamental principles of model quantization, followed by a comparative analysis of the state-of-the-art quantization techniques for ViTs. Additionally, we explore the hardware acceleration of quantized ViTs, highlighting the importance of hardware-friendly algorithm design. In conclusion, this article will discuss ongoing challenges and future research paths. We consistently maintain the related open-source materials at https://github.com/DD-DuDa/awesome-vit-quantization-acceleration.

ML-driven Hardware Cost Model for MLIR

During early optimization passes, compilers must make predictions for machine-dependent characteristics such as execution unit utilization, number of register spills, latency, throughput etc. to generate better code. Often a hand-written static/analytical hardware cost model is built into the compiler. However, the need for more sophisticated and varied predictions has become more pronounced with the development of deep learning compilers which need to optimize dataflow graphs. Such compilers usually employ a much higher level MLIR form as an IR representation before lowering to traditional LLVM-IR. A static/analytical cost model in such a scenario is cumbersome and error prone as the opcodes represent very high level algebraic/arithmetic operations. Hence, we develop a machine learning-based cost model for high-level MLIR which can predict different target variables of interest such as CPU/GPU/xPU utilization, instructions executed, register usage etc. By considering the incoming MLIR as a text input a la NLP models we can apply well-known techniques from modern NLP research to help predict hardware characteristics more accurately. We expect such precise ML-driven hardware cost models to guide our deep learning compiler in graph level optimizations around operator fusion, local memory allocation, kernel scheduling etc. as well as in many kernel-level optimizations such as loop interchange, LICM and unroll. We report early work-in -progress results of developing such models on high-level MLIR representing dataflow graphs emitted by Pytorch/Tensorflow-like frameworks as well as lower-level dialects like affine. We show that these models can provide reasonably good estimates with low error bounds for various hardware characteristics of interest and can be a go-to mechanism for hardware cost modelling in the future.

A system on chip for melanoma detection using FPGA-based SVM classifier

Support Vector Machine (SVM) is a robust machine learning model that shows high accuracy with different classification problems, and is widely used for various embedded applications. However , implementation of embedded SVM classifiers is challenging, due to the inherent complicated computations required. This motivates implementing the SVM on hardware platforms for achieving high performance computing at low cost and power consumption. Melanoma is the most aggressive form of skin cancer that increases the mortality rate. We aim to develop an optimized embedded SVM classifier dedicated for a low-cost handheld device for early detection of melanoma at the primary healthcare. In this paper, we propose a hardware/software co-design for implementing the SVM classifier onto FPGA to realize melanoma detection on a chip. The implemented SVM on a recent hybrid FPGA (Zynq) platform utilizing the modern UltraFast High-Level Synthesis design methodology achieves efficient melanoma classification on chip. The hardware implementation results demonstrate classification accuracy of 97.9%, and a significant hardware acceleration rate of 21 with only 3% resources utilization and 1.69W for power consumption. These results show that the implemented system on chip meets crucial embedded system constraints of high performance and low resources utilization, power consumption, and cost, while achieving efficient classification with high classification accuracy.

DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale

The past several years have witnessed the success of transformer-based models, and their scale and application scenarios continue to grow aggressively. The current landscape of transformer models is increasingly diverse: the model size varies drastically with the largest being of hundred-billion parameters; the model characteristics differ due to the sparsity introduced by the Mixture-of-Experts; the target application scenarios can be latency-critical or throughput-oriented; the deployment hardware could be single- or multi-GPU systems with different types of memory and storage, etc. With such increasing diversity and the fast-evolving pace of transformer models, designing a highly performant and efficient inference system is extremely challenging. In this paper, we present DeepSpeed Inference, a comprehensive system solution for transformer model inference to address the above-mentioned challenges. DeepSpeed Inference consists of (1) a multi-GPU inference solution to minimize latency while maximizing the throughput of both dense and sparse transformer models when they fit in aggregate GPU memory, and (2) a heterogeneous inference solution that leverages CPU and NVMe memory in addition to the GPU memory and compute to enable high inference throughput with large models which do not fit in aggregate GPU memory. DeepSpeed Inference reduces latency by up to 7.3X over the state-of-the-art for latency-oriented scenarios and increases throughput by over 1.5x for throughput-oriented scenarios. Moreover, it enables trillion parameter scale inference under real-time latency constraints by leveraging hundreds of GPUs, an unprecedented scale for inference. It can inference 25x larger models than with GPU-only solutions, while delivering a high throughput of 84 TFLOPS (over 50% of A6000 peak).

FemtoDet: An Object Detection Baseline for Energy Versus Performance Tradeoffs

Efficient detectors for edge devices are often optimized for parameters or speed count metrics, which remain in weak correlation with the energy of detectors. However, some vision applications of convolutional neural networks, such as always-on surveillance cameras, are critical for energy constraints. This paper aims to serve as a baseline by designing detectors to reach tradeoffs between energy and performance from two perspectives: 1) We extensively analyze various CNNs to identify low-energy architectures, including selecting activation functions, convolutions operators, and feature fusion structures on necks. These underappreciated details in past work seriously affect the energy consumption of detectors; 2) To break through the dilemmatic energy-performance problem, we propose a balanced detector driven by energy using discovered low-energy components named FemtoDet. In addition to the novel construction, we improve FemtoDet by considering convolutions and training strategy optimizations. Specifically, we develop a new instance boundary enhancement (IBE) module for convolution optimization to overcome the contradiction between the limited capacity of CNNs and detection tasks in diverse spatial representations, and propose a recursive warm-restart (RecWR) for optimizing training strategy to escape the sub-optimization of light-weight detectors by considering the data shift produced in popular augmentations. As a result, FemtoDet with only 68.77k parameters achieves a competitive score of 46.3 AP50 on PASCAL VOC and 1.11 W & 64.47 FPS on Qualcomm Snapdragon 865 CPU platforms. Extensive experiments on COCO and TJU-DHD datasets indicate that the proposed method achieves competitive results in diverse scenes.

SymRTLO: Enhancing RTL Code Optimization with LLMs and Neuron-Inspired Symbolic Reasoning

Optimizing Register Transfer Level (RTL) code is crucial for improving the power, performance, and area (PPA) of digital circuits in the early stages of synthesis. Manual rewriting, guided by synthesis feedback, can yield high-quality results but is time-consuming and error-prone. Most existing compiler-based approaches have difficulty handling complex design constraints. Large Language Model (LLM)-based methods have emerged as a promising alternative to address these challenges. However, LLM-based approaches often face difficulties in ensuring alignment between the generated code and the provided prompts. This paper presents SymRTLO, a novel neuron-symbolic RTL optimization framework that seamlessly integrates LLM-based code rewriting with symbolic reasoning techniques. Our method incorporates a retrieval-augmented generation (RAG) system of optimization rules and Abstract Syntax Tree (AST)-based templates, enabling LLM-based rewriting that maintains syntactic correctness while minimizing undesired circuit behaviors. A symbolic module is proposed for analyzing and optimizing finite state machine (FSM) logic, allowing fine-grained state merging and partial specification handling beyond the scope of pattern-based compilers. Furthermore, a fast verification pipeline, combining formal equivalence checks with test-driven validation, further reduces the complexity of verification. Experiments on the RTL-Rewriter benchmark with Synopsys Design Compiler and Yosys show that SymRTLO improves power, performance, and area (PPA) by up to 43.9%, 62.5%, and 51.1%, respectively, compared to the state-of-the-art methods.

KetGPT - Dataset Augmentation of Quantum Circuits using Transformers

Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems. Existing datasets, widely utilized in the field, suffer from limitations in size and versatility, leading researchers to employ randomly generated circuits. Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms for which the quantum systems are manufactured. This shortage of `useful' quantum benchmarks poses a challenge to advancing the development and comparison of quantum compilers and hardware. This research aims to enhance the existing quantum circuit datasets by generating what we refer to as `realistic-looking' circuits by employing the Transformer machine learning architecture. For this purpose, we introduce KetGPT, a tool that generates synthetic circuits in OpenQASM language, whose structure is based on quantum circuits derived from existing quantum algorithms and follows the typical patterns of human-written algorithm-based code (e.g., order of gates and qubits). Our three-fold verification process, involving manual inspection and Qiskit framework execution, transformer-based classification, and structural analysis, demonstrates the efficacy of KetGPT in producing large amounts of additional circuits that closely align with algorithm-based structures. Beyond benchmarking, we envision KetGPT contributing substantially to AI-driven quantum compilers and systems.

AssertionBench: A Benchmark to Evaluate Large-Language Models for Assertion Generation

Assertions have been the de facto collateral for simulation-based and formal verification of hardware designs for over a decade. The quality of hardware verification, \ie, detection and diagnosis of corner-case design bugs, is critically dependent on the quality of the assertions. There has been a considerable amount of research leveraging a blend of data-driven statistical analysis and static analysis to generate high-quality assertions from hardware design source code and design execution trace data. Despite such concerted effort, all prior research struggles to scale to industrial-scale large designs, generates too many low-quality assertions, often fails to capture subtle and non-trivial design functionality, and does not produce any easy-to-comprehend explanations of the generated assertions to understand assertions' suitability to different downstream validation tasks. Recently, with the advent of Large-Language Models (LLMs), there has been a widespread effort to leverage prompt engineering to generate assertions. However, there is little effort to quantitatively establish the effectiveness and suitability of various LLMs for assertion generation. In this paper, we present AssertionBench, a novel benchmark to evaluate LLMs' effectiveness for assertion generation quantitatively. AssertioBench contains 100 curated Verilog hardware designs from OpenCores and formally verified assertions for each design generated from GoldMine and HARM. We use AssertionBench to compare state-of-the-art LLMs to assess their effectiveness in inferring functionally correct assertions for hardware designs. Our experiments demonstrate how LLMs perform relative to each other, the benefits of using more in-context exemplars in generating a higher fraction of functionally correct assertions, and the significant room for improvement for LLM-based assertion generators.

ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning

In the last three years, the largest dense deep learning models have grown over 1000x to reach hundreds of billions of parameters, while the GPU memory has only grown by 5x (16 GB to 80 GB). Therefore, the growth in model scale has been supported primarily though system innovations that allow large models to fit in the aggregate GPU memory of multiple GPUs. However, we are getting close to the GPU memory wall. It requires 800 NVIDIA V100 GPUs just to fit a trillion parameter model for training, and such clusters are simply out of reach for most data scientists. In addition, training models at that scale requires complex combinations of parallelism techniques that puts a big burden on the data scientists to refactor their model. In this paper we present ZeRO-Infinity, a novel heterogeneous system technology that leverages GPU, CPU, and NVMe memory to allow for unprecedented model scale on limited resources without requiring model code refactoring. At the same time it achieves excellent training throughput and scalability, unencumbered by the limited CPU or NVMe bandwidth. ZeRO-Infinity can fit models with tens and even hundreds of trillions of parameters for training on current generation GPU clusters. It can be used to fine-tune trillion parameter models on a single NVIDIA DGX-2 node, making large models more accessible. In terms of training throughput and scalability, it sustains over 25 petaflops on 512 NVIDIA V100 GPUs(40% of peak), while also demonstrating super linear scalability. An open source implementation of ZeRO-Infinity is available through DeepSpeed, a deep learning optimization library that makes distributed training easy, efficient, and effective.

Toward smart composites: small-scale, untethered prediction and control for soft sensor/actuator systems

We present formulation and open-source tools to achieve in-material model predictive control of sensor/actuator systems using learned forward kinematics and on-device computation. Microcontroller units (MCUs) that compute the prediction and control task while colocated with the sensors and actuators enable in-material untethered behaviors. In this approach, small parameter size neural network models learn forward kinematics offline. Our open-source compiler, nn4mc, generates code to offload these predictions onto MCUs. A Newton-Raphson solver then computes the control input in real time. We first benchmark this nonlinear control approach against a PID controller on a mass-spring-damper simulation. We then study experimental results on two experimental rigs with different sensing, actuation and computational hardware: a tendon-based platform with embedded LightLace sensors and a HASEL-based platform with magnetic sensors. Experimental results indicate effective high-bandwidth tracking of reference paths (greater than or equal to 120 Hz) with a small memory footprint (less than or equal to 6.4% of flash memory). The measured path following error does not exceed 2mm in the tendon-based platform. The simulated path following error does not exceed 1mm in the HASEL-based platform. The mean power consumption of this approach in an ARM Cortex-M4f device is 45.4 mW. This control approach is also compatible with Tensorflow Lite models and equivalent on-device code. In-material intelligence enables a new class of composites that infuse autonomy into structures and systems with refined artificial proprioception.